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This document contains supplementary material for the paper 'Improving Op-
tical Flow on a Pyramid Level'. The structure of this supplementary document
is the following:

� Further insights and experiments on gradient stopping:
• Variance analysis
• Smoothness analysis
• Cross-task evaluation - stereo
• Cross-architecture evaluation - PWC

� Details on Flow Cues:
• Notation
• Detailed explanation
• Ablations on �ow cues

� Further Analysis:
• Ablation on Data distillation
• Ablation on extending search range
• Qualitative comparisons of validation epe changes
• Histograms of errors
• Qualitative training results for KITTI (images)
• Qualitative training results for MPI-Sintel (images)
• Qualitative Results on KITTI
• Qualitative Results on MPI-Sintel
• Sidenote on D2V and V2D operation with warping vs. sampling

A Further insights on Gradient Stopping

In this section we provide additional empirical insights to what is described in
Section 3.3 in the main submission document, i.e., why stopping the optical
�ow gradients between the levels is bene�cial. We will do this by showing that
the variance of the model parameter gradients over the training set is reduced
(sec A.1), and the Lipschitzness of the parameter gradients is improved as well,
while still providing a descent direction (sec A.2). For stochastic gradient descent
methods these properties lead to improved convergence, which is what we already
observed in the main paper (Fig. 5). Finally, we show that gradient stopping also
leads to improved convergence for the di�erent task of stereo estimation (sec A.3)
as well as for a di�erent architecture like PWC-Net (implemented in a di�erent
code-base (sec A.4 ).
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A.1 Gradient stopping - variance analysis

It is known [9] that for stochastic gradient descent methods the rate of conver-
gence decreases with increasing variance of the gradients over the training set.
We can show empirically that stopping the optical �ow gradients between lev-
els (see Fig. 4 in the main paper) leads to a reduced variance of the gradients
w.r.t the whole training dataset when compared to the baseline model. To ensure
a fair and valid comparison, both model versions use identical parameters Θ and
are fed with the exact same data batches ξn all the time. The variance over each
epoch is computed independently for every single parameter using Welford's on-
line variance computation algorithm [11] in a numerically stable variant. After
each epoch, the mean of these P single parameter variances is computed for each
model as

σ2 =
1

P

∑
θ∈Θ

VARWelford

n∈N
(∇fθ(ξn)) (1)

and shown in Fig. 1. After gradient variances are computed a standard training
is performed for 1 epoch, and the parameters of both models are update with
the new parameters of the baseline model to ensure that the only di�erence in
the gradient variance comes from the gradient computation itself. As can be
seen in Fig. 1 our proposed partial gradient stopping truly reduces the gradient
variance w.r.t the model parameters and the training dataset. This leads to the
improved rate of convergences for our proposed partial gradient stopping over
the baseline.
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Fig. 1: Gradient variance for a HD3 baseline model vs. a model with the proposed
gradient stopping. The baseline has a higher gradient variance over the training data,
which leads to slower convergence.
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A.2 Gradient stopping - smoothness analysis

Here we will show that stopping the partial optical-�ow gradient between the
levels also leads to a better Lipschitzness of the gradients of the loss also known
as β-smoothness, while still providing a descent direction. It is well known that
the rate of convergence increases if the function has a low curvature which cor-
responds to a low β-smoothness. We follow the approach of [7] that estimate 'ef-
fective' β-smoothness (βe�) by measuring the l2 gradient change over di�erence
in parameters, as they move along the gradient direction in the optimization.

βe� =
‖∇f(ξ,Θ1)−∇f(ξ,Θ2)‖2

‖Θ1 −Θ2‖2
(2)

We ensure a fair comparison between the baseline model and our version with
partial �ow gradient stopping by evaluating the gradient functions with the
exact same parameters Θi and data batches ξn for both model versions at all
times. Fig. 2 (top) shows that on average βe� is lower which corresponds to
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Fig. 2: Partial gradient stopping vs. Lipschitzness of gradients. Top: Average of the
e�ective β-smoothness shows that model with gradient stopping is smoother (lower
βeff ) than the baseline; Middle: Percentage of how often gradient stopping leads to
smoother results; Bottom: Positive normalized cross correlation between the model
parameter gradients indicates that it is still a descent direction.

a lower curvature. This is con�rmed by the center plot that directly compares
βe� for both models in every iteration before averaging the result. The lower
plot shows that the normalized cross correlation (NCC) of the gradients for
the parameters of both models are positively correlated. This is in contrast to
the NCC of the partial optical �ow gradients (Fig. 5, main paper) between
the levels. Therefore, stopping the partial optical �ow gradients between the
levels, reduces intermediate parts that oppose each other, which in turn leads
to better �nal gradients at the model parameters. The latter are still positively
correlated with the original parameter gradients, which shows that they still
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provide a descent direction, but with better convergence properties, as shown by
our various insights. Finally, based on these analyses and the improved results
obtained in our experimental section we conclude the importance of blocking
partial optical �ow gradients across levels in a pyramidal setting for improved
convergence.

A.3 Gradient stopping on depth estimation � HD3, depth from

Stereo.

With this experiment we show that stopping the partial optical �ow gradients
between the levels also works for stereo estimation. We use the Stereo training
setup of HD3 in their original publicly available codebase1 and run a training
on the Flying Things Stereo dataset. We choose to use the original version of
the code base just with gradient stopping added, and keep the original training
procedure that trains only on the left disparity. We do this to show that the
e�ect of gradient stopping is not just limited to the simultaneous forward and
backward training used in the main paper, but is a more general one.

Again, we �nd signi�cant improvements with our proposed partial �ow gradi-
ent stopping, as can be seen in Fig. 3, which leads to an improvement of ≈10%
on the �nal EPE. This con�rms that gradient stopping also works for stereo
estimation networks. Furthermore, it veri�es that gradient stopping does not
require joint forward- and backward �ow training as used in the �ow ablations
in the main paper, but also leads to signi�cant gains for a standard forward-only
training.
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Fig. 3: Improving HD3 Stereo estimation with gradient stopping. Curves show valida-
tion Endpoint error (EPE) after each training epoch. Simple gradient stopping leads
to faster convergence of the EPE

A.4 Gradient stopping on di�erent architectures estimation �

Improving PWC-Net Optical Flow.

With this experiment we show that this behaviour is not limited to HD3 but also
applies to other networks as PWC. We use the PWC-Net implementation from

1 HD3 codebase : https://github.com/ucbdrive/hd3/
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the o�cial IRR-PWC [2] publicly available code base2, and run a training on
the Flying Chairs dataset using their provided data processing and augmentation
strategy, and follow all default settings for training. We run two experiments, the
baseline and an experiment where we apply gradient stopping at the upsampling
layer within the pyramid structure used therein. In direct comparison we found
both, signi�cantly improved reduction of the training loss for the �nal high-
resolution level as well as the validation EPE (Fl-all is not reported from their
inference code).

Fig. 4 shows the validation EPE of an exemplary experimental result on the
PWC �ow Network. As can be seen, applying gradient stopping leads to a faster
convergence of the EPE. This immediately leads to initial gains of more than
10% at 20 epochs and 6% at 100 epochs. Therefore, lower EPE values can be
reached faster. We kept the original learning rate schedule for comparability,
but even in this setting that was optimized for the original baseline, a di�erence
of approximately 2% remains after 200epoch. Gradient stopping shows a clear
positive impact, even though the used PWC-variant directly regresses the �ow at
each level, whereas the HD3 baseline that was used for many comparisons in the
main paper uses residual estimates together with the D2V and V2D operations.
This shows that stopping the gradients for the �ow at the upsampling layer
leads to a faster decrease of the EPE also across multiple types of optical �ow
networks.
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Fig. 4: Improving PWC-Net with gradient stopping. Training with gradient stopping
vs. original. Gradient stopping leads to faster decrease for the validation EPE.

2 IRR-PWC codebase: https://github.com/visinf/irr
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B Further details on Flow Cues

B.1 Notation

To simplify equations in the following section, we de�ne a few additional terms
on top of the main paper. Given a pixel x ∈ Il1 we denote by x1→2 ∈ R

2 the
matching position of x in I l2 (in absolute terms), i.e. x1→2 = x + F l1→2(x).
Similarly, for the opposite direction, we de�ne y2→1 ∈ R2 for pixels y ∈ I2.

Details on the Flow Cues module The use of prior knowledge when com-
puting optical �ow has been widely explored in classical methods. Recently, [2]
successfully used forward-backward �ow warping as feature for occlusion up-
sampling. Although this feature is hand crafted it is very valuable, as it provides
cues that would otherwise be hard to learn for a convolutional network since it
can connect completely di�erent locations on the coordinate system of I1 and
I2. Classic approaches like inverse �ow estimation [4] show that there are even
more cues that can potentially be of interest. We therefore propose to combine
multiple of these cues, which can be mutually bene�cial, and make them explic-
itly available to the network as cheaply computable features to directly improve
�ow predictions.

In order to do so, our architecture keeps jointly track of the forward and
backward �ows by exploiting Siamese modules with shared parameters, with
features from I1 and I2 being fed to the two branches in mirrored order. A
downside is its increased memory consumption, which we noticeably mitigate by
adopting In-Place Activated BatchNorm [6] throughout our networks. Without
additional connections, the Siamese modules compute the forward F1→2 and
backward F2→1 �ow mappings in a completely independent way. However, in
practice the true �ows are strongly tied to each other, although they reside on
di�erent coordinate systems. We therefore provide the network with a Flow Cue
Module that gives each branch di�erent kind of cues about its own and the other
branch's �ow estimates. Each of these cues represents a di�erent mechanism to
bring mutually supplementary information from one coordinate system to the
other. For the sake of simplicity, we will always present the results of the cues
in the coordinate system of the branch that operates on the features of I1.

Forward-backward �ow warping. Since both �ow mappings are available, they
can be used to bring one �ow in the coordinate frame of the other via dense
warping. For example, a forward �ow estimate F fb

1→2 can be made from the
backward �ow F2→1 by warping it with the forward �ow F1→2:

F fb

1→2(x) = −F2→1(x1→2) (3)

The other direction F fb
2→1 can be computed in a similar way. Comparing the

estimated results F fb
1→2 versus F1→2 can be used for consistency checks, and is

used in unsupervised �ow methods [5, 13] to estimate occlusions in a heuristic
manner.
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Reverse �ow estimation [4]. In contrast to the previous cue, reverse �ow esti-
mation can be used to estimate the forward �ow F1→2 directly from backward
�ow F2→1 alone, although in a non-dense manner. The reverse �ow estimates
are denoted by F rev

2→1 and F rev
1→2 and are obtained by

F rev

1→2(x) = −
∑
y∈I2

ω(x, y2→1)F2→1(y)

ω1(x)
, (4)

where ω(x, x′) = [1−|xu−x′u|]+ [1−|xv−x′v|]+ denotes the bilinear interpolation
weight of x′ relative to x, and

ω1(x) =
∑
y∈I2

ω(x, y2→1) (5)

is a normalizing factor. In the dis-occluded areas where the denominator of
Eq. (4) is 0, we de�ne the �ow values F rev

1→2(x) = 0. In occluded areas F rev
1→2 will

become an average of the incoming �ows. Similarly, we de�ne F rev
2→1 by swapping

1 and 2 as well as x and y in Eq. (4).

Map uniqueness density [8, 10]. Provides information about occlusions and dis-
occlusions and basically corresponds to ω1 in Eq. (4) for image I1. The value
of ω1(x) provides the (soft) amount of pixels in I2 with �ow vectors pointing
towards x ∈ I1. Occluded areas will result in values ≥ 1 whereas areas becoming
dis-occluded in values ≤ 1. ω1 is therefore an indicator on where the reverse �ow
is more or less precise. Similarly, we have ω2(x) for I2.

Out-of-image occlusions. This represents an indicator function, e.g . o1 : I1 →
{0, 1} for image I1, providing information about �ow vectors pointing out of the
other image's domain, i.e.

o1(x) = 1x1→2 /∈I2
(6)

and similarly we de�ne o2 : I2 → {0, 1} for image I2.

The Flow Cue Module. We show in Fig. 5 how the �ow cues mutually bene�t
from one another in di�erent areas. E.g ., the-out-of-image occlusions o1 allow
to di�erentiate which dis-occlusions in map uniqueness density ω1 are real dis-
occlusions, i.e. areas where the object moved away, and where the low density
stems from �ow vectors in the second image that are just likely not visible in
the current crop.

We therefore provide the network with all the additional �ow cues mentioned
above, by stacking them as additional features together with the original forward
�ow F1→2 for the subsequent part of the network. Therefore, the network now
has three di�erently generated �ow estimates including its own prediction F1→2.
The following layers can therefore reason about consistency and probable sources
of outliers with a far better basis than one single cue alone could provide. Sym-
metrically, the same is done for the backward stream (see Fig. 5).
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F1 2(x) Ffb
1 2(x) Frev

1 2(x) w1(x) o1(x)

F2 1(y) Ffb
2 1(y) Frev

2 1(y) w2(y) o2(y)

Fig. 5: Flow Cues module output illustration for a given optical �ow input; Left to
right: Input �ow, forward-backward estimate, reverse �ow estimate, map uniqueness
density, out of image occlusions. Note the di�erences in the F fb and F rev and how

B.2 Ablations on Contributions of Flow Cues.

Here we evaluate the impact of our proposed �ow cues in comparison to related
ones from prior works [2, 3], demonstrating their e�ect on relevant error measures
on the Flying Chairs2 dataset. The ablations are performed training on Flying
Chairs 2. We use averages over the last 10 validation results to reduce the e�ect of
single spikes. In Tab. 1 we list our �ndings, always on top of activating gradient
stopping and Sampling due to its preferable behavior for estimating �ow of
�ne-grained structures.

Providing Mapping Occurrence Density (MOD) [8, 10] as the only Flow Cue
and hence information about the occlusions and dis-occlusions slightly degrades
results in terms of both, EPE and Fl-all. When running the Sampling in com-
bination with Forward-Backward �ow warping (FwdBwdFW) we encounter a
considerable reduction of errors � particularly on the Fl-all errors. Finally, when
combining Sampling with all our proposed Flow Cues (All Cues), i.e. reverse
�ow estimation, mapping occurrence density, and out-of-image occlusions, we
obtain the lowest errors.

Table 1: Ablation results on Flow Cues on top of Cost Volume Sampling and Gradient
Stopping using CV-range of ±4 pixels

MOD FwdBwdFW All Cues EPE Fl-all

7 7 7 1.208 6.192
3 7 7 1.217 6.271
7 3 7 1.202 6.171
3 3 3 1.186 6.156
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C Further Analysis

C.1 Details on Distillation

In this section we provide additional details on our distillation strategy. In con-
trast to [1] we don't want to transfer knowledge from a larger network or en-
sembles to smaller ones, but to transfer it from one domain to the other. We
therefore avoid to keep all predictions, since some are completely o�, and instead
try to �lter out the most trustworthy. Speci�cally, we apply the following �lters,
obtaining �pseudo ground-truth� annotations (Fig. 6 main paper, bottom right):
� We use forward F1→2 and backward F2→1 �ows to estimate occlusions.
Speci�cally, we regard a pixel y ∈ I1 as not occluded if the following holds [5]

‖F1→2(y)+F2→1(y1→2)‖2−0.05 < 0.01
(
‖F1→2(y)‖2 + ‖F2→1(y1→2)‖2

)
(7)

� We compute the photometric error using SAD on a per pixel basis and
determine a mask of good predictions by thresholding the error.

� We determine the con�dence of the network using the method proposed
in [12] and retain predictions with a con�dence above 95%.

� We �lter pixels that are more than 3 pixels away from the gt
� Finally, we combine all of the previous �lters and apply an additional pruning
using an erosion operation to remove small patches, in order to only keep
regions with su�cient trustable data.
Since this is still a �pseudo ground-truth� we do not apply LMP on the

distillation part LD part of the loss but only on the supervised Loss LS

Ablations on distillation. Here we show ablation results for our distillation ap-
proach. We compare the results in Tab. 2 after standard pretraining on Flying
Chairs and Flying Things 3D to a �netuning on KITTI with and without distil-
lation. To gain insights on over�tting and generalization, we provide results on
the training datasets as well as cross validation scores on di�erent datasets. For
completeness we also provide �netuning results of our retrained initial baseline,
which uses IPABN with leakyRelu but none of the other improvements. The
baseline uses the same training schedule, but the original 2k �netuning itera-
tions on Kitti instead of early stopping, as it converges slower since it doesn't
use gradient stopping.

It can be seen that standard �netuning leads to high gains on the training
datasets, especially Kitti 2015 but also drastically reduces performance on the
other non-�netuning datasets (which is not surprising). Compared to the base-
line, the improved model already mitigates this reduction in generalization to
some extent, while performing better on the target dataset. Using our proposed
distillation approach further improves this generalization to unseen datasets.
Interestingly, it even leads to a small improvement on the training dataset it-
self. Since we drastically �lter the �pseudo ground-truth� it could mean that,
this additional information acts like additional augmentation that bene�ts the
�netuning.
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Table 2: Ablation on Distillation for KITTI �netuning. Comparing pretraining vs.
�netuning (FT) vs. �netuining using distillation (Dist). Non baseline models use CV-
range ±8 and all proposed improvements (Highlighting best and second-best results).

Kitti 2012 Kitti 2015 Flying Chairs2 Flying Things Sintel �nal
EPE [1] Fl-all [%] Fl-all [%] EPE [1] Fl-all [%] Fl-all [%] EPE [1] Fl-all [%] EPE [1] Fl-all [%] EPE [1] Fl-all [%]

baseline Dist FT train test train test Flying Chairs2 Flying Things Sintel

7 7 7 2.37 8.65 % - 7.09 18.93 % - 2.31 8.6% 5.77 11.5% 4.68 11.4%

3 7 3 (0.85) (2.35 %) - (1.38) (4.41 %) - 11.23 24.0% 61.34 47.7% 26.77 23.7%
7 7 3 (0.77) (1.91 %) - (1.18) (3.58 %) - 9.77 36.8% 27.92 46.2% 9.36 21.5%
7 3 3 (0.76) (1.84 %) 2.25 (1.14) (3.28 %) 6.35 6.29 24.7% 27.57 38.0% 9.39 18.9%

C.2 Extending search range

Here we investigate the impact of extended search ranges in various con�gura-
tions of our model. The base con�guration always uses gradient stopping and
SAD for the cost volume construction and is trained on Flying Chairs2 in forward
and backward direction. Results for Flying Things 3D are presented to give an
insight on generalization on the closest related dataset. We compare Cost Volume
Sampling vs. Cost Volume Warping, both in combination with LMP.

What can be seen from the data, is that LMP clearly helps to improve EPE
and Fl-all metrics in all cases. What can also be seen, is that in general extending
the search range leads to better performance. However, for the combination of
Sampling and LMP there is a gain of 0.06 in EPE when going from a range of
±4 to ±8, while for the same settings without LMP the total improvement is
just 0.01 and with warping it is 0.04. We do not experience signi�cant gains that
warrant a search range extension of more than ±8 (see Tab. 3). We therefore
recommend a version with ±8, Cost Volume Sampling and LMP as it leads to
satisfactory performance.

Table 3: Extending the cost-volume range leads to lower errors, especially when com-
bined with LMP and Sampling. Model was trained on Flying Chairs2.

Warp/ Range LMP Flying Chairs2 Flying Things
Sample +/- EPE [1] Fl-all [%] EPE [1] Fl-all [%]

W 4 1.20 6.18% 14.84 25.25%
W 8 1.16 5.96% 14.20 24.18%
S 4 1.18 6.15% 15.14 25.00%
S 6 1.16 6.02% 13.92 24.13%
S 8 1.17 5.97% 13.46 23.52%
S 10 1.15 5.92% 15.06 23.44%
W 4 3 1.17 6.00% 14.12 23.47%
W 8 3 1.13 5.81% 13.49 23.07%
S 4 3 1.17 5.97% 14.46 23.00%
S 6 3 1.14 5.86% 13.41 23.05%
S 8 3 1.11 5.76% 12.97 22.41%
S 10 3 1.11 5.78% 12.78 22.10%
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C.3 Histogram of Errors

Fig. 6 and Fig. 7 show the gains made over the KITTI training sequences as
achieved with our submitted model that used all proposed improvements and
CV-range of ±4. The gains are made visible in form of histograms, where the
ground truth �ow magnitude is used for the binning. As can be seen, our im-
provements are not limited to a single range of �ow magnitudes but a�ect the
whole spectrum of �ow vectors. At this point we want to remind the reader,
that adding our contributions hardly changes the number of learnable parame-
ters (e.g. ≈ +1% for HD3) in the network. The gains therefore result from using
the provided parameters more e�ectively.
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Fig. 6: Histogram of errors on the training data of KITTI 2012. The errors are grouped
in bins according to the ground truth �ow magnitude on which they occurred. Adding
all our contributions consistently improves in all areas.

C.4 Qualitative Comparison of Training Convergence

Fig. 8 shows exemplary validation curves of an HD3 type model during the
Flying Things 3D pre-training. This is the last part of the pre-training stage
before �netuning on KITTI or Sintel. These comparisons are qualitatively only,
as they were conducted on center crops of the forward �ow only, to keep extra
computation e�ort during training low. We evaluate on the same validation split
provided by the original HD3 codebase.

The validation curves in Fig. 8 illustrate the overall behavior that we observed
on the di�erent datasets and models, when adding our di�erent contributions.
When adding gradient stopping to the baseline there is a signi�cant drop in
both EPE and Fl-all. Adding Loss Max Pooling (LMP) on top mostly a�ects
the Fl-all by focusing on the remaining di�cult examples. Adding our remaining
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Fig. 7: Histogram of errors on the training data of KITTI 2015. The errors are grouped
in bins according to the ground truth �ow magnitude on which they occurred. Adding
all our contributions consistently improves in all areas.

contributions (Data Distillation is only applied on KITTI) leads to an additional
boost in performance on both EPE and Fl-all.
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Fig. 8: Qualitative comparison of training curves on Things 3D pre-training for optical
�ow with and HD3 type model (CVr±4). Large drop from Baseline to Gradient Stopped
version on EPE and percentage of outliers (Fl-all). LMP improves mainly on Fl-all;
adding all our remaining contributions gives additional boost on EPE and Fl-all.
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C.5 Qualitative Comparisons of Training Results on KITTI

In this section various qualitative results on the KITTI training images will be
shown. Fig. 9 shows comparisons between the baseline model as taken from the
HD3 modelzoo and our best model that uses all our contributions. What can
be seen especially well in the error plots, is that our model improves a lot on
the moving cars. Furthermore, it improves on �ne details, which can e.g. be
seen e.g. at the guard rails, where it manages to keep sharper edges and a more
homogeneous background. At the same time, it does not su�er from the artifacts
present in the top region of the baseline model. The �gures are best viewed in
high-resolution on a PC.

C.6 Results on MPI-Sintel

We outperform the state-of-the-art on the challenging MPI-Sintel Dataset. Fig.
11 shows the Results and Rankings for MPI-Sintel test results at the time of
submission to the server. For more details please refer to the main paper.

Fig. 10 shows the comparison of a HD3 baseline model and our improved
baseline trained on the MPI-Sintel training sequence. As can be seen our im-
proved model allows to preserve more �ne details like the stick in the bamboo
scene or the pike. Also, it seems to be better at detecting and correcting hardly
connected moving backgrounds that seem to cause problems for the modelzoo
baseline.

C.7 Sidenote: Sampling vs. Warping � HD3's D2V and V2D

Operations.

One of the key innovations in the HD3 [12], was the introduction of the D2V
and V2D operations that allow to transform match densities into vectors and
vice versa. This operation is used for absolute and residual �ows and implicitly
assumes an equidistant �xed grid spacing for the �ow. However, this assumption
is actually not always valid since the warping operation can deform the space over
which the search window operates in the warped image I2→1. I.e. a movement
of a single pixel in the search window in I2→1(x) can move the correspondence
to a completely di�erent position in I2(y) dependent on the �ow F2→1(x) that
was used for the warping.

In the case of sampling, the equidistance of the grid is preserved, since it
always uses a single �ow vector F2→1(x) as o�set for the entire search window
for each individual pixel. Therefore, the spacing of the search window stays
equidistant w.r.t. I2(y) and hence for the D2V and V2D operations.
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Fig. 11: MPI-Sintel Results and Rankings - our method improves upon the state of
the art. Screenshot taken on March 12, 2020. Short names have been updated after
publication to also show IOFPL on benchmark server.
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