
Learning to Learn Parameterized Classification
Networks for Scalable Input Images

Duo Li1,2?, Anbang Yao2B, and Qifeng Chen1B

1 The Hong Kong University of Science and Technology
2 Intel Labs China

duo.li@connect.ust.hk anbang.yao@intel.com cqf@ust.hk

Abstract. Convolutional Neural Networks (CNNs) do not have a pre-
dictable recognition behavior with respect to the input resolution change.
This prevents the feasibility of deployment on different input image res-
olutions for a specific model. To achieve efficient and flexible image
classification at runtime, we employ meta learners to generate convo-
lutional weights of main networks for various input scales and maintain
privatized Batch Normalization layers per scale. For improved training
performance, we further utilize knowledge distillation on the fly over
model predictions based on different input resolutions. The learned meta
network could dynamically parameterize main networks to act on in-
put images of arbitrary size with consistently better accuracy compared
to individually trained models. Extensive experiments on the ImageNet
demonstrate that our method achieves an improved accuracy-efficiency
trade-off during the adaptive inference process. By switching executable
input resolutions, our method could satisfy the requirement of fast adap-
tion in different resource-constrained environments. Code and models are
available at https://github.com/d-li14/SAN.

Keywords: Efficient Neural Networks, Visual Classification, Scale De-
viation, Meta Learning, Knowledge Distillation

1 Introduction

Although CNNs have demonstrated their dominant power in a wide array of com-
puter vision tasks, their accuracy does not scale up and down with respect to the
corresponding input resolution change. Typically, modern CNNs are constructed
by stacking convolutional modules in the body, a Global Average Pooling (GAP)
layer and a Fully-Connected (FC) layer in the head. When input images with
different sizes are fed to a CNN model, the convolutional feature maps also vary
in their size accordingly, but the subsequent GAP operation could reduce all
the incoming features into a tensor with 1× 1 spatial size and equal amount of
channels. Thanks to the GAP layer, even trained on specific-sized input images,
modern CNNs are also amenable to processing images of other sizes during the
inference phase. However, the primary concern lies in that their performance is

? indicates intern at Intel Labs China. B indicates corresponding authors.

2 D. Li, A. Yao and Q. Chen

64 128 192 256 320 384 448
Test resolution (pixel)

20

30

40

50

60

70

To
p-

1
ac

cu
ra

cy
 (%

)

Training resolution 224×224 (baseline)
Training resolution 192×192 (baseline)
Training resolution 160×160 (baseline)
Training resolution 128×128 (baseline)
Training resolution 96×96 (baseline)
Training resolution 224×224 (SAN)
Training resolution 192×192 (SAN)
Training resolution 160×160 (SAN)
Training resolution 128×128 (SAN)
Training resolution 96×96 (SAN)

Fig. 1. Validation accuracy envelope of our proposed SAN with MobileNetV2 on Im-
ageNet. Curves with the same color/style represent the results of models trained with
the same input resolutions. The x-axis is plotted in the logarithmic scale. N and �
indicate the spots when test resolution meets the training one.

vulnerable to scale deviation3, exhibiting severe deterioration when evaluating
images of varying sizes at the inference time, as illustrated in Fig. 1. Therefore,
as done in a series of efficient network designs [13][27][12][36][20][16], in order to
adapt to real-time computational demand from the aspect of input resolution, it
is necessary to train a spectrum of models from scratch using input images of dif-
ferent resolutions. These pre-trained models are then put into a storage pool and
individually reserved for future usage. Client-side devices have to retrieve per-
tinent models based on requirements and available resources at runtime, which
will largely impede the flexibility of deployment due to inevitable downloading
and offloading overheads. To flexibly handle the real-time demand on various
resource-constrained application platforms, a question arises: under the premise
of not sacrificing or even improving accuracy, is it possible to learn a controller to
dynamically parameterize different visual classification models having a shared
CNN architecture conditioned on the input resolutions at runtime?

To echo the question above, a scale-adaptive behavior is anticipated for the
controller to acquire. That implies, given a CNN structure, to instantiate dif-
ferent main networks for each certain image resolution, the controller should
have prior knowledge about switching between scaled data distributions and
tactfully bridging the scaling coefficients with network parameters. We propose
that appropriate data scheduling and network layer manipulations could lend
this attribute to the controller. Specifically, we synthesize image patches with
a set of training resolutions and employ meta networks as the controller to in-
tegrate diverse knowledge from these varying resolutions. The meta learners
redistribute the gathered scale knowledge by generating convolutional kernels
for multiple main networks conditioned on their assigned input resolutions re-
spectively. Due to the tight relationship between Batch Normalization (BN) [14]

3 The concept of scale deviation will be discussed detailedly in Section 2.

SAN: Scale Adaptive Network for Scalable Input Images 3

layers and scaled activation distributions, all parameters and statistics of BN lay-
ers in each main network are maintained in a privatized manner. The main net-
works are collaboratively optimized following a mixed-scale training paradigm.
The meta networks are optimized via collecting gradients passed through differ-
ent main networks, such that information from multi-scale training flows towards
the controller. Furthermore, aiming at leveraging the knowledge extracted with
large resolutions to advance the performance on smaller ones, a scale distillation
technique is utilized on the fly via taking the probabilistic prediction based on
large resolutions as smoothed supervision signals. These aforementioned ingredi-
ents are coherently aggregated, leading to our proposed Scale Adaptive Network
(SAN) framework, which is scalable by design and also generally applicable to
prevailing CNN architectures.

During inference, given an input image, the learned controller could parame-
terize the visual classification model according to its resolution, showing consis-
tently improved accuracy compared with the model individually trained on the
corresponding resolution, as demonstrated in Fig. 1. Therefore, client devices
almost merely need to reserve a single meta network and the computation graph
of the backbone architecture whose parameters could be dynamically generated
based on the evaluation resolution. Depending on the ability to flexibly switch
target resolutions, the inference process is controllable to meet the on-device
latency requirements and the accuracy expectation. Furthermore, the generated
models could adapt smoothly to a wide range of input image sizes, even under
the circumstances with severe problems of scale deviation. Benefiting from in-
place parameterization and performance resilience on a spectrum of evaluated
resolutions for each individual model, the one-model-fits-all style addresses the
major obstacle of application to various scenarios.

Our main contributions can be summarized as follows:

o We employ meta networks to decide the main network parameters conditioned
on its input resolution at runtime. Little research attention has been paid
to this kind of meta-level information before us. We also extend the scope
of knowledge distillation, based on the same image instance with different
resolutions, which is also a rarely explored data-driven application scenario.

o We develop a new perspective of efficient network design by combining the
aforementioned two components to permit adaptive inference on universally
scaled input images, make a step forward in pushing the boundary of the
resolution-accuracy spectrum and facilitating flexible deployment of visual
classification models among switchable input resolutions.

2 Related Work

We briefly summarize related methodologies in previous literature and analyze
their relations and differences with our approach as follows.

Scale Deviation. FixRes [30] sheds light on the distribution shift between
the train and test data, and quantitatively analyzes its effect on apparent object
sizes and activation statistics, which arises from inconsistent data pre-processing

4 D. Li, A. Yao and Q. Chen

protocols during training and testing time. The discrepancy between train and
test resolution is defined as scale deviation in this work. We would like to clar-
ify that the issue of scale deviation exists across universally scaled images in
the visual classification task, which shows a clear distinction compared to an-
other popular phenomenon named scale variance. The problem of scale variance
is more commonly identified among instances of different sizes within a single
image, especially in the images of the MS COCO [19] benchmark for object detec-
tion. Typically hierarchical or parallel multi-scale feature fusion approaches [29,
18, 39, 17, 38, 6] are utilized to address this problem, which has a loose connec-
tion with our research focus nevertheless. To handle the initial problem of scale
deviation, FixRes proposes a simple yet effective strategy that prefers increased
test crop size and fine-tunes the pre-trained model on the training data with the
test resolution as a post-facto compensation. Notably, FixRes lays emphasis on
calibrating BN statistics over the training data modulated by the test-size distri-
bution, which is of vital importance to remedy the activation distribution shift.
In comparison, we could use a proxy or data-free inference method to avoid the
calibration of BN statistics, thus no post-processing steps are involved after end-
to-end network training. We further provide empirical comparison in Section 4.
Specializing BN layers for network adaption between a few different tasks has
been adopted in domain adaption [25], transfer learning [21], adversarial train-
ing [31] and optimization of sub-models in a super net [34][33]. Inspired by them,
we also overcome the shortcoming of statistic discrepancy through privatizing
statistics and trainable parameters in the BN layers of each main network.

Meta Learning. Meta learning, or learning to learn, has come into promi-
nence progressively in the field of artificial intelligence, which is supposed to be
the learning mechanism in a more human-like manner. The target of meta learn-
ing is to advance the learning procedure at two coupled levels, enabling a meta
learning algorithm to adapt to unseen tasks efficiently via utilizing another base
learning algorithm to extract transferable prior knowledge within a set of auxil-
iary tasks. The hypernetwork [9] is proposed to efficiently generate the weights
of the large main network using a small auxiliary network, in a relaxed form
of weight-sharing across layers. Bertinetto et al. [4] concentrate on the one-shot
learning problem and use a learnet to map a single training exemplar to weights
of the main network in one go. Andrychowicz et al. [1] replace the standard opti-
mization algorithm with an LSTM optimizer to generate an update for the main
network in a self-adaptive manner. Meta-LSTM [24] further develops this idea by
revealing the resemblance between cell states in an LSTM and network weights
in a CNN model with respect to their update process. SMASH [5] applies the
HyperNet to Neural Architecture Search (NAS) by transforming a binary encod-
ing of the candidate network architecture to its corresponding weights. In our
framework, meta networks, or to say hypernetworks, are responsible for generat-
ing weights of convolutional layers in the main network according to scale-related
meta knowledge of the input data.

Knowledge Distillation. Knowledge Distillation (KD) is based on a teacher-
student knowledge transfer framework in which the optimization of a lower-

SAN: Scale Adaptive Network for Scalable Input Images 5

capacity student neural network is guided by imitating the soft targets [11][37]
or intermediate representation [26][32][35] from a large and powerful pre-trained
teacher model. Inspired by curriculum learning [3], RCO [15] promotes the stu-
dent network to mimic the entire route sequence that the teacher network passed
by. RKD [22] and CCKD [23] both exploit structural relation knowledge hidden
in the embedding space to achieve correlation congruence. Several recent works
also demonstrate the effectiveness of KD in improving the teacher model itself by
self-distillation [2][8]. We introduce the scale distillation into our framework to
transfer the scale and structural information of the same object instances from
large input images to smaller ones at each step throughout the whole training
procedure. The knowledge distillation process emerges among different main net-
works with the same network structure that travel along the same route sequence
of optimization, without the assistance of external teacher models.

3 Approach

A schematic overview of our method is presented in Fig. 2. The key innovations
lie in the employment of meta networks in the body and scale distillation at the
end. In this section, we elaborate on the insights and formulations of them.

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

…

G
lo

b
a
l

A
v
g
P

o
o
l

F
u

ll
y
 C

o
n
n
e
ct

ed

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

…

G
lo

b
a
l

A
v
g
P

o
o
l

F
u

ll
y
 C

o
n
n
e
ct

ed

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

…

G
lo

b
a
l

A
v
g
P

o
o
l

F
u

ll
y
 C

o
n
n
e
ct

ed

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

…

G
lo

b
a
l

A
v
g
P

o
o
l

F
u

ll
y
 C

o
n
n
e
ct

ed

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

…

G
lo

b
a
l

A
v
g
P

o
o
l

F
u

ll
y
 C

o
n
n
e
ct

ed

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

…

G
lo

b
a
l

A
v
g
P

o
o
l

F
u

ll
y
 C

o
n
n
e
ct

ed

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

…

G
lo

b
a
l

A
v
g
P

o
o
l

F
u

ll
y
 C

o
n
n
e
ct

ed

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

C
o
n

v
o
lu

ti
o
n

B
a
tc

h
N

o
rm

R
e
L

U

…

G
lo

b
a
l

A
v
g
P

o
o
l

F
u

ll
y
 C

o
n
n
e
ct

ed

…
…

MLP MLP MLP MLP MLP

Kernel Generation

Scale Encoding

…
…

Meta Network

Main Networks

S
o

ft
m

ax
S

o
ft

m
ax

S
o

ft
m

ax
S

o
ft

m
ax

Scale DistillationScale Distillation

sh
a

re
d

Fig. 2. Schematic illustration of our proposed Scale Adaptive Network framework. The
input image scales S1, S2, · · · , SK are linearly transformed into a set of encoding scalars
ε1, ε2, · · · , εK , which are fed into the MLP meta network Ml, l = 1, 2, · · · , L, generat-
ing weights {W (l)

1 ,W
(l)
2 , · · · ,W (l)

K } of the l th convolutional layer for each main network
N (Si) associated with one certain input scale Si, i = 1, 2, · · · ,K. BN layers are priva-
tized and FC layers are shared among different main networks. The Scale Distillation
process is performed in a top-down fashion. Best viewed in electronic version.

6 D. Li, A. Yao and Q. Chen

3.1 Network Architecture

Motivated by the target of achieving the scale-adaptive peculiarity of CNNs,
we speculate that scale-invariant knowledge should be exploited regarding each
input image in its heterogeneous modes of scales. Although the same object in-
stances pose significant scale variation in these modes, they could share common
structural relations and geometric characteristics. A meta learner built upon the
top of CNNs is expected to extract and analyze this complementary knowledge
across scales. Then it injects this prior knowledge into underlying CNNs through
parameterization, making them quickly adapt to a wide range of new tasks of
visual classification which may include unseen scale transformations.

In this spirit, we denote the model optimized on training images with the
resolution S × S as N (S) and consider a group of main networks optimized on
a set of input resolutions S = {S1, S2, · · · , Sk} respectively. We also construct
a cohort of meta networks M = {M1,M2, · · · ,ML} to generate convolutional
kernels conditioned on the scale S of input images for an L-layer convolutional
neural network N (S). As illustrated in Fig. 2, bidirectional information flow is
established between the shared meta network and each individual main network
by the means of Scale Encoding and Kernel Generation respectively. All
meta networks are instantiated by the same network structure of a Multi-Layer
Perceptron (MLP).

Scale Encoding. The input to each MLP is an encoding scalar that con-
tains information about the relative scale of training examples. Since the down-
sampling rate of prevalent CNNs is 1/32, we heuristically apply a normalization
policy to linearly transform the input scale S to an encoding ε = 0.1× S/32.

Kernel Generation. The output dimension of an MLP equals the dimension
of its corresponding convolutional kernel but in the flattened form. For example,
a 1-in, (CoutCinK

2)-out MLP is built to adaptively generate Cout groups of
convolutional kernels, each group containing Cin kernels with the same size of
K ×K. Compared with hypernetworks [9] that map each learnable embedding
vector to the weights of its corresponding layer with one auxiliary network, our
mechanism assigns each meta learner to generate weights for the corresponding
layer with one common input encoding scalar regarding a specific main network.

With these well-defined meta learners, parameters of convolutional layers in
the main network N (S) can be generated and associated with a specific input
scale S. As emphasized by previous works [30], BN layers should be delicately
handled for the sake of inconsistency between data distributions of varying scales.
Note that parameters in the BN layers usually occupy a negligible portion of the
parameters within the whole model, e.g., less than 1% of the total amount in
most cases, we opt for a straightforward yet effective strategy by maintaining
individual BN layers, denoted as BN(S), for each scale-specified main network
N (S). Injecting these conditional normalization layers can lend more inherent
adaptability and scalability to intermediate feature representations to accom-
modate scale discriminative knowledge. By contrast, with regard to the last FC
layer that occupies a considerable amount of parameters, a shared one is desig-
nated to fit any potential main networks.

SAN: Scale Adaptive Network for Scalable Input Images 7

To take full advantage of various sources of scale information, we propose
a mixed-scale optimization scheme accordingly. With the label-preserved trans-
formation, each image in the training set D = {(x1, y1), (x2, y2), · · · , (xN , yN)}
is resized to a series of scales, e.g., S1, S2, · · · , Sk, where yj , j = 1, 2, · · · , N is
the ground truth category label of the sampled image xj . For a certain scale
Si, we encode it as ε(Si) and map the encoding scalar to a fully parameterized
main network N (Si) through the meta learners. Transformed samples with the
same size Si are assembled to form a resized version of the original training
set denoted as D(Si) and fed into the corresponding main network N (Si). For
each pair of D(Si) and N (Si), it follows the standard optimization procedure of
convolutional neural networks via minimizing the cross-entropy loss. Since our
objective is to optimize the overall accuracy under different settings of scales, no
scale is privileged and the total classification loss is an un-weighted sum of the
individual losses, represented as

LCE =

k∑
i=1

N∑
j=1

LCE(θ(Si);x
(Si)
j , yj), (1)

where k is the number of resize transformations and θ(Si) = {Ml(ε
(Si)) | l =

1, 2, · · · , L}∪{BN(Si),FC} are weights of the network N (Si) where convolutional
layers are directly generated by meta learners. The parameters in meta networks
M are optimized simultaneously following the chain rule as the aforementioned
weight generation operations are completely differentiable.

The number of hidden layers and units in the MLP could be tuned. In our
main experiments, the meta network is chosen as a single layer MLP for the
purpose of effectiveness and efficiency (validated by ablation experiments later).
It could be represented as an FC layer with the weight Wl and bias bl

Ml(ε
(Si)) = ε(Si)Wl + bl. (2)

Due to the existence of the bias term, the output convolutional kernels are not
simply distinct up to a scaling factor ε(Si) across different main networks. To
be cautious, we also examine the value of Wl and bl regarding each layer.
They are of the same size and the same order of magnitude in almost all cases,
indicating that the weights and biases have an equivalently important influence
on the learning dynamics. The ratio of Wl to bl in each layer is reported in the
supplementary materials.

3.2 Scale Distillation

High-resolution representations [28] can contain finer local feature descriptions
and more discernable semantic meaning than the lower-resolution ones, hence
it is appropriate to utilize the probabilistic prediction over larger-scale inputs
to offer auxiliary supervision signals for smaller ones, which will be referred
to as Scale Distillation in this context. Specifically, a Kullback-Leibler diver-
genceDKL(·‖·) is calculated between each pair of output probability distributions

8 D. Li, A. Yao and Q. Chen

among all main networks, which leads to an additional representation mimicking
loss shaped in a top-down manner as follows

LSD =

k∑
i=1

k∑
j=1

Sj<Si

DKL(p(Si)‖p(Sj)), (3)

where p(Si) denotes the probabilistic distribution prediction with respect to ob-
ject categories outputted by the main network N (Si).

Our mixed-scale training mechanism naturally supports scale distillation as
an in-place operation. During each training step, we take the predicted labels of
one model and fix them as the soft training labels for other models processing
smaller input samples, which can be implemented on the fly without introducing
further memory overheads in practice. Compared with conventional KD method-
ology [11], a main network in our framework may be both the teacher model and
the student model, depending on its matched counterpart model. Furthermore,
the cohort of main networks are of the same model size and optimized in a
single-shot rather than two-stage manner.

Then, the overall optimization objective of our framework is to minimize the
combined loss function

L = αLCE + βLSD, (4)

where α and β are positive weight coefficients to balance the cross-entropy loss
and the scale distillation loss. In our main experiments, we do not make much
investment in tuning these hyperparameters and find that simply setting α =
β = 1 leads to satisfactory performance, which demonstrates the robustness of
our proposed optimization scheme in some sense.

Intuitively condensing networks for different purposes into a shared frame-
work tends to bring about performance degradation compared to individually
trained ones, since they might exhibit inconsistent learning dynamics. However,
we surmise that our performance improvements could originate from a relaxed
form of knowledge transfer across different scales. According to Eqn. 2, weights
and biases of the meta networks respectively enforce convolution parameter scal-
ing and sharing across different main networks. The generated weights for one
scale also depend on the information from any other different scales due to the
joint training. By feat of the shared meta networks and a collaborative training
regime, the knowledge interaction process between models may be interpreted
as an implicit distillation. In addition to the implicit information sharing mech-
anism above, we further develop an explicit distillation technique to aggressively
advance this knowledge transfer process, presented as Scale Distillation.

3.3 Inference

For inference, let the selected training resolution range be S = {S1, S2, · · · , Sk}
and the test resolution be T , we first search the nearest resolution S(T) ∈ S for T ,
then feed the scale encoding ε(T) to the pre-trained meta network to parameterize

SAN: Scale Adaptive Network for Scalable Input Images 9

convolutional layers for the main network and the BN layers reserved for S(T)
during training could be applied directly. Finally the ideal inference is realized
by sending the test image to the network parameterized by

θ
(T)
ideal = {Ml(ε

(T))|l = 1, 2, · · · , L} ∪ {BN(S(T)),FC}. (5)

If S(T) is not close enough to T regarding its value, the trainable parameters
of BN (scale and shift parameter) could still be applied directly but calibration
of BN statistics (running mean and variance) is necessary for retaining a decent
performance (will be shown later in the ablation studies). Intriguingly, we find
that simply substituting the scale encoding ε(T) by ε(S(T)) to match its corre-
sponding BN layers is ready to make compensation. It says that the runtime
network could also be dynamically parameterized by

θ(T)
proxy = {Ml(ε

(S(T)))|l = 1, 2, · · · , L} ∪ {BN(S(T)),FC}, (6)

to achieve approximate performance as that above (recognition accuracy by us-

ing θ
(T)
ideal and θ(T)

proxy for inference is comprehensively compared in the ablation

experiments). Since using θ(T)
proxy for inference would be relatively convenient

once the pre-trained main network weights M(ε(S(T))) are already on hand, we
opt for this proxy inference method as an alternative for performance benchmark
throughout Section 4, if no further specification. In practice, clients could choose
either option to achieve similar performance, depending on whether the desired
convolutional weights are handily accessible or even on hand.

Summarily, the ideal inference in Eqn. 5 uses test-specified encoding and
calibration for BN statistics (if necessary) while the proxy inference in Eqn. 6
uses training-specified encoding and no calibration. The concrete algorithms of
optimization and inference are provided in the supplementary materials.

4 Experiments

We present extensive experimental results on ImageNet using various prevailing
CNN architectures and conduct controlled experiments for introspection.

4.1 Main Results

Our method is evaluated on the large-scale ImageNet [7] dataset, which is a
very challenging image recognition benchmark including over 1.2 million training
images and 50,000 validation images belonging to 1,000 object categories. We
follow the standard practice for data augmentation [10], utilizing random resizing
and cropping operations together with horizontal flipping to generate image
patches with the desired resolutions. During evaluation, we crop the center region
from each transformed image of which the shorter side is resized to satisfy the
crop ratio of 0.875. We report top-1 validation error in all the following tables.

Several different choices of main networks are explored to demonstrate the
effectiveness and scalability of our approach. Specifically, we select three network

10 D. Li, A. Yao and Q. Chen

Table 1. Comparison of ResNet-18, MobileNetV2 and ResNet-50 (from top to bottom)
baseline models (left panel) and SAN (right panel) on a spectrum of test resolutions.
Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 71.90 70.97 69.14 68.72 66.20 64.68 60.36 56.85 50.17 42.55 20.40
192 71.71 71.25 69.64 69.75 67.70 67.04 63.23 60.47 54.21 47.73 25.10
160 70.72 70.70 69.50 70.14 68.47 68.48 65.61 63.80 58.54 53.78 31.03
128 67.41 68.51 67.83 69.06 67.81 68.56 66.51 66.36 61.88 58.29 38.58
96 54.68 58.87 58.46 62.39 61.62 64.84 63.42 65.51 62.39 62.56 47.48

Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 72.96 72.65 71.89 71.89 70.39 69.62 67.15 65.36 59.96 55.57 34.98
192 72.60 72.79 72.10 72.32 71.09 70.77 68.44 67.25 62.61 58.77 38.76
160 71.51 72.15 71.61 72.12 71.04 71.31 69.36 68.60 64.69 61.53 43.02
128 69.04 70.30 69.78 70.90 70.19 71.01 69.35 69.28 65.96 63.87 47.33
96 62.96 65.52 65.37 67.65 66.89 68.89 67.60 68.73 65.78 65.30 51.32

Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 73.04 72.19 71.13 70.09 68.48 66.10 63.13 58.63 52.50 43.91 21.23
192 72.67 72.26 71.47 71.08 69.68 68.18 65.84 61.61 56.86 48.81 25.37
160 70.83 71.39 70.17 71.08 69.31 69.50 66.63 65.05 59.60 54.08 30.56
128 66.70 68.18 68.19 69.14 68.65 68.98 67.78 66.74 63.73 58.69 37.14
96 51.48 56.73 57.06 60.85 61.13 63.99 63.55 65.13 63.40 62.70 46.15

Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 73.26 72.80 72.24 71.47 70.35 68.64 66.50 63.08 58.43 51.01 28.64
192 72.91 72.86 72.42 72.22 71.33 70.26 68.43 65.83 61.81 55.44 33.24
160 71.68 72.16 71.79 72.31 71.63 71.16 69.67 67.96 64.61 59.62 38.75
128 68.61 70.13 69.94 71.16 70.51 70.94 69.80 69.14 66.55 63.05 44.84
96 60.55 64.11 64.21 66.91 66.80 68.58 67.82 68.41 66.59 65.07 50.41

Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 77.95 77.15 76.43 75.47 74.29 72.44 70.32 66.85 62.38 54.84 32.10
192 77.56 77.26 76.81 76.41 75.27 74.39 72.32 69.77 65.70 59.22 37.23
160 76.69 76.93 76.60 76.61 75.81 75.31 73.91 72.12 69.11 63.87 43.74
128 74.14 75.13 75.16 75.66 75.46 75.53 74.63 73.53 71.58 67.67 51.40
96 68.81 70.97 71.29 72.68 72.66 73.64 73.43 73.53 72.35 70.61 59.09

Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 78.93 78.57 78.32 77.81 77.02 76.11 74.67 72.47 69.44 64.30 44.91
192 78.63 78.67 78.43 78.44 77.64 77.10 75.86 74.00 71.29 67.05 48.91
160 77.66 78.07 77.99 78.26 77.73 77.60 76.60 75.35 73.15 69.49 53.62
128 75.18 76.22 76.39 77.17 77.01 77.38 76.50 76.04 74.24 71.56 57.84
96 69.91 72.24 72.69 74.18 74.33 75.39 75.12 75.30 74.28 72.83 62.14

Table 2. Comparison of ResNet-18-based SAN, evaluated on interpolated resolutions
with different inference configurations, including (i) ideal inference: before (left) and
after (middle) BN calibration; (ii) proxy inference: no need for BN calibration (right).

Train \ Test 208 176 144 112

224 71.71 67.44 57.47 39.46
192 71.51 70.72 65.22 52.15
160 66.21 70.52 69.07 61.10
128 49.45 64.49 68.78 65.57
96 19.71 45.75 61.74 65.26

Train \ Test 208 176 144 112

224 72.03 70.32 66.90 59.18
192 72.13 71.13 68.48 62.14
160 71.41 71.07 69.40 64.59
128 68.95 69.89 69.52 66.16
96 62.49 65.86 67.35 66.26

Train \ Test 208 176 144 112

224 71.89 70.39 67.15 59.96
192 72.10 71.09 68.44 62.61
160 71.61 71.04 69.36 64.69
128 69.78 70.19 69.35 65.96
96 65.37 66.89 67.60 65.78

architectures including ResNet [10] with 18/50 layers and MobileNetV2 [27] in
view of their strong track record. It is noted that we consider both large-scale
networks and a very lightweight one, which also feature regular and inverted
residual blocks respectively. Furthermore, we prove that our meta learners could
smoothly learn to generate the kernels of both standard convolutions and depth-
wise separable convolutions. The ResNet family is trained using the default SGD
optimizer with the momentum of 0.9 and the weight decay of 1e-4 for 120 epochs.
The learning rate initiates from 0.1 and decays to zero following a half cosine
annealing schedule. The batch size is set to 256. The lightweight MobileNetV2 is
trained using almost the same optimization hyperparameters and learning rate
decay strategy but with a smaller initial learning rate of 0.05 and a smaller
weight decay of 4e-5 to suppress underfitting. The optimization procedure lasts
for 150 epochs for full convergence. All baselines and our SAN-based models are
trained using the above scheme for fair comparisons. The training resolutions of
SAN models are set to S = {S1, S2, S3, S4, S5} = {224, 192, 160, 128, 96}.

We take independently trained models as the baselines and evaluate them
among a wide range of test resolutions on the ImageNet validation set. The base-
line results of three networks are shown in the left panel of Table 1. We report
corresponding results using our SAN in the right panel of Table 1, where the
results in the jth row is evaluated with the scale encoding ε(Sj) and BN lay-
ers BN(Sj) without the calibration of statistics. Therefore, the shaded numeric
value (in the jth row, s.t. S(T) = Sj) points out the inference result using the
proxy inference method for the test resolution T in each column, as stated in
Section 3.3. It is evident that our dynamically parameterized models achieve
consistent accuracy improvement over the individually trained baselines. Such

SAN: Scale Adaptive Network for Scalable Input Images 11

performance enhancement emerges not only on the training resolutions but also
on the interpolated and extrapolated ones of the training range, demonstrating
the universal applicability of our meta learner. Furthermore, it should be no-
ticed that the generated classifier for one specific resolution also generalizes well
on other resolutions (indicated by those numeric values without being shaded
in each row) compared to the individually trained model, even obtaining over
10% compensation for those baseline models in several cases with severe scale
deviation (around the corner of the table).

The recognition accuracy curves of our SAN with MobileNetV2 and cor-
responding baseline models are depicted in Fig. 1. It showcases a clear trend
that the curves of SAN models envelop those of their baseline counterparts. Our
SAN also guarantees much milder performance drop when input samples pose a
resolution discrepancy between optimization and inference.

4.2 Ablation Studies

We conduct comprehensive ablation experiments to analyze the influence of dif-
ferent configurations and provide empirical validation for our design.

BN Calibration for Ideal Inference. The encoding scalars used for train-
ing are bound to their privatized BN layers. If these scalars are altered according
to input resolutions at test time following the ideal inference method, evaluation
performance might suffer from incompatibility, as demonstrated in the left panel
of Table 2. For compensation, we apply the post-hoc calibration for BN statis-
tics. Specifically, we recalculate the running mean and variance of BN layers over
training samples of the test resolution with exact averages rather than moving
averages. The evaluation performance after BN calibration is reported in the
middle panel of Table 2, showing amelioration for those before calibration. To
deserve to be mentioned, when the training resolution approaches the test one,
the performance gap would be relatively minor, crediting to the smoothness of
the linear meta modeling space and the BN parameter space. Anyway, the above
dissection reiterates the critical value of Batch Normalization.

Proxy Inference. We empirically justify that using θproxy for inference
is a credible alternative for model evaluation. For test resolutions included in
the training resolution range, i.e., 224, 192, 160, 128 and 96, S(T) = T , thus
θproxy = θideal and the inference process will be identical for the two proposed
methods. Thus, we lay analytic emphasis on the test resolutions sandwiched
between two training resolutions, i.e., 208, 176, 144 and 112, and report their
performance in the right panel of Table 2. Since the scale encoding reverts to
the ones during training in the proxy inference method, calibration is not needed
here. We notice that using proxy inference for each test resolution (as shaded
in the right panel of Table 2) leads to nearly the same results as those with
the ideal inference method (as shaded in the middle panel of Table 2). These
comparisons provide empirical support for our claim in Section 3.3.

Scale Distillation. For the purpose of ablating the influence of our pro-
posed Scale Distillation, we further train a MobileNetV2-based SAN without
this technique. Accuracy records of the original SAN are presented in Table 1

12 D. Li, A. Yao and Q. Chen

Table 3. Accuracy of MobileNetV2-based SAN (w/o SD) (left) and MobileNetV2-
based SAN (w/o SD) with shared Batch Normalization layers (right). Please refer to
Table 1 (middle-right) for accuracy of intact MobileNetV2-based SAN.
Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 73.14 72.53 71.50 70.94 69.26 67.91 64.50 61.84 55.18 48.60 24.94
192 72.85 72.58 71.45 71.56 69.93 69.36 66.32 64.15 58.23 52.52 28.62
160 71.30 71.78 70.66 71.54 69.92 70.00 67.35 66.09 60.85 56.20 32.94
128 67.42 69.11 67.64 69.95 68.37 69.65 67.43 67.19 62.64 59.54 38.26
96 56.25 60.34 58.50 63.81 61.86 66.25 63.87 66.23 62.25 61.86 44.05

Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 2.82 2.95 2.88 3.02 2.93 3.04 2.90 2.77 2.59 2.29 1.13
192 27.27 29.07 29.03 29.91 29.30 29.24 28.09 25.70 23.24 18.64 8.45
160 66.41 66.89 66.46 66.52 65.62 65.02 63.08 60.61 56.812 50.66 29.64
128 49.17 50.86 50.26 51.43 50.10 50.70 47.92 46.73 41.52 37.71 19.82
96 0.76 0.90 0.85 1.03 0.94 1.23 1.13 1.28 1.07 1.38 1.07

Table 4. Accuracy of parallel ResNet-18 models with privatized convolution for each
resolution and scale distillation across resolutions. Please refer to Table 1 (top-left and
top-right) for results of the baseline and SAN.

Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 72.06 71.10 69.54 68.87 66.23 64.54 60.47 56.89 50.11 42.60 20.32
192 72.53 71.94 70.41 70.79 68.28 67.93 64.17 61.97 55 33 49.39 25.96
160 70.93 71.37 70.34 71.21 69.55 69.82 66.94 65.62 60.57 55.92 33.51
128 67.57 69.11 68.56 69.89 68.78 69.89 67.81 67.87 63.84 61.46 41.96
96 56.80 60.81 60.75 64.31 63.53 66.67 65.22 67.32 64.35 64.53 50.62

(middle-right) and the accuracy of SAN (w/o SD) is provided in Table 3 for
comparison. We observe that the accuracy drop increases in the test scenarios
with smaller input scales, which empirically validates the importance of trans-
ferring knowledge from high resolutions to lower ones by introducing the extra
supervision signal. As a side benefit, the performance of models over interpo-
lated resolutions is ameliorated to a large extent after the application of Scale
Distillation, which may be attributed to the improved interaction of multi-scale
information among the same image instances with different resolutions.

Privatized BN. Sharing similar philosophy with [30] and [34], we privatize
BN layers by design to eliminate incompatibility between various scaled dis-
tributions. For the purpose of ablation, we take the above MobileNetV2-based
SAN (w/o SD) as an exemplar and substitute shared BN layers for privatized
ones. The consequent accuracy is provided in Table 3, where the benefit of BN
is skewed to resolutions in the middle of the training resolution range while the
performance in each case still deteriorates compared to its counterpart with pri-
vatized BNs. We observe that the training process is stable but the validation
accuracy is extremely low because during training the mean and variance of the
current mini-batch with a specific resolution are applied while the validation
process depends on the moving average statistics from all resolutions. The ex-
perimental results further prove the point that a unified BN is insufficient to
strike a balance among a broad range of resolutions concurrently.

Parameterized Convolution. A quick question is that why not simply use
privatized convolutional layers for each main network rather than employing an
auxiliary meta learner? We take the ResNet18 model as an example and show
the accuracy with privatized convolutional layers in Table 4 (scale distillation
is still applicable in this context). In comparison, the performance are mostly
superior to baseline but inferior to our proposed SAN. The meta learning algo-
rithm is adept at integrating prior experience from multiple existing tasks and
achieving fast adaption to unseen tasks. In accordance to this rationale, the com-
parison results also speak to the advantage of utilizing meta networks to collect
multi-scale information and dynamically parameterize the convolutional layers
for arbitrary image resolutions at runtime.

SAN: Scale Adaptive Network for Scalable Input Images 13

Table 5. Absolute accuracy drop of ResNet-18-based SAN with non-linear meta learn-
ers using 8/16 (left/right) hidden units in the FC layer. Please refer to Table 1 (top-
right) for results of the original SAN equipped with linear meta learners. Note that
negative numbers indicate accuracy increment.

Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 -0.22 -0.33 0.11 0.12 0.15 0.01 0.26 0.19 0.29 0.76 1.50
192 -0.21 -0.07 0.19 0.25 0.27 0.20 0.36 0.56 0.92 1.30 2.27
160 -0.08 -0.03 0.18 0.02 0.19 0.14 0.27 0.29 0.62 0.88 2.16
128 0.22 0.19 0.16 -0.02 0.43 0.09 0.22 -0.00 0.25 0.46 1.24
96 0.93 0.80 1.00 0.54 0.76 0.36 0.66 0.26 0.09 0.11 -0.07

Train \ Test 256 224 208 192 176 160 144 128 112 96 64

224 -0.48 -0.31 -0.24 0.01 -0.17 -0.11 0.21 0.67 0.55 1.35 2.20
192 -0.39 -0.13 -0.03 0.09 -0.13 0.08 0.34 1.03 1.04 1.80 2.74
160 -0.33 -0.18 -0.05 -0.11 -0.23 0.00 0.02 0.42 0.57 1.25 2.27
128 0.11 0.11 -0.11 -0.06 -0.12 0.08 -0.26 0.03 0.03 0.42 1.32
96 1.26 1.04 0.87 0.74 0.27 0.38 0.02 0.23 -0.28 0.12 0.05

Architecture of Meta Learner. We explore different MLP structures of
the meta network design. Besides the single FC layer adopted in our main ex-
periments, we draw into the non-linear activation to construct a two-layer MLP,
where consecutive linear FC layers are interleaved with a non-linear ReLU acti-
vation operation and the number of hidden units is set to 8 or 16 in order to avoid
introducing heavy computational overheads. The ResNet-18 model is selected for
this experiment in view of its relatively low memory consumption. The absolute
accuracy drop after substituting the non-linear meta leaner with 8 hidden units
for the default linear one is summarized in Table 5 (left). We could find that
the final performance of these two designs is in close proximity to each other on
the medium resolutions, which implies that though conceptually simple, a linear
modeling space of meta networks is sufficient for giving rise to desired scale-
adaptive characteristics and satisfactory performance. Nevertheless, the decline
is not negligible on quite large and small resolutions, which might be attributed
to over-fitting problems caused by expansion of the non-linear modeling space.
It is probably difficult for the SAN (w/ non-linearity) to generalize well to these
situations with large scale deviation. We also explore larger hidden-unit space
via doubling its unit number and observe that the tendency of overfitting to
marginal resolutions becomes more obvious, as shown in Table 5 (right).

Generalization to Large Resolutions. We shift the range of training
resolutions to a larger magnitude, using ResNet-18 as the test case. As shown
in Table 6, the accuracy improvement of SAN presents a similar trend within a
range of large resolutions S = {384, 320, 256, 224, 192} compared to the smaller
ones discussed in Section 4.1. The results empirically show the effectiveness and
robustness of our method in handling images with different ranges of resolutions.

Comparison to FixRes. FixRes [30] is merely akin to us in the motivation
of alleviating scale deviation, but it focuses on further pushing the performance
upper boundary of large-scale models with resolution adaption. In stark contrast,
we pay attention to enabling efficient and flexible inference conditioned on the
input image resolution for evaluation at runtime. A performance comparison
is applicable for these two methods using the ResNet-50 model trained on the
image resolution of 224 × 224, as summarized in Table 7. We are able to beat
FixRes when test resolutions are relatively small, which is especially beneficial for
resource-limited environments. Furthermore, due to the limitation of available
computational resources now, our training resolution range could be at most set
to {224, 192, 160, 128, 96}. If we could enlarge this range, e.g., including training
images with larger resolutions such as 384, 448 and 480, our SAN may achieve
better performance on these large scales.

14 D. Li, A. Yao and Q. Chen

Table 6. Comparison of ResNet-18 baseline models (top) and ResNet-18-based SAN
with a range of larger training resolutions (bottom). The shaded numeric values have
the same meaning as Table 1.

Train \ Test 384 320 256 224 208 192 176 160 144 128 112 96 64

384 73.20 71.23 67.33 63.83 60.65 58.62 54.71 50.58 45.09 38.86 32.05 23.96 8.89
320 73.42 72.56 70.03 67.44 64.92 63.23 59.47 56.07 51.17 45.89 38.64 30.27 11.74
256 72.75 72.68 71.71 70.24 68.00 67.27 64.05 62.12 57.20 53.27 45.45 38.00 17.00
224 71.87 72.36 71.90 70.97 69.14 68.72 66.20 64.68 60.36 56.85 50.17 42.55 20.40
192 69.95 71.07 71.71 71.25 69.64 69.75 67.69 67.04 63.23 60.47 54.21 47.73 25.10

Train \ Test 384 320 256 224 208 192 176 160 144 128 112 96 64

384 74.69 74.12 72.14 70.28 68.65 67.06 64.77 61.97 58.25 53.41 47.33 39.51 18.66
320 74.61 74.50 73.28 71.72 70.39 69.07 67.10 64.64 62.28 56.94 51.22 43.63 21.85
256 73.41 74.05 73.71 72.87 71.85 70.86 69.43 67.53 64.42 60.86 55.56 48.26 25.80
224 72.27 73.39 73.59 73.00 72.29 71.52 70.16 68.52 65.64 62.32 57.36 50.54 28.13
192 70.44 72.15 73.11 72.73 72.21 71.74 70.72 69.36 66.74 63.80 59.20 52.72 30.52

Table 7. Comparison of FixRes and our SAN using ResNet-50 with training image
size of 224 × 224 on ImageNet. The results of FixRes are extracted from the original
publication. The better result for each test resolution is highlighted in bold.

Method \ Test resolution 64 128 224 288 384 448 480

FixRes [30] 41.7 67.7 77.1 78.6 79.0 78.4 78.1
SAN (ours) 44.9 72.5 78.4 78.6 77.0 75.3 74.3

More Ablation and Analysis. We provide a great many additional re-
sults in the supplementary materials, including analysis of complementary in-
formation across resolutions, the superiority of switching input resolutions over
network widths, border and round-off effects, results of inference on more dense
sampled resolutions, visualization of privatized BN layers, a data-free form of
ideal inference, comparison to stronger baselines, and so on.

5 Conclusion

In this paper, we have proposed a Scale Adaptive Network (SAN) framework.
For each main network encompassed into the meta learning algorithm, convo-
lutional kernels are dynamically generated by meta networks and BN layers
are specially treated. The meta learner could parameterize neural networks for
visual classification conditioned on the input resolution at runtime, achieving
considerably better performance compared with individually trained models.
It is compatible with any CNN backbone architectures, providing an adaptive
resolution-accuracy trade-off for fast adaption to environments with different
real-time demands. The generality of the proposed framework makes it promis-
ing to be translated well to other application domains, such as object detection
and semantic segmentation, which is expected to appear in the future work.

Acknowledgement

We sincerely thank Ming Lu and Aojun Zhou from Intel Labs China for their in-
sightful discussions, warm encouragement and valuable feedback. We would like
to thank SenseTime Group Limited for their support of computational resource.

SAN: Scale Adaptive Network for Scalable Input Images 15

References

1. Andrychowicz, M., Denil, M., Gómez, S., Hoffman, M.W., Pfau, D., Schaul, T.,
Shillingford, B., de Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: NIPS (2016)

2. Bagherinezhad, H., Horton, M., Rastegari, M., Farhadi, A.: Label Refinery:
Improving ImageNet Classification through Label Progression. arXiv e-prints
arXiv:1805.02641 (May 2018)

3. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In:
ICML (2009)

4. Bertinetto, L., Henriques, J.a.F., Valmadre, J., Torr, P., Vedaldi, A.: Learning
feed-forward one-shot learners. In: NIPS (2016)

5. Brock, A., Lim, T., Ritchie, J., Weston, N.: SMASH: One-shot model architecture
search through hypernetworks. In: ICLR (2018)

6. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: ECCV (2018)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: CVPR (2009)

8. Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., Anandkumar, A.: Born again
neural networks. In: ICML (2018)

9. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. In: ICLR (2017)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

11. Hinton, G., Vinyals, O., Dean, J.: Distilling the Knowledge in a Neural Network.
arXiv e-prints arXiv:1503.02531 (Mar 2015)

12. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., Le, Q.V., Adam, H.: Searching for mobilenetv3. In:
ICCV (2019)

13. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. arXiv e-prints arXiv:1704.04861 (Apr 2017)

14. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

15. Jin, X., Peng, B., Wu, Y., Liu, Y., Liu, J., Liang, D., Yan, J., Hu, X.: Knowledge
distillation via route constrained optimization. In: ICCV (2019)

16. Li, D., Zhou, A., Yao, A.: Hbonet: Harmonious bottleneck on two orthogonal di-
mensions. In: ICCV (2019)

17. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object
detection. In: ICCV (2019)

18. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR (2017)

19. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014)

20. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: ECCV (2018)

21. Mudrakarta, P.K., Sandler, M., Zhmoginov, A., Howard, A.: K for the price of 1:
Parameter efficient multi-task and transfer learning. In: ICLR (2019)

22. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: CVPR
(2019)

16 D. Li, A. Yao and Q. Chen

23. Peng, B., Jin, X., Liu, J., Zhou, S., Wu, Y., Liu, Y., Li, D., Zhang, Z.: Correlation
congruence for knowledge distillation. In: ICCV (2019)

24. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR
(2017)

25. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual
adapters. In: NIPS (2017)

26. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. In: ICLR (2015)

27. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: CVPR (2018)

28. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning
for human pose estimation. In: CVPR (2019)

29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR (2016)

30. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution
discrepancy. In: NeurIPS (2019)

31. Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A.L., Le, Q.V.: Adversarial examples
improve image recognition. In: CVPR (2020)

32. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning. In: CVPR (2017)

33. Yu, J., Huang, T.S.: Universally slimmable networks and improved training tech-
niques. In: ICCV (2019)

34. Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. In: ICLR
(2019)

35. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving
the performance of convolutional neural networks via attention transfer. In: ICLR
(2017)

36. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: CVPR (2018)

37. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR
(2018)

38. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
CVPR (2017)

39. Zhou, P., Ni, B., Geng, C., Hu, J., Xu, Y.: Scale-transferrable object detection. In:
CVPR (2018)

