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Fig. 1: Optical �ow predictions from our model on images from Sintel and KITTI.

Abstract. In this work we review the coarse-to-�ne spatial feature pyra-
mid concept, which is used in state-of-the-art optical �ow estimation net-
works to make exploration of the pixel �ow search space computationally
tractable and e�cient. Within an individual pyramid level, we improve
the cost volume construction process by departing from a warping- to a
sampling-based strategy, which avoids ghosting and hence enables us to
better preserve �ne �ow details. We further amplify the positive e�ects
through a level-speci�c, loss max-pooling strategy that adaptively shifts
the focus of the learning process on under-performing predictions. Our
second contribution revises the gradient �ow across pyramid levels. The
typical operations performed at each pyramid level can lead to noisy,
or even contradicting gradients across levels. We show and discuss how
properly blocking some of these gradient components leads to improved
convergence and ultimately better performance. Finally, we introduce a
distillation concept to counteract the issue of catastrophic forgetting dur-
ing �netuning and thus preserving knowledge over models sequentially
trained on multiple datasets. Our �ndings are conceptually simple and
easy to implement, yet result in compelling improvements on relevant er-
ror measures that we demonstrate via exhaustive ablations on datasets
like Flying Chairs2, Flying Things, Sintel and KITTI. We establish new
state-of-the-art results on the challenging Sintel and KITTI 2012 test
datasets, and even show the portability of our �ndings to di�erent opti-
cal �ow and depth from stereo approaches.
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1 Introduction

State-of-the-art, deep learning based optical �ow estimation methods share a
number of common building blocks in their high-level, structural design. These
blocks re�ect insights gained from decades of research in classical optical �ow
estimation, while exploiting the power of deep learning for further optimization
of e.g . performance, speed or memory constraints [14, 37, 44]. Pyramidal repre-
sentations are among the fundamental concepts that were successfully used in
optical �ow and stereo matching works like [3]. However, while pyramidal repre-
sentations enable computationally tractable exploration of the pixel �ow search
space, their downsides include di�culties in the handling of large motions for
small objects or generating artifacts when warping occluded regions. Another
observation we made is that vanilla agglomeration of hierarchical information
in the pyramid is hindering the learning process and consequently leading to
reduced performance.

In this paper we identify and address shortcomings in state-of-the-art �ow
networks, with particular focus on improving information processing in the pyra-
midal representation module. For cost volume construction at a single pyramid
level, we introduce a novel feature sampling strategy rather than relying on
warping of high-level features to the corresponding ones in the target image.
Warping is the predominant strategy in recent and top-performing �ow meth-
ods [44, 14] but leads to degraded �ow quality for �ne structures. This is because
�ne structures require robust encoding of high-frequency information in the fea-
tures, which is sometimes not recoverable after warping them towards the target
image pyramid feature space. As an alternative we propose sampling for cost
volume generation in each pyramid level, in conjunction with the sum of ab-
solute di�erences as a cost volume distance function. In our sampling strategy
we populate cost volume entries through distance computation between features
without prior feature warping. This helps us to better explore the complex and
non-local search space of �ne-grained, detailed �ow transformations (see Fig. 1).

Using sampling in combination with a per-pyramid level loss max-pooling

strategy further supports recovery of the motion of small and fast-moving ob-
jects. Flow errors for those objects can be attributed to the aforementioned warp-
ing issue but also because the motion of such objects often correlates with large
and underrepresented �ow vectors, rarely available in the training data. Loss
max-pooling adaptively shifts the focus of the learning procedure towards under-
performing �ow predictions, without requiring additional information about the
training data statistics. We introduce a loss max-pooling variant to work in
hierarchical feature representations, while the underlying concept has been suc-
cessfully used for dense pixel prediction tasks like semantic segmentation [30].

Our second major contribution targets improving the gradient �ow across

pyramid levels. Functions like cost volume generation depend on bilinear in-
terpolation, which can be shown [19] to produce considerably noisy gradients.
Furthermore, �ne-grained structures which are only visible at a certain pyramid
level, can propagate contradicting gradients towards the coarser levels when they
move in a di�erent direction compared to their background. Accumulating these
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gradients across pyramid levels ultimately inhibits convergence. Our proposed
solution is as simple as e�ective: by using level-speci�c loss terms and smartly
blocking gradient propagation, we can eliminate the sources of noise. Doing so
signi�cantly improves the learning procedure and is positively re�ected in the
relevant performance measures.

As minor contributions, we promote additional �ow cues that lead to a more
e�ective generation of the cost volume. Inspired by the work of [15] that used
backward warping of the optical �ow to enhance the upsampling of occlusions,
we advance symmetric �ow networks with multiple cues (like consistencies de-
rived from forward-backward and reverse �ow information, occlusion reasoning)
to better identify and correct discrepancies in the �ow estimates. Finally, we also
propose knowledge distillation to counterfeit the problem of catastrophic forget-
ting in the context of deep-learning-based optical �ow algorithms. Due to a lack
of large training datasets, it is common practice to sequentially perform a num-
ber of trainings, �rst on synthetically generated datasets (like Flying Chairs2
and Flying Things), then �ne-tuning on target datasets like Sintel or KITTI.
Our distillation strategy (inspired by recent work on scene �ow [18] and un-
supervised approaches [21, 20]) enables us to preserve knowledge from previous
training steps and combine it with �ow consistency checks generated from our
network and further information about photometric consistency.

Our combined contributions lead to signi�cant, cumulated error reductions
over state-of-the-art networks like HD3 or (variants of) PWC-Net [44, 37, 15,
2], and we set new state-of-the-art results on the challenging Sintel and KITTI
2012 datasets. We provide exhaustive ablations and experimental evaluations on
Sintel, KITTI 2012 and 2015, Flying Things and Flying Chairs2, and signi�cantly
improve on the most important measures like Out-Noc (percentage of erroneous
non-occluded pixels) and on EPE (average end-point-error) metrics.

2 Related Work

Classical approaches. Optical �ow has come a long way since it was introduced
to the computer vision community by Lucas and Kanade [23] and Horn and
Schunck [13]. Following these works, the introduction of pyramidal coarse-to-
�ne warping frameworks were giving another huge boost in the performance of
optical �ow computation [4, 34] � an overview of non learning-based optical �ow
methods can be found in [1, 35, 9].

Deep Learning entering optical �ow. Many parts of the classical optical �ow
computations are well-suited for being learned by a deep neural network. Initial
work using deep learning for �ow was presented in [40], and was using a learned
matching algorithm to produce semi-dense matches then re�ning them with a
classical variational approach. The successive work of [29], whilst also relying
on learned semi-dense matches, was additionally using an edge detector [7] to
interpolate dense �ow �elds before the variational energy minimization. End-to-
end learning in a deep network for �ow estimation was �rst done in FlowNet [8].
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They use a conventional encoder-decoder architecture, and it was trained on a
synthetic dataset, showing that it still generalizes well to real world datasets
such as KITTI [11]. Based on this work, FlowNet2 [16] improved by using a
carefully tuned training schedule and by introducing warping into the learning
framework. However, FlowNet2 could not keep up with the results of traditional
variational �ow approaches on the leaderboards. SpyNet[27] introduced spatial
image pyramids and PWC-Net [36, 37] additionally improved results by incorpo-
rating spatial feature pyramid processing, warping, and the use of a cost volume
in the learning framework. The �ow in PWC-Net is estimated by using a stack of
�attened cost volumes and image features from a Dense-Net. In [15], PWC-Net
was turned into an iterative re�nement network, adding bilateral re�nement of
�ow and occlusion in every iteration step. ScopeFlow [2] showed that improve-
ments on top of [15] can be achieved simply by improving training procedures.
In the work of [28], the group around [36] was showing further improvements
on Kitti 2015 and Sintel by integrating the optical �ow from an additional, pre-
vious image frame. While multi-frame optical �ow methods already existed for
non-learning based methods [6, 41, 10], they were the �rst to show this in a deep
learning framework. In [44], the hierarchical discrete distribution decomposi-
tion framework HD3 learned probabilistic pixel correspondences for optical �ow
and stereo matching. It learns the decomposed match densities in an end-to-end
manner at multiple scales. HD3 then converts the predicted match densities into
point estimates, while also producing uncertainty measures at the same time.
Devon [22] uses a sampling and dilation based deformable cost-volume, to iter-
atively estimate the �ow at a �xed quarter resolution in each iteration. While
they showed good results on clean synthetic data, the performance on real images
from KITTI was sub-optimal, indicating that sampling alone may not be su�-
cient. We will show here, that integrating a direct sampling based approach into
a coarse-to-�ne pyramid together with LMP and Flow Cues can actually lead to
very good results. Recently, Volumetric Correspondence Networks (VCN) [43]
showed that the 4D cost volume can also be e�ciently �ltered directly without
the commonly used �attening but using separable 2D �lters instead.

Unsupervised methods. Generating dense and accurate �ow data for supervised
training of networks is a challenging task. Thus, most large-scale datasets are
synthetic [5, 8, 17], and real data sets remained small and sparsely labeled [26,
25]. Unsupervised methods do not rely on that data, instead, those methods
usually utilize the photometric loss between the original image in the warped,
second image to guide the learning process [45]. However, the photometric loss
does not work for occluded image regions, and therefore methods have been
proposed to generate occlusion masks beforehand or simultaneously [24, 42].

Distillation. To learn the �ow values of occluded areas, DDFlow [20] is using a
student-teacher network which distills data from reliable predictions, and uses
these predictions as annotations to guide a student network. SelFlow [21] is
built in a similar fashion but vastly improves the quality of the �ow predictions
in occluded areas by introducing a superpixel-based occlusion hallucination tech-
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nique. They obtain state-of-the-art results when �ne-tuning on annotated data
after pre-training in a self-supervised setting. SENSE [18] tries to integrate op-
tical �ow, stereo, occlusion, and semantic segmentation in one semi-supervised
setting. Much like in a multi-task learning setup, SENSE [18] uses a shared en-
coder for all four tasks, which can exploit interactions between the di�erent tasks
and leads to a compact network. SENSE uses pre-trained models to �supervise�
the network on data with missing ground truth annotations using a distillation
loss [12]. To couple the four tasks, a self-supervision loss term is used, which
largely improves regions without ground truth (e.g . sky regions).

3 Main Contributions

In this section we review pyramid �ow network architectures [36, 44], and propose
a set of modi�cations to the pyramid levels (� 3.2) and their training strategy
(� 3.3), which work in a synergistic manner to greatly boost performance.

3.1 Pyramid �ow networks

Pyramid �ow networks (PFN) operate on pairs of images, building feature pyra-
mids with decreasing spatial resolution using �siamese� network branches with
shared parameters. Flow is iteratively re�ned starting from the top of the pyra-
mid, each layer predicting an o�set relative to the �ow estimated at the previous
level. For more details about the operations carried out at each level see � 3.2.

Notation. We represent multi-dimensional feature maps as functions I li : Ili →
R
d, where i = 1, 2 indicates which image the features are computed from, l is

their pyramid level, and Ili ⊂ R
2 is the set of pixels of image i at resolution l.

We call forward �ow at level l a mapping F l1→2 : Il1 → R
2, which intuitively

indicates where pixels in I l1 moved to in I l2 (in relative terms). We call backward
�ow the mapping F l2→1 : Il2 → R

2 that indicates the opposite displacements.
Pixel coordinates are indexed by u and v, i.e. x = (xu, xv), and given x ∈ Il1, we
assume that I l1(x) implicitly applies bilinear interpolation to read values from
I l1 at sub-pixel locations.

3.2 Improving pyramid levels in PFNs

Many PFNs [36, 44] share the same high-level structure in each of their levels.
First, feature maps from the two images are aligned using the coarse �ow esti-
mated in the previous level, and compared by some distance function to build a
cost volume (possibly both in the forward and backward directions). Then, the
cost volume is combined with additional information from the feature maps (and
optionally additional ��ow cues�) and fed to a �decoder� subnet. This subnet �-
nally outputs a residual �ow, or a match density from which the residual �ow
can be computed. A separate loss is applied to each pyramid layer, providing
deep supervision to the �ow re�nement process. In the rest of this section, we
describe a set of generic improvements that can be applied to the pyramid layers
of several state of the art pyramid �ow networks.



6 M. Ho�nger et al.

I1 I2 I2→1

a)

b)

c)

(sample) (warp)

Pyramid
levels -1,est

+ + +

(warp)

+
-1,est, up

Sample: Flow

search window
for black dot

only shifts gray

1 2 30 41 2 30 4 1 2 30 41 2 30 4

Warping: 

leads to ghosting,
Transforms image

Fig. 2: Sampling vs. Warping. Left: Warping leads to image ghosting in the warped
image I2→1; Also, neighbouring pixels in I1 must share parts of their search windows
in I2→1, while for sampling they are independently sampled from the original image
I2. Right: A toy example; a) Two moving objects: a red line with a black dot and a
blue box. Warping with F gt

1→2 leads to ghosting e�ects. b) Zooming into lowest pyramid
resolution shows loss of small details due to down-scaling. c) Warping Il2 with the �ow
estimate from the coarser level leads to distortions in Il2→1 (the black dot gets covered
up). Instead, direct sampling in Il2 with a search window(gray box) that is o�set by
the �ow estimate avoids these distortions and hence leads to more stable correlations.

Cost volume construction The �rst operation at each level of most pyramid
�ow networks involves comparing features between I l1 and I

l
2, conditioned on the

�ow F l−11→2 predicted at the previous level. In the most common implementation,
I l2 is warped using F

l−1
1→2, and the result is cross-correlated with I

l
1. More formally,

given I l2 and F l−11→2, the warped image is given by I l2→1(x) = I l2(x + F l−11→2(x))
and the cross-correlation is computed with:

V warp
1→2 (x, δ) = I l1(x) · I l2→1(x+ δ) = I l1(x) · I l2(x+ δ + F l−11→2(x+ δ)) , (1)

where δ ∈ [−∆,∆]2 is a restricted search space and · is the vector dot product.
This warping operation, however, su�ers from a serious drawback which occurs
when small regions move di�erently compared to their surroundings.

This case is represented in Fig. 2: A small object indicated by a red line moves
in a di�erent direction than a larger blue box in the background. As warping
uses the coarse �ow estimate from the previous level, which cannot capture
�ne-grained motions, there is a chance that the smaller object gets lost during
the feature warping. This makes it undetectable in I l2→1, even with an in�nite
cost volume range (CVr/CV-range) δ. To overcome this limitation, we propose
a di�erent cost volume construction strategy, which exploits direct sampling
operations. This approach always accesses the original, undeformed features I l2,
without loss of information, and the cross-correlation in Eq. (1) now becomes:

V samp,Corr
1→2 (x, δ) = I l1(x) · I l2(x+ δ + F l−11→2(x)) . (2)

For this operator, the �ow just acts as an o�set that sets the center of the
correlation window in the feature image I l2. Going back to Fig. 2, one can see
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Fig. 3: Predicted optical �ow and end point error on KITTI obtained with HD3 from
the model zoo (top) and our IOFPL version (bottom). Note how our model is better
able to preserve small details.

that the sampling operator is still able to detect the small object, as it is also
exempli�ed on real data in Fig. 3. In contrast to [22], our approach still uses the
coarse to �ne pyramid and hence doesn't require dilation in the cost volume for
large motions. In our experiments we also consider a variant where the features
are compared in terms of Sum of Absolute Di�erences (SAD) instead of a dot
product:

V samp,SAD
1→2 (x, δ) = ‖I l1(x)− I l2(x+ δ + F l−11→2(x))‖1 . (3)

Loss Max Pooling We apply a Loss Max-Pooling (LMP) strategy [30], also
known as Online Hard Example Mining (OHEM), to our knowledge for the �rst
time in the context of optical �ow. In our experiments, and consistent with the
�ndings in [30], we observe that LMP can help to better preserve small details
in the �ow. The total loss is the sum of a pixelwise loss `x over all x ∈ I1, but we
optimize a weighted version thereof that selects a �xed percentage of the highest
per-pixel losses. The percentage value α is best chosen according to the quality
of the ground-truth in the target dataset. This can be written in terms of a loss
max-pooling strategy as follows:

L = max

{∑
x∈I1

wx`x : ‖w‖1 ≤ 1 , ‖w‖∞ ≤
1

α|I1|

}
, (4)

which is equivalent to putting constant weight wx = 1
α|I1| on the percentage of

pixels x exhibiting the highest losses, and setting wx = 0 elsewhere.
LMP lets the network focus on the more di�cult areas of the image, while

reducing the amount of gradient signals where predictions are already correct. To
avoid focussing on outliers, we set the loss to 0 for pixels that are out of reach
for the current relative search range ∆. For datasets with sparsely annotated
ground-truth, like e.g . KITTI [11], we re-scale the per pixel losses `x to re�ect
the number of valid pixels. Note that, when performing distillation, loss max-
pooling is only applied to the supervised loss, in order to further reduce the
e�ect of noise that survived the �ltering process described in � 3.4.
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3.3 Improving gradient �ow across PFN levels

Our quantitatively most impacting contribution relates to the way we pass gra-
dient information across the di�erent levels of a PFN. In particular, we focus
on the bilinear interpolation operations that we implicitly perform on I l2 while
computing Eq.s (1), (2) and (3). It has been observed [19] that taking the gradi-
ent of bilinear interpolation w.r.t. the sampling coordinates (i.e. the �ow F l−11→2

from the previous level in our case) is often problematic. To illustrate the reason,
we restrict our attention to the 1-D case for ease of notation, and write linear
interpolation from a function f̂ : Z→ R:

f(x) =
∑

η∈{0,1}

f̂(bxc+ η) [(1− η)(1− x̃) + ηx̃] , (5)

where x̃ = x− bxc denotes the fractional part of x. The derivative of the inter-
polated function f(x) with respect to x is:

df

dx
(x) =

∑
η∈{0,1}

f̂(bxc+ η)(2η − 1) . (6)

The gradient function df
dx is discontinuous, for its value drastically changes as

bxc crosses over from one integer value to the next, possibly inducing strong
noise in the gradients. An additional e�ect, speci�c to our case, is related to the
issues already highlighted in � 3.2: since F l−11→2 is predicted at a lower resolution
than level l operates at, it cannot fully capture the motion of smaller objects.
When this motion contrasts with that of the background, the gradient w.r.t.
F l−11→2 produced from the sampling at level l will inevitably disagree with that
produced by the loss at level l − 1, possibly slowing down convergence.

While [19] proposes a di�erent sampling strategy to reduce the noise issues
discussed above, in our case we opt for a much simpler work around. Given
the observations about layer disagreement, and the fact that the loss at l − 1
already provides direct supervision on F l−11→2, we choose to stop back-propagation
of partial �ow gradients coming from higher levels, as illustrated in Fig. 4.

Evidence for this e�ect can be seen in Fig. 5, where the top shows the develop-
ment of the training loss for a Flying Chairs 2 training with an HD3 model. The

DecoderCost
Volume

Flow
Cues

DecoderCost
Volume

to loss

to loss

gradient stopped

Build CV
Warp

Build CV
with Sampling

Cost volume construction: warping

Cost volume construction: sampling

Fig. 4: Left: Network structure � �ow estimation per pyramid level; Gradients are
stopped at red cross; Right: Cost volume computation with sampling vs. warping.
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Fig. 5: Top: Loss of model decreases when the �ow gradient is stopped; Bottom: Partial
gradients coming from the current level loss and the next level via the �ow show a
negative Normalized Cross Correlation (NCC), indicating that they oppose each other.

training convergence clearly improves when the partial �ow gradient is stopped
between the levels (red cross in Fig. 4). On the bottom of the �gure the Normal-
ized Cross Correlation (NCC) between the partial gradient coming from the next
level via the �ow and the current levels loss is shown. On average the correlation
is negative, indicating that for each level of the network the partial gradient that
we decided to stop (red cross), coming from upper levels, points in a direction
that opposes the partial gradient from the loss directly supervising the current
level, thus harming convergence. Additional evidence of the practical, positive
impact of our gradient stopping strategy is given in the experiment section � 4.2.

Further evidence on this issue can be gained by analyzing the parameters
gradient variance [38] as it impacts the rate of convergence for stochastic gradient
descent methods. Also the β-smoothness [33] of the loss function gradient can
give similar insights. In the supplementary material (section � A) we provide
further experiments that show that gradient stopping also helps to improve these
properties, and works for stereo estimation and other �ow models as well.

3.4 Additional re�nements

Flow cues As mentioned at the beginning of � 3.2, the decoder subnet in each
pyramid level processes the raw feature correlations to a �nal cost volume or
direct �ow predictions. To provide the decoder with contextual information, it
commonly [36, 44] also receives raw features (i.e. I l1, I

l
2 for forward and backward

�ow, respectively). Some works [39, 15, 17] also append other cues, in the form of
hand-crafted features, aimed at capturing additional prior knowledge about �ow
consistency. Such �ow cues are cheap to compute but otherwise hard to learn for
CNNs as they require various forms of non-local spatial transformations. In this
work, we propose a set of such �ow cues that provides mutual bene�cial informa-
tion, and perform very well in practice when combined with costvolume sample
and LMP (see � 4.2). These cues are namely forward-backward �ow warping, re-
verse �ow estimation, map uniqueness density and out-of-image occlusions, and
are described in detail in the supplementary material (� B).
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I1 KITTI GT

Inference after Things3D distilled pseudo GT

Fig. 6: Illustration of our data distillation process. Left to right: input image and asso-
ciated KITTI ground truth, dense prediction from a Flying Things3D-trained network
and pseudo-ground truth derived from it.

Knowledge distillation Knowledge distillation [12] consists in extrapolating
a training signal directly from another trained network, ensemble of networks,
or perturbed networks [31], typically by mimicking their predictions on some
available data. In PFNs, distillation can help to overcome issues such as lack of
�ow annotations on e.g . sky, which results in cluttered outputs in those areas.
Formally, our goal is to distill knowledge from a pre-trained master network (e.g .
on Flying Chairs2 and/or Flying Things) by augmenting a student network with
an additional loss term, which tries to mimic the predictions the master produces
on the input at hand (Fig. 6, bottom left). At the same time, the student is also
trained with a standard, supervised loss on the available ground-truth (Fig. 6, top
right). In order to ensure a proper cooperation between the two terms, we prevent
the distillation loss from operating blindly, instead enabling it selectively based
on a number of consistency and con�dence checks (refer to the supplementary
material for details). Like for the ground-truth loss, the data distillation loss is
scaled with respect to the valid pixels present in the pseudo ground-truth. The
supervised and the distillation losses are combined into a total loss

L = αLS + (1− α)LD (7)

with the scaling factor α = 0.9. A qualitative representation of the e�ects of our
proposed distillation on KITTI data is given in Fig. 7.

4 Experiments

We assess the quality of our contributions by providing a number of exhaustive
ablations on Flying Chairs, Flying Chairs2, Flying Things, Sintel, Kitti 2012 and
Kitti 2015. We ran the bulk of ablations based on HD3 [44], i.e. a state-of-the-
art, 2-frame optical �ow approach. We build on top of their publicly available
code and stick to default con�guration parameters where possible, and describe
and re-train the baseline model when deviating.
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Fig. 7: Qualitative evaluation on KITTI, comparing the HD3 modelzoo (left), our ver-
sion with all contributions except distillation (center), and with distillation (right).

The remainder of this section is organized as follows. We provide i) in � 4.1
a summary about the experimental and training setups and our basic modi�-
cations over HD3, ii) in � 4.2 an exhaustive number of ablation results for all
aforementioned datasets by learning only on the Flying Chairs2 training set,
and for all reasonable combinations of our contributions described in � 3, as well
as ablations on Sintel, and iii) list and discuss in � 4.3 our results obtained on the
Kitti 2012, Kitti 2015 and Sintel test datasets, respectively. In the supplementary
material we further provide i) more technical details and ablation studies about
the used �ow cues, ii) smoothness and variance analyses for gradient stopping
and its impact on depth from stereo or with a PWC baseline iii) ablations on
extended search ranges for the cost volume, and iv) ablations on distillation.

4.1 Setup and modi�cations over HD3

We always train on 4xV100 GPUs with 32GB RAM using PyTorch, and obtain
additional memory during training by switching to In-Place Activated Batch-
Norm (non-synchronized, Leaky-ReLU) [32]. We decided to train on Flying
Chairs2 rather than Flying Chairs for our main ablation experiments, since it
provides ground truth for both, forward and backward �ow directions. Other
modi�cations are experiment-speci�c and described in the respective sections.

Flow - Synthetic data pre-training. Also the Flying Things dataset provides
ground truth �ow for both directions. We always train and evaluate on both
�ow directions, since this improves generalization to other datasets. We use a
batch size of 64 to decrease training times and leave the rest of con�guration
parameters unchanged w.r.t. the default HD3 code.

Flow - Fine-tuning on KITTI. Since both the Kitti 2012 and the Kitti 2015
datasets are very small and only provide forward �ow ground truth, we follow
the HD3 training protocol and join all KITTI training sequences for the �nal
�ne-tuning (after pre-training on Flying Chairs2 and Flying Things). However,
we ran independent multi-fold cross validations and noticed faster convergence
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Table 1: Ablation results when training HD3 CVr±4 on Flying Chairs2 in comparison
to the o�cial model zoo baseline, our re-trained baseline and when adding all our
proposed contributions. Results are shown on validation data for Flying Chairs2 and
Flying Things (validation set used in the original HD3 code repository), and on the
o�cial training data for Sintel, Kitti 2012 and Kitti 2015, due to the lack of a designated
validation split. (Highlighting best and second-best results).

Gradient Sampling Flow SAD LMP Flying Chairs2 Flying Things Sintel �nal Sintel clean Kitti 2012 Kitti 2015
Stopping Cues EPE [1] Fl-all [%] EPE [1] Fl-all [%] EPE [1] Fl-all [%] EPE [1] Fl-all [%] EPE [1] Fl-all [%] EPE [1] Fl-all [%]

HD3 baseline model zoo 1.439 7.17 20.973 33.21 5.850 14.03 3.70 8.56 12.604 49.13 22.67 57.07
HD3 baseline � re-trained 1.422 6.99 17.743 26.72 6.273 15.24 3.90 10.04 8.725 34.67 20.98 50.27

3 7 7 7 7 1.215 6.23 19.094 26.84 5.774 15.89 3.72 10.51 9.469 44.58 19.07 53.65
3 7 3 7 7 1.216 6.24 16.294 26.25 6.033 16.26 3.43 9.98 7.879 43.92 17.97 51.14
3 3 7 7 7 1.208 6.19 17.161 24.75 6.074 15.61 3.70 9.96 8.673 45.29 17.42 51.23
3 3 3 7 7 1.186 6.16 19.616 28.51 7.420 15.99 3.61 9.39 6.672 32.59 16.23 47.56
3 3 3 3 7 1.184 6.15 15.136 25.00 5.625 16.35 3.38 9.97 8.144 41.59 17.13 52.51

3 7 7 7 3 1.193 6.02 44.068 40.38 12.529 17.85 5.48 10.95 8.778 42.37 19.08 51.13
3 3 3 7 3 1.170 5.98 15.752 24.26 5.943 16.27 3.55 9.91 7.742 35.78 18.75 49.67
3 3 3 3 3 1.168 5.97 14.458 23.01 5.560 15.88 3.26 9.58 6.847 35.47 16.87 49.93

of our model over the baseline. We therefore perform early stopping after 1.6k
(CVr±4)/ 1.4k (CVr±8) epochs, to prevent over-�tting. Furthermore, before
starting the �ne-tuning process of the pre-trained model, we label the KITTI
training data for usage described in the knowledge distillation paragraph in � 3.4.

Flow - Fine-tuning on Sintel. We only train on all the images in the �nal pass
and ignore the clean images like HD3 for comparability. Also, we only use the
forward �ow ground truth since backward �ow ground truth is unavailable. Al-
though not favorable, our model can still be trained in this setting since we
use a single, shared set of parameters for the forward and the backward �ow
paths. We kept the original 1.2k �netuning iterations for comparability, since
our independent three-fold cross validation did not show signs of over�tting.

4.2 Flow ablation experiments

Here we present an extensive number of ablations based on HD3 to assess the
quality of all our proposed contributions. We want to stress that all results in
Tab. 1 were obtained by solely training on the Flying Chairs2 training

set. More speci�cally, we report error numbers (EPE and Fl-all; lower is better)
and compare the original HD3 model zoo baseline against our own, retrained
baseline model, followed by adding combinations of our proposed contributions.
We report performance on the target domains validation set (Flying Chairs2),
as well as on unseen data from di�erent datasets (Flying Things, Sintel and
KITTI), to gain insights on generalization behavior.

Our ablations show a clear trend towards improving EPE and Fl-all, espe-
cially on the target domain, as more of our proposed improvements are inte-
grated. Due to the plethora of results provided in the table, we highlight some
of them next. Gradient stopping is often responsible for a large gap w.r.t. to
both baseline HD3 models, the original and our re-trained. Further, all variants
with activated Sampling lead to best- or second-best results, except for Fl-all
on Sintel. Flow Cues give an additional bene�t when combined with Sampling
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Table 2: Ablation results on Sintel, highlighting best and second-best results. Top:
Baseline and Flying Chairs2 & Flying Things pre-trained (P) models only. Bottom:
Results after additional �ne-tuning (F) on Sintel.

Fine-tuned Gradient Sampling Flow SAD LMP CV Flying Things Sintel �nal Sintel clean
Pretrained Stopping Cues range ±8 EPE [1] Fl-all EPE [1] Fl-all EPE [1] Fl-all

HD3 baseline � re-trained 12.52 18.06% 13.38 16.23 % 3.06 6.39%
P 3 7.98 13.41% 4.06 10.62 % 1.86 5.11%
P 3 3 3 3 3 7.06 12.29% 4.23 11.05 % 2.20 5.41%
P 3 3 3 3 3 3 5.77 11.48% 4.68 11.40 % 1.77 4.88%

F 19.89 27.03% (1.07) (4.61 %) 1.58 4.67%
F 3 13.80 20.87% (0.84) (3.79 %) 1.43 4.19%
F 3 3 3 3 3 14.19 20.98% (0.82) (3.63 %) 1.43 4.08%

F 3 3 3 3 3 3 11.80 19.12% (0.79) (3.49 %) 1.19 3.86%

but not with warping. Another relevant insight is that our full model using all
contributions at the bottom of the table always improves on Fl-all compared
to the variant with deactivated LMP. This shows how LMP is suitable to ef-
fectively reduce the number of outliers by focusing the learning process on the
under-performing (and thus more rare) cases.

We provide additional ablation results on Flying Things and Sintel in Tab. 2.
The upper half shows PreTrained (P) results obtained after training on Flying
Chairs2 and Flying Things, while the bottom shows results after additionally
fine-tuning (F) on Sintel. Again, there are consistent large improvements on
the target domain currently trained on, i.e. (P) for Flying Things and (F) for
Sintel. On the cross dataset validation there is more noise, especially for sintel
�nal that comes with motion blur etc., but still always a large improvement over
the baseline. After �netuning (F) the full model with CVr±8 shows much better
performance on sintel and at the same time comparable performance on Flying
Things to the original baseline model directly trained on Flying Things.

4.3 Optical �ow benchmark results

The following provides results on the o�cial Sintel and KITTI test set servers.

Sintel. By combining all our contributions and by using a cost volume search
range of ±8, we set a new state-of-the-art on the challenging Sintel Final test
set, improving over the very recent, best-working approach in [2] (see Tab. 3).
Even by choosing the default search range of CVr±4 as in [44] we still obtain
signi�cant improvements over the HD3-ft baseline on training and test errors.

Kitti 2012 and Kitti 2015. We also evaluated the impact of our full model on
KITTI and report test data results in Tab. 4. We obtain new state-of-the-art
test results for EPE and Fl-all on Kitti 2012, and rank second-best at Fl-all on
Kitti 2015. On both, Kitti 2012 and Kitti 2015 we obtain strong improvements
on the training set on EPE and Fl-all. Finally, while on Kitti 2015 the recently
published VCN [43] has slightly better Fl-all scores, we perform better on fore-
ground objects (test Fl-fg 8.09 % vs. 8.66 %) and generally improve over the
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Table 3: EPE scores on the Sintel
test datasets. The appendix -ft de-
notes �ne-tuning on Sintel.

Training Test

Method Clean Final Clean Final

FlowNet2 [16] 2.02 3.14 3.96 6.02
FlowNet2-ft [16] (1.45) (2.01) 4.16 5.74
PWC-Net [36] 2.55 3.93 - -
PWC-Net-ft [36] (2.02) (2.08) 4.39 5.04
SelFlow [21] 2.88 3.87 6.56 6.57
SelFlow-ft [21] (1.68) (1.77) 3.74 4.26

IRR-PWC-ft [15] (1.92) (2.51) 3.84 4.58
PWC-MFF-ft [28] - - 3.42 4.56

VCN-ft [43] (1.66) (2.24) 2.81 4.40
ScopeFlow [2] - - 3.59 4.10
Devon [22] - - 4.34 6.35

HD3 [44] 3.84 8.77 - -
HD3-ft [44] (1.70) (1.17) 4.79 4.67

IOFPL-no-ft 2.20 4.32 - -
IOFPL-ft 1.43 (0.82) 4.39 4.22

IOFPL-CVr8-no-ft 1.77 4.68 - -
IOFPL-CVr8-ft 1.19 (0.79) 3.58 4.01

Table 4: EPE and Fl-all scores on the KITTI
test datasets. The appendix -ft denotes �ne-
tuning on KITTI. Ours is IOFPL.

Kitti 2012 Kitti 2015

Method EPE EPE Fl-noc [%] EPE Fl-all [%] Fl-all [%]
train test test train train test

FlowNet2 [16] 4.09 - - 10.06 30.37 -
FlowNet2-ft [16] (1.28) 1.8 4.82 (2.30) 8.61 10.41
PWC-Net [36] 4.14 - - 10.35 33.67 -
PWC-Net-ft [36] (1.45) 1.7 4.22 (2.16) 9.80 9.60
SelFlow [21] 1.16 2.2 7.68 (4.48) - 14.19
SelFlow-ft [21] (0.76) 1.5 6.19 (1.18) - 8.42

IRR-PWC-ft [15] - - - (1.63) 5.32 7.65
PWC-MFF-ft [28] - - - - - 7.17
ScopeFlow [2] - 1.3 2.68 - - 6.82
Devon [22] - - 6.99 - 14.31
VCN [43] - - - (1.16) 4.10 6.30

HD3F [44] 4.65 - - 13.17 23.99
HD3F-ft [44] (0.81) 1.4 2.26 1.31 4.10 6.55

IOFPL-no-ft 2.52 - - 8.32 20.33 -
IOFPL-ft (0.73) 1.2 2.29 1.17 3.40 6.52

IOFPL-CVr8-no-ft 2.37 - - 7.09 18.93 -
IOFPL-CVr8-ft (0.76) 1.2 2.25 1.14 3.28 6.35

HD3 baseline (Fl-fg 9.02 %). It is worth noting that all KITTI �netuning results
are obtained after integrating knowledge distillation from � 3.4, leading to sig-
ni�cantly improved �ow predictions on areas where KITTI lacks training data
(e.g . in far away areas including sky, see Fig. 7). We provide further qualitative
insights and direct comparisons in the supplementary material (� C).

5 Conclusions

In this paper we have reviewed the concept of spatial feature pyramids in context
of modern, deep learning based optical �ow algorithms. We presented comple-
mentary improvements for cost volume construction at a single pyramid level,
that i) departed from a warping- to a sampling-based strategy to overcome is-
sues like handling large motions for small objects, and ii) adaptively shifted
the focus of the optimization towards under-performing predictions by means
of a loss max-pooling strategy. We further analyzed the gradient �ow across
pyramid levels and found that properly eliminating noisy or potentially contra-
dicting ones improved convergence and led to better performance. We applied
our proposed modi�cations in combination with additional, interpretable �ow
cue extensions as well as distillation strategies to preserve knowledge from (syn-
thetic) pre-training stages throughout multiple rounds of �ne-tuning. We exper-
imentally analyzed and ablated all our proposed contributions on a wide range
of standard benchmark datasets, and obtained new state-of-the-art results on
Sintel and Kitti 2012.
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