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Abstract. Deep neural networks are vulnerable to adversarial attacks.
Though various attempts have been made, it is still largely open to fully
understand the existence of adversarial samples and thereby develop ef-
fective defense strategies. In this paper, we present a new perspective,
namely gradient leaking hypothesis, to understand the existence of ad-
versarial examples and to further motivate effective defense strategies.
Specifically, we consider the low dimensional manifold structure of natu-
ral images, and empirically verify that the leakage of the gradient (w.r.t
input) along the (approximately) perpendicular direction to the tangent
space of data manifold is a reason for the vulnerability over adversar-
ial attacks. Based on our investigation, we further present a new robust
learning algorithm which encourages a larger gradient component in the
tangent space of data manifold, suppressing the gradient leaking phe-
nomenon consequently. Experiments on various tasks demonstrate the
effectiveness of our algorithm despite its simplicity.
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1 Introduction

Deep neural networks (DNNs) have shown impressive performance in a variety
of application domains, including computer vision [13], natural language pro-
cessing [18] and cybersecurity [6]. However, it has been widely recognized that
their predictions could be easily subverted by the adversarial perturbations that
are carefully crafted and even imperceptible to human beings [27]. The vulner-
ability of DNNs to adversarial examples along with the design of appropriate
countermeasures has recently drawn a wide attention.

Recent years have witnessed the development of many kinds of defense al-
gorithms. However, it still remains a challenge to achieve robustness against
adversarial attacks. For example, defenses based on input transformation or ran-
domization usually give obfuscated gradients [1] and hence could be cracked by
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Fig. 1: An illustration of gradient leaking. If the manifold and decision boundaries
are relatively flat, the robust distance in this case is approximately the order of
O(cos(θ)) (θ is the angle between gradient direction and the tangent space) of
the theoretical longest distance on the manifold.

adaptive attacks. Defenses such as adversarial training [17] and controlling Lips-
chitz constants [20] will significantly decrease the gradient norm of the model loss
function, which may sacrifice the accuracy on natural images. The difficulty in
designing defense algorithms is partly due to the unclear reason for the existence
and pervasiveness of adversarial examples. Though various attempts have been
made including the linearity of the decision boundary [8], insufficiency of sam-
ples [25], the concentration property of high dimensional constraints [26] and the
computational constraints [2], it is still an open question to explore the intrinsic
mechanism of adversarial examples and design better defense algorithms.

In our paper, we analyze the existence of adversarial examples from the per-
spective of the data manifold, and propose a new hypothesis called Gradient
Leaking Hypothesis. When analyzing the adversarial robustness at a given data
point (which is classified correctly as class y), we focus on the adversarial gra-
dient, i.e. the gradient of the objective function in untargeted attack such as
the negative predicted likelihood function of class y. As is illustrated in Fig. 1,
the ideal direction of adversarial gradient lies in (the tangent space of) the data
manifold, so that only the necessary gradient to classify the dataset remains.
However, through extensive analysis we find that in most normally trained mod-
els, the gradient points to a nearly perpendicular direction to the data manifold,
resulting in the leakage of gradient information and weak robustness in adver-
sarial attacks. In such cases, adversarial examples can be found outside of but
very close to the data manifold. As shown in the figure, the perturbation norm
of the adversarial is the order of cos(θ) relative to that in the ideal case.

As the adversarial gradient is approximately perpendicular to the decision
boundary between the original class and the class of the adversarial example, a
more intuitive description of gradient leaking is that the decision boundary is
nearly parallel to the data manifold, which implies vulnerability to adversarial at-
tacks. To show its reason visually, we illustrate an inspiring example in Fig. 2(a).
The data points are distributed in different colored regions corresponding to the
different classes. We identify an approximate 1-dimensional data manifold shown
as the black parabolic curve (we exaggerate the distance from data points to the
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Fig. 2: An illustrative case when gradient leaking happens (a), and our method
to train a robust classifier through preprocessing the dataset (b).

manifold in the figure). The dataset is linearly separable shown as the purple
line. However, it is nearly parallel to the data manifold, which does not corre-
spond to a robust classifier. The adversary could perturb the data points in a
perpendicular direction to the data manifold, suggesting that gradient leaking
happens. We see that vulnerability to the adversarial attack is usually caused
by some small-scale features (e.g., the direction perpendicular to the decision
boundary in Fig. 2(a)) which are easily learned by the classifier since they might
be highly correlated to the labels. This is also in line with recent studies such
as [11] which demonstrate that adversarial examples can be attributed to the
non-robust features useful for classification.

Based on the above analysis, we present a novel data preprocessing framework
to reduce gradient leaking during training, thereby enhancing the adversarial
robustness. We first make the data manifold flat by projecting the dataset to the
PCA principal subspace to eliminate the small-scale features mentioned above.
After that, we add independent noise in the normal space of the data manifold
to enforce the classifier to learn a decision boundary nearly perpendicular to
the data manifold. The result is illustrated in Fig. 2(b), in which we change the
data distribution to learn a robust classifier that remains a high accuracy on
the original dataset. Extensive experiments demonstrate that we can obtain a
more robust model in image classification and face recognition tasks. By simply
preprocessing images before training, we can achieve a 2∼3 times improvement
on the mean perturbation norm of adversarial examples under a powerful `2-BIM
attack. Our algorithm is nearly orthogonal to other methods and can be easily
integrated with them. As an example, we integrate our method with the Max-
Mahalanobis center (MMC) loss training [19], and reach much higher robustness
compared to the baseline MMC. The robustness of our obtained model is close
to that of the model trained by adversarial training [17], yet with a much higher
clean accuracy and much lower training time cost.

Contribution. In this paper, (1) we propose a novel Gradient Leaking Hy-
pothesis to explain the existence of adversarial samples and analyze its possible
mechanisms under an empirical investigation; (2) and we present a novel algo-
rithm of robust learning based on our hypothesis, yielding superior performance
in various tasks.
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2 Related Work

[2] analyzes four opinions on adversarial samples. The authors point out that
though robust models could exist, the requirement of robustness and compu-
tational efficiency might contradict in specific task. Our analysis and empirical
evidence support the idea that there is a trade-off between “easiness to learn”
and robustness. [25] claims that sampling complexity may be the reason for ad-
versarial samples, but we point out that having more samples on the manifold
may not help if the gradient leaking is not suppressed efficiently.

The authors in [7] analyze the geometric properties of DNN image classifiers
in the input space. They show that DNNs learn connected classification regions,
and the decision boundary in the vicinity of data points is flat along most di-
rections. But they claim the results reflect the complex topological properties
of classification regions. We believe that it could happen in spaces with simple
topology (for example, homeomorphic to RD) caused by gradient leaking.

[11] points out that adversarial examples are highly related to the presence
of non-robust features, which are brittle and incomprehensible to humans. They
distill robust features from a robust model. Our work bridges the inherent ge-
ometry of data manifold and the robustness of features, and could be considered
as developing a way to quantitatively study the reliance of classifier on these
non-robust features, and using them to improve the robustness of DNNs.

The authors of [9] systematically suggest a framework of Gaussian noise ran-
domization to improve robustness. They inject isotropic Gaussian noise, whose
scale is trainable through solving the Min-Max optimization problem embedded
with adversarial training, at each layer on either activation or weights. Our noise
adding procedure could be seen as a variant considered as a subspace selection
procedure to add Gaussian noise on the input.

Defense-GAN [24] shows that by projecting data points to lower-dimensional
manifold during inference time, the classifier can be more robust. Their defense
partially relies on obfuscated gradients [1] and is only tested on MNIST. By
contrast, our method is applied to the training process, able to obtain a robust
classifier used in a vanilla way, and more scalable to larger datasets.

3 Gradient Leaking Hypothesis

In this section, we first present the Gradient Leaking Hypothesis formally, and
analyze its relationship with robustness empirically.

3.1 Preliminary

In general, the data points {xi} in a natural image dataset lie on a manifold M
embedded in RD, which is called the ambient space. The intrinsic dimension of
M, n, is generally much lower than D. A tangent space of M on x (denoted as
TxM) can be defined as

TxM :=

{
v
∣∣∣∃ differentiable curve γ : [−ε, ε]→M, γ(0) = x, s.t. v =

dγ

dt

∣∣∣
t=0

}
,
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which is a linear subspace of RD. Moreover, the normal space on x (denoted
as NxM) is the orthogonal complement of the tangent space TxM.

3.2 Gradient Leaking

We now formally present the gradient leaking hypothesis. Without loss of gener-
ality, we consider a two-class classification problem. Typically, we want to learn
a prediction function h : RD → [0, 1] such that h(x) = p(y = 1|x). Assuming
that all the data points are on the manifold M, then the restriction of h on M
(denoted by h|M(x)) completely determines training loss and testing accuracy. In
other words, if we have a function e defined on RD such that ∀x ∈M, e(x) = 0,
then h + e shares the same training/testing statistics with h since they are the
same on M. However, the adversarial robustness of h + e and h could be very
different, since adversarial examples usually do not lie on the manifold M. This
is an ambiguity of the functions in RD, when they share the same values on M.

Considering this ambiguity issue, we need to specify an extension of some
given h|M(x) to RD for adversarial robustness. Specifically, the following is a
desirable property suggesting adversarial robustness of an extension h:

∀x ∈M,∇h(x) ∈ TxM, (1)

which means that the prediction does not change if x is perturbed in a perpen-
dicular direction of the manifold tangent space. Intuitively, the adversary cannot
perform the attack successfully by only perturbing the input image away from
the manifold. We note that the tangent component of ∇h(x) is indispensible to
enable the value of h(x) to vary on the manifold to classify the dataset, and
hence intuitively, Eq. (1) describes an ideal case to maintain the accuracy while
improving robustness.

In reality, however, the classifier is usually inclined to make its gradient
nearly perpendicular to the tangent space of the data manifold. We call this
phenomenon gradient leaking. Formally speaking, we propose Gradient Leak-
ing Hypothesis as follows:

Let h denote the learned prediction function in typical machine learning
tasks and x ∈ M. If we decompose the gradient into the tangent space
and normal space as ∇h(x) = v‖+ v⊥, where v‖ ∈ TxM and v⊥ ∈ NxM,
then ‖v‖‖ � ‖v⊥‖.

The hypothesis suggests that even if h is a good classifier on the manifold M,
it may fail to be robust since it puts too much of its gradient in the normal
space of the manifold. An geometric description of gradient leaking is that the
hypersurface {x : h(x) = c} for c ∈ (0, 1) is nearly parallel to the data manifold,
while in the ideal case they should be perpendicular to each other. When c = 0.5,
the hypersurface {x : h(x) = c} is the decision boundary, so gradient leaking
basically means that the decision boundary is along the data manifold.

An illustrating case when gradient leaking happens is shown in Fig. 3. The
data manifold is the green sine-wave surface, in which the part above the blue
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surface is in one class, and the part below the blue surface is in the other class.
The blue surface itself seems a natural choice to classify the two classes since it is
nearly linear, but the classifier using it as the decision boundary is not a robust
classifier, since we can change its prediction by perturbing the data point up or
down slightly. This aligns with our gradient leaking hypothesis since the blue
surface is nearly parallel to the data manifold. A more robust decision boundary
should be perpendicular to the data manifold, but it must be wave-like as well,
making it more difficult to learn in practice.

Intuitively, the non-robust classifier cor-

Fig. 3: Illustration of the gradient
leaking phenomenon. The green sur-
face is the data manifold (all of the
data points are on it), and the label
is decided by whether the data point
is above or below the blue surface.
However, if the blue surface is cho-
sen as the decision boundary, then
gradient leaking occurs and the clas-
sifier is not robust.

responding to the blue surface utilizes the
direction of fluctuation of the data mani-
fold, which could be rather small despite
correlating with the true label well. We
call such directions small-scale features,
and call their opposite, the main spanning
direction of the data manifold, large-scale
features. Similar cases of gradient leak-
ing happens in real datasets as well, since
there exist such small-scale features like
textures. We assume that in the learn-
ing procedure, the classifier would rely
on the most discriminative dimensions,
which may be small-scale but linear sep-
arable. We perform a data poisoning ex-
periment on CIFAR10 (see Appendix E) to verify the hypothesis that the pref-
erence for small scale features may cause the classifier to be non-robust.

Our hypothesis can explain the limitation of the present methods. For exam-
ple, the gradient regularization methods [23, 12] or Lipschitz limited methods [5,
15] assume that one could design a robust model by making the gradient norm
smaller. Adversarial training [8] has shown a great performance which can re-
duce the gradient norm considerably. However, these methods do not distinguish
between the tangent space and the normal space, and cannot preserve the use-
ful gradient component in the tangent space while reducing that in the normal
space. Our hypothesis suggests that to improve robustness, we should focus on
the direction instead of the norm of the gradient. Moreover, simply increasing
the number of training data points may not help much [4], because points sam-
pled from the data manifold tell the classifier nothing about what its prediction
should be outside of the manifold.

3.3 Empirical Study

In this section, we empirically show that the gradient leaking phenomenon widely
exists in DNNs.

Evaluation Metric To detect the gradient leaking phenomenon in the real sce-
nario, it is expected that we can clearly recognize the tangent space and normal
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Fig. 4: Average PCA proportion of the gradient on CIFAR10.

space on each point at a low cost, which demands an efficient way to repre-
sent the data manifold approximately. Among various choices, in this paper,
we resort to the PCA subspace since it is convenient yet effective for manifold
representation. Specifically, suppose the PCA eigenvectors are {v1, v2, ..., vD} in
a descending order of corresponding eigenvalues, which is an orthogonal basis
of the ambient space. We refer to the d-dimensional PCA (principal) subspace
as spanned by {v1, v2, ..., vd}, where d � D. We define an evaluation metric of
gradient leaking, with the PCA principal subspace serving as an approximation
to the local tangent space. For a data point x, suppose g = ∇f(x) is the adver-
sarial gradient where f is some loss function w.r.t. the label of x. Then a larger
proportion of g in the PCA subspace indicates less gradient leaking, which can
be calculated as

αd(g) =

∑d
i=1(g>vi)

2

‖g‖22
. (2)

We note that for d1 < d2, 0 ≤ αd1
(g) ≤ αd2

(g) ≤ 1. By drawing a curve of αd(g)
to d ∈ {1, 2, ..., D}, complete information of g can be recovered.

Existence of Gradient Leaking Phenomenon We conduct experiments on
CIFAR10 (D = 32 × 32 × 3 = 3072) by training two different state-of-the-art
network architectures, namely DenseNet [10] and Wide-ResNet [31]. We also
conduct experiments on CASIA-WebFace, a dataset for face recognition, but
leave the results to Appendix C due to space limitation. To evaluate the extent
of gradient leaking, we calculate the average PCA proportion of the gradient
over the dataset as1

αd ,
1

N

N∑
n=1

αd(∇f(xn)). (3)

We show the curve of αd vs. d at the last epoch in Fig. 4(a). It can be seen that
the component of gradients in the PCA principal subspace is far less than the
component of images in the same subspace, indicating that the model relies on
small-scale features to classify, i.e. leaks gradient outside of the data manifold.

1 We omit the dependence of the loss function f on the label of xn.
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Table 1: Statistics of 8 pretrained models on ImageNet.
Model inc res50 res152 vgg ens hgd iat iat-den

R2

Accuracy 0.769 0.740 0.751 0.694 0.764 0.787 0.602 0.639

1/Mean grad norm 0.115 0.197 0.157 0.272 0.264 0.248 1.535 1.743 0.904
α400 0.011 0.020 0.021 0.018 0.037 0.014 0.145 0.152 0.940
α1241 0.053 0.102 0.103 0.096 0.146 0.060 0.284 0.296 0.878
α6351 0.333 0.449 0.465 0.628 0.559 0.314 0.588 0.612 0.319

Mean pert norm 0.199 0.190 0.306 0.262 1.084 0.540 1.952 2.332 -

Meanwhile, we also explore the property of the adversarial perturbation direc-
tion here. We try to perturb the original input x such that the perturbed sample
is misclassified, and find such smallest `2-perturbation δ(x) by the `2-BIM attack
[14] implemented by Foolbox [21]. Then we calculate αd for d = {1, 2, ..., D} in
the same way except that ∇f(xn) is replaced by δ(xn), and draw the curve in the
same figure. The PCA proportion of the gradient and the adversarial perturba-
tion is almost identical, suggesting that the direction of adversarial samples could
be seen as a first-order effect2, hence reducing the gradient leaking phenomenon
at data points should be a good option for improving the robustness.

Furthermore, we explore the trends of gradient leaking along the training
process. For the training model, we plot αd to the training epochs for d = 300
and 800 in Fig. 4(b) on DenseNet and in Fig. 4(c) on Wide-ResNet3. At Epoch
0 (before training), gradient leaking is severe since the model has no knowledge
of the data manifold then. At Epoch 1, the model leaks the least proportion of
gradients since it learns to classify the data points in the data manifold during the
first epoch. However, the gradient leaking becomes more and more notable in the
remaining epochs. This validates our conjecture that small-scale features might
be preferred by DNNs when they are discriminative and easy for classification.
In the beginning of training, the models discover the data manifold and learn to
classify with the large-scale features along the manifold. However, DNNs would
finally discover such small-scale features and use them to improve classification
performance at the expense of robustness.

Gradient Leaking as an Indicator of Robustness Having established that
gradient leaking phenomenon exists when training typical neural architectures,
we empirically study the relationship between the robustness and the tensity of
gradient leaking. We note that the norm of the gradient might not be the best
indicator of robustness, since that for example, an image with a rather small
gradient norm could also have an adversarial example in its neighborhood.

We analyze 8 models trained on ImageNet, in which 4 are normally trained
models (‘inc’: Inception-v3, ‘vgg’: VGG-16, ‘res50’: ResNet-v1-50, ‘res152’: ResNet-
v2-152) and 4 are models which are intended to be robust (‘ens’: Inception-

2 Though the distance may be affected by the non-linearity introduced by softmax.
3 In CIFAR10, PCA with d = 300 and 800 preserve 96.85% and 99.40% of the energy

of the image dataset respectively.
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ResNet-v2 through ensemble adversarial training [28], ‘hgd’: An ensemble of
networks with a high-level representation guided denoiser [16], ‘iat’: a ResNet-
152 model through large-scale adversarial training [29], ‘iat-den’: the ‘iat’ model
with feature-denoising layers [29]). We conduct the experiments on the first 1000
images in the validation set. The results are shown in Table 1. The d in αd is cho-
sen as 400, 1241 and 6351 since they correspond to preserving 90%, 95% and 99%
of the energy respectively after the images are projected to the PCA subspace.
In the last column, we show the coefficient of determination R2 of the linear re-
gression which predicts the mean perturbation norm of the adversarial example
we find by `2-BIM (the last row). Note that according to Fig. 1, the perturbation
norm of adversarial examples should be approximately proportional to

√
αd. We

hence show R2 w.r.t.
√
αd instead of αd here. We find that compared with the

reciprocal of mean gradient norm, α400 turns out to be a better indicator of the
mean perturbation norm which represents adversarial robustness.4

Discussion From the validation in the real scenario, we find that

1. Gradient leaking widely exists in DNNs. Considering that the PCA subspace
can be much larger than the real data manifold, it might be worse than we
already observed and be a reason for adversarial vulnerability.

2. Adversarial vulnerability is a first order phenomenon in the sense that the
adversarial perturbation direction aligns with the gradient direction well.

3. During the training procedure, the gradients concentrate on main compo-
nents at first, and then leak gradually, showing a clear dynamics of changing
the gradients’ direction to fit the small-scale features.

4. Small-scale features are preferred by DNNs. They could even generalize well
on the testing dataset, but we need to reduce their effect in robustness-
sensitive tasks.

4 Adversarial Defenses

With our discussion above, making gradients lie in the tangent space of data
manifold might be a central mission to construct a robust classifier. Hence, we
propose to improve robustness by suppressing the gradient leaking phenomenon.

4.1 Making the Data Manifold Flat

To deal with gradient leaking, we consider modifying the training dataset to
make the data manifold ‘flat’. Taking Fig. 3 as an example, we propose to project
the data manifold onto the blue surface, making the currently shown decision
boundary invalid. It forces a model with sufficient expressive power to learn to
classify with a more robust feature such as the coordinate along the blue surface
(although the decision boundary could be more complicated).

4 R2 w.r.t.
√
α1241 and

√
α6351 deteriorate perhaps because the intrinsic dimension of

the data manifold should be much smaller than 1241.
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Specifically, we propose to project the training dataset to its PCA principal
subspace before training, so that the fluctuation of data manifold is partially
eliminated. Note that in evaluation (Sec. 3.3), we consider the data manifold as
the PCA hyperplane since they are similar in the large-scale stretching direction;
however, they are very different in the training process as we mentioned above.
Formally speaking, we project each data point x as5

x←
d∑

i=1

〈x, vi〉vi,

before training, where d is a hyperparameter representing the dimension of the
PCA subspace, and v1, v2, ..., vd are the d principal eigenvectors. We note that
we perform PCA projection during training process instead of during testing
process, which suffices to improve robustness significantly. The time cost of com-
putation of PCA principal eigenvectors is relatively small (see Appendix A).

4.2 Adding Noise in the Normal Space

A more direct way to suppress gradient leaking is to perform data augmentation
so that the loss of the classifier would be large if the decision boundary is not
perpendicular enough to the data manifold. The idea is best illustrated in Fig. 2.
Fig. 2(a) shows the original data distribution in which regions of two different
colors represent two categories of data points. We recognize the black parabolic
curve as the 1-D approximate data manifold. Fig. 2(b) (approximately) shows
that by adding noise independent of the label in the normal direction of the
data manifold , the augmented data can force the classifier to learn a decision
boundary that is perpendicular to the data manifold.

Adding noise in the normal space is in contrast to the previously introduced
idea of flattening the data manifold. In Sec. 4.1, we actually did not impose
constraints upon the classifier, but made it easier for it to learn the robust
decision boundary. Each of the two methods can be independently applied in
theory. However, it is difficult to access the tangent space or the normal space
in a general data manifold. But if we combine the two methods together, thanks
to the fact that the dataset has been projected into a PCA hyperplane, we
can access (a subspace of) the normal space easily by identifying it as the space
spanned by remaining PCA eigenvectors orthogonal to the principal hyperplane.

Specifically, utilizing the PCA basis and combining with the method in
Sec. 4.1, we modify the training data x as

x←
d∑

i=1

〈x, vi〉vi +

D∑
i=d+1

σiξivi,

where ξi
i.i.d.∼ N (0, 1) and {σi}Di=d+1 is a set of hyperparameters which could be

set in a principled way. In this view, by adding label-irrelevant noise, we make

5 For clarity, we assume the dataset has been centralized so that x = 1
N

∑N
n=1 xn is 0.
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Algorithm 1 Modifying training data for training robust models

Input: A training data point x; with the N × D training dataset X = [x1, ..., xN ]>,
dimension d of PCA subspace, dimension m of the subspace to add noise, noise
scale c > 0.

Output: Modified training data point x′.
1: Perform spectral decomposition on the covariance matrix C = 1

N

∑N
n=1(xn −

x)(xn − x)> (where x = 1
N

∑N
n=1 xn) as

C =
∑D

i=1 λiviv
>
i , λ1 ≥ λ2 ≥ ... ≥ λD;

2: Compute the components of x− x on V = [v1, v2, ..., vD] as
a← V >(x− x);

3: Projecting x to the PCA subspace:
For the ith component of a: ai ← 0, for i = d+ 1, d+ 2, ..., D;

4: Add noise:
ai ← c

√
λiξi, with ξi

i.i.d.∼ N (0, 1) for i = d+ 1, d+ 2, ..., d+m;
5: Reconstruction:

x′ ← V a+ x;
6: return x′.

the small-scale directions, i.e. {vd+1, ..., vD} hardly utilized by the model for
classification even if the decision boundary is highly non-linear, thus suppressing
gradient leaking.

Contrast to former robust learning methods by randomization like [9] in
which authors add isotropic Gaussian noise to weights or inputs of each layer,
our method augments the dataset with Gaussian noise in the direction of PCA
eigenvectors and in the specific subspace of small-scale features. To maximize the
efficiency of injected noises, for a small value of integer m (e.g. m = 10), we set
σi = 0 for all i > d+m while setting σi to be a relatively large value for d+ 1 ≤
i ≤ d+m. With a subspace of lower dimension, the efficiency of noise sampling
to cover the space could be much higher. Meanwhile, we find that this not only
reduces the gradient component in the subspace spanned by {vd+1, ..., vd+m}
but also reduces the gradient components along other eigenvectors with small
eigenvalues. A possible explanation is that by preventing the convolution kernel
from being activated by some patterns, it will also drop other similar features
(e.g. of similar frequency).

To summarize, we present our algorithm to preprocess the training data in
Algorithm 1. Note that for d + 1 ≤ i ≤ d + m, we set σi = c

√
λi which means

that the scale of the ith dimension of the modified training dataset is c times
larger than before.

5 Experiments

5.1 Primary Experiments

In this section, we apply our defense algorithm to improve the robustness upon
the baseline training algorithm. We first present the experimental setup, and then
report the quantitative results to demonstrate the effectiveness of our algorithm.
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Experiment Setup
Dataset We test our algorithms on two datasets, namely CIFAR10 (shown here)
and CASIA-WebFace (see Appendix D).
Backbone models Same as in Sec. 3.3, namely DenseNet and Wide-ResNet.
Metric We report the testing error rate on clean data (Err), the mean/median
perturbation norm (Pert) that represents the robustness (higher is better), the
mean gradient norm ‖g‖2 (Grad) (lower is better) and αd defined in Eq. (3) as
relevant quantities of robustness (higher is better).
Attack method We perform `2-C&W attack [3] implemented in Foolbox 2.3.0
with default parameters, which is the strongest attack among the ones (including
PGD [17], DDN [22], BIM and C&W) we have tested in Foolbox.

Experimental Results We compare three different types of training methods,
namely the ordinary training method (‘ord’), our proposed algorithm (‘noise’)
(with hyperparameters c = 10 and m = 10), and a degenerated version of our
algorithm (‘pca’) by skipping the step of adding noise, i.e. Algorithm 1 without
Line 4. In the testing phase (including robustness evaluation), we directly feed
the original test image (without any preprocessing) into the trained models.

We report the experimental results in Table 2. The subscript of each method
name refers to the dimension of PCA subspace d. With a suppression of utiliza-
tion of small-scale features, our method consistently outperforms the ordinary
models in terms of the robustness although there are different degrees of accu-
racy degeneration for clean images. It, from another side, provides an evidence
that the robust features are more difficult to learn and may not be that dis-
criminative. To compare with the state-of-the-art method, we train TRADES
[32], an adversarial-training method, on the two architectures and report the
results in the table. Although there remains a gap of robustness (perturbation
norm) between our method and TRADES, our improvement of robustness has
been significant, with controllable and less deterioration of accuracy on clean
data than TRADES. Moreover, in Sec. 5.2 we will propose a stronger defense by
integrating our data preprocessing procedure into other defense algorithms.

The results also show that αd becomes larger as we reduce the dimension of
d and add noise in the normal space, which is highly related to the improvement

Table 2: CIFAR10 results of DenseNet and Wide-ResNet. The mean/median
perturbation norm are in the ’Pert’ column.

Method
DenseNet Wide-ResNet

Err Grad α300 α800 Pert Err Grad α300 α800 Pert

ord 5.92 0.248 0.040 0.273 0.090/0.085 9.08 0.195 0.056 0.352 0.113/0.100
pca800 6.97 0.123 0.244 0.817 0.160/0.155 9.7 0.091 0.253 0.845 0.193/0.178
noise800 8.82 0.140 0.460 0.988 0.208/0.192 10.49 0.076 0.512 0.978 0.251/0.233
pca300 11.71 0.075 0.713 0.973 0.256/0.240 13.75 0.050 0.667 0.910 0.308/0.283
noise300 16.53 0.060 0.942 0.988 0.308/0.265 19.09 0.027 0.843 0.881 0.320/0.299

trades 21.22 0.009 0.416 0.639 0.664/0.579 19.37 0.008 0.446 0.673 0.725/0.639
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of robustness. They also provide a strong evidence that for normally trained
models, the gradient component leaks in the normal space. Our results are in
line with our theory that the projection of the gradient on the manifold is a
more essential attribute of the classification function. For instance, the DenseNet
model trained by noise800 method has a higher gradient norm than pca800 which
should imply less robustness, but actually its average perturbation distance is
higher than pca800. This, however, aligns with the improvement of α300 and
α800. The contradictory phenomenon cannot be explained without the insight of
gradient leaking that the additional Gaussian noise on the normal space further
suppresses gradient leaking. We also note that the αd value of TRADES, the
most robust model among those listed in the table, is relatively small compared
with αd of our methods. This is perhaps because our perspective of gradient
leaking cannot address the issue of in-manifold robustness, and also because
our PCA approximation of the data manifold is rather rough. Nevertheless, less
gradient leaking still correlates with and promotes stronger robustness well.

5.2 Integration into Other Defense Algorithms

Our method is light-weight and can be naturally integrated with other defense
methods. To further boost the robustness, we provide an exemplary result by in-
tegrating it with a recently proposed method of Max-Mahalanobis center (MMC)
loss [19]. Roughly speaking, it proposes to replace the softmax cross-entropy
(SCE) loss with MMC loss which acts upon the layer just before the logits layer.

To further reduce gradient leaking, we preprocess our training data according
to our algorithm before feeding them into the MMC training process, resulting
in a even stronger defense denoted as MMC-P. We conduct experiments on CI-
FAR10 in which we simply project the dataset to 500/300-dimensional PCA sub-
space as the preprocessing procedure. We report results of MMC and MMC-P in
Table 3. The robustness is evaluated using `∞ PGD attacks (see Appendix B for
evaluation under `2 attacks) with different settings (targeted/untargeted, 10/50
iteration steps), and we show the natural accuracy (ε = 0) and the robustness
accuracy under attacks with different `∞ perturbation bounds ε = 8, 16, 24, 32.
In PGD10, we adopt the step size 2, 3, 4, 5 respectively for ε = 8, 16, 24, 32; in
PGD50, we set the step size to 2 in all cases. We utilize the C&W loss [3] (instead
of the ordinary cross-entropy loss) which constitutes a stronger attack, so the
robustness accuracy we report is lower than that in [19].

We found despite that the MMC baseline is satisfactory, our proposed MMC-
P outperforms the vanilla MMC by a large margin with a simple data prepro-
cessing step. To compare with the state-of-the-art methods, we report the perfor-
mance of MMC-AT (adversarial training (AT) [17] using MMC loss) proposed in
[19], which is adversarially trained using 10-step targeted PGD attack under per-
turbation bound ε = 8. We note that it is stronger than vanilla AT (i.e. SCE-AT
in the table). Experimental results show that despite the remaining gap of ro-
bustness between MMC-P and MMC-AT, MMC-P is still a competitive defense
compared with the state-of-the-art AT methods since it brings a satisfactory ro-
bustness performance with less sacrifice in accuracy on clean data. Meanwhile,
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Table 3: The experimental results using MMC loss on CIFAR10.

Attack Training Method
Clean Untargeted Targeted
ε = 0 8 16 24 32 8 16 24 32

PGD10

SCE 93.5 3.9 2.9 2.2 1.9 0.0 0.0 0.0 0.0
MMC 92.5 25.6 11.7 5.9 3.7 45.5 29.2 20.2 14.2

MMC-P-500 90.3 42.5 30.6 21.4 15.9 57.9 46.5 37.6 30.4
MMC-P-300 87.9 43.9 33.4 25.5 20.6 56.5 46.6 38.9 32.7

SCE-AT 84.0 50.5 20.9 11.2 8.7 68.2 36.5 14.6 4.3
MMC-AT 83.3 54.2 40.1 35.1 30.8 63.2 50.8 44.2 39.3

PGD50

SCE 93.5 3.8 3.1 2.3 1.8 0.0 0.0 0.0 0.0
MMC 92.5 9.2 4.8 3.3 2.2 26.9 16.6 12.7 9.5

MMC-P-500 90.3 24.9 15.1 11.3 9.1 41.4 30.3 26.6 22.9
MMC-P-300 87.9 29.2 20.1 17.1 14.8 41.0 30.9 27.9 24.7

SCE-AT 84.0 48.9 17.4 9.6 8.2 66.6 28.0 6.0 1.0
MMC-AT 83.3 51.1 35.4 31.2 27.8 60.9 44.8 40.2 35.7

MMC-P is more convenient to use, and much faster to train. The results demon-
strate that our method can further boost the robustness performance of some
well-developed methods by integrating with them naturally.

6 Conclusion and Future Work

We reveals a possible path named “gradient leaking” to explain the existence
and properties of adversarial samples. We further develop a method to exam-
ine the gradient leaking phenomenon, analyze its relationship with existence of
adversarial samples, and further propose a novel method to defend against ad-
versarial attacks based on the hypothesis, which adopts the linear dimension
reduction and randomization technique before training. It brings an explainable
robustness improvement with little extra time cost.

In the future, the mechanism of gradient leakage still requires a theoretical
explanation, which may include the aspects of learning methods, data distribu-
tion and network architecture. A better data manifold representation method
from which the local tangent space can be identified, such as VAE and localized
GAN as suggested in [30], may lead us to deeper understanding of data manifold,
more accurate estimate of gradient leaking, and more impressive robustness im-
provement. Combining our methods with other defense algorithms and figuring
out how they work together could also be a potential direction.
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