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Abstract. Recent increase in the availability of warped images pro-
jected onto a curved manifold, especially omnidirectional spherical ones,
coupled with the success of higher-order assignment methods, has sparked
an interest in the search for improved higher-order matching algorithms
on warped images due to projection. Although, currently, several exist-
ing methods “flatten” such 3D images to use planar graph / hypergraph
matching methods, they still suffer from severe distortions and other
undesired artifacts, which result in inaccurate matching. Alternatively,
current planar methods cannot be trivially extended to effectively match
points on images warped on curved manifold. Hence, matching on these
warped images persists as a formidable challenge. In this paper, we pose
the assignment problem as finding a bijective map between two graph in-
duced simplicial complexes, which are higher-order analogues of graphs.
We propose a constrained quadratic assignment problem (QAP) that
matches each p-skeleton of the simplicial complexes, iterating from the
highest to the lowest dimension. The accuracy and robustness of our
approach are illustrated on both synthetic and real-world spherical /
warped (projected) images with known ground-truth correspondences.
We significantly outperform existing state-of-the-art spherical matching
methods on a diverse set of datasets.

1 Introduction

There exists a longstanding line of research on finding bijective correspondences
(i.e., assignments / matchings1) between two sets of visual features. Notable ap-
plications include stereo matching [14], structure from motion (SfM) [34], and
image registration [31], to name a few. Traditionally, when matching points be-
tween multiple images of a fixed environment from various viewpoints, most
approaches recover matchings and relative camera geometry (e.g. fundamental
matrix) using a robust technique such as RANSAC [16]. On the other hand,
when matching between different instances of the same category, graph match-
ing methods [38] using unary and pairwise constraints have been successfully
utilized. More recently, graph matching has been subsumed by hypergraph match-
ing using higher-order constraints [12,19]. An important appeal of higher-order
matching methods is their ability to coherently match compact local geometric

1 assignment and matching are used interchangeably in this paper.
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features from the source space to similar compact regions in the target space, de-
spite the presence of noise, outliers, and incomplete data, thus achieving accurate
matches that are also local structure-preserving in nature.

The recent proliferation of spherical images (e.g., omnidirectional and panoramic
images captured from cameras mounted on drones and autonomous vehicles) and
more generally, images warped onto curved manifolds, has sparked a heightened
interest in assignment algorithms on such datasets due to the challenges they
present in terms of curvature, both uniform and non-uniform [32,18,36,35]. Al-
though assignment problems have been well studied for decades in computer
vision, a majority of the work has only focused on matching points between
planar (flat) images. Therefore, matching points on images with warping trans-
formations which fall into the category of projective parametric models remains
a challenging task, mainly due to the introduction of undesirable artifacts like
severe distortions in pairwise distances between landmark points, non-linear dis-
tortions in local geometries, noise, illumination, blur, and occlusions [3,8], when
flattening.

When dealing with matchings on curved geometries, primarily two types
of methods are employed. Some putative matchings are computed to estimate a
fundamental matrix [16,10] that captures the epipolar geometry of the 3D image.
Stereo rectification [5] uses this fundamental matrix to re-project the two images
on the same flat plane with row images aligned in parallel, followed by a re-
matching to improve matching accuracy. Alternatively, geometric alignment on
the fundamental matrix is used to verify and distinguish inliers from outliers,
so that outliers can be pruned post matching to further boost accuracy [34].
Elements warped on the curved manifold cannot be metrically sampled in such
methods and hence severe distortions are introduced [7], which is also consistent
with the findings in our empirical studies.

Applications An interesting and noteworthy application of higher-order match-
ing on spherical images arises in the area of biomedical imaging, especially in reti-
nal imaging using optical coherence tomography (OCT). To investigate a wider
field of view, 3D fundus images of the eye are captured, matched, and “stitched”
together to form an OCT montage [22,25]. This matching operation must addi-
tionally preserve regions of interest such as the optic cup / disc, fovea, macula,
vessels, and microaneurysms, to name a few [29]. In addition to the standard
noise, occlusion, and artifacts in these OCT fundus images, the data also suf-
fers from data shifts due to axial eye motions and unpredictability between eye
positions and instrument alignment across various scans [22]. Therefore, OCT
datasets cannot easily be matched using rigid 3D transformations. Such images
are not limited to merely spherical ones, but also arise in more general warped
images due to projection. For instance, 3D sonograms depict the cervix as a
conic frustum (truncated cone) [1] and clustered nanofluid microflow patterns
in elastic micro-tubes are tracked via matching between cylindrical images in a
time-lapse [33].

Our method In this paper, we focus on exploiting the intrinsic higher-order
geometric relationships between landmark points on images warped onto curved
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manifolds. We capture these higher-order connections by constructing a combi-
natorial topological structure (simplicial complex) which is induced by a graph,
whose vertices are the landmark points embedded on the warped image and
whose edges are geodesic curves between selected vertex pairs. Next, we pose
the assignment problem as a multi-dimensional quadratic assignment problem
(QAP) between two graph-induced simplicial complexes.
Our contributions (i) To the best of our knowledge, we are the first to propose
matching landmark points on warped images projected onto curved manifolds.
(ii) In an attempt to break away from other works which solely focus on flat
or spherical images, we propose a novel graph induced simplicial complex that
efficiently captures higher order structures in a succinct manner, considering
the inherent properties of the underlying curved manifold on which the land-
mark points are embedded. (iii) We uniquely formulate the assignment prob-
lem as a multi-dimensional combinatorial matching between two graph induced
simplicial complexes, propose a novel algorithm to solve it, and analyze the
time-complexity of our algorithm. (iv) Finally, to illustrate the robustness of
our proposed method, we perform extensive experiments by comparing to pla-
nar matching methods, both existing and extended by us as naive baselines for
matching on manifolds. We compare our method against existing graph match-
ing and spherical matching (both boosted using rectification and verification
techniques) [21,27,37,38,39,30,12] on warped images and interestingly observe
that not only does our method significantly outperform these matching methods
on warped images onto curved manifolds (with up to 49.7% matching error re-
duction), but it also outperforms existing planar matching algorithms on “flat”
planar images too (with up to 42.2% matching error reduction), due to the ability
to naturally capture higher-order relationships by the simplicial complex.

2 Preliminaries

In this section, we introduce our notation and provide the necessary background
for our higher-order assignment algorithm on curved manifolds. We begin by
introducing certain standard definitions followed by our problem definition.

Let M denote a curved manifold, i.e., with zero genus and no boundaries.
On a plane, the shortest distance between any two points is a straight line, i.e.,
a curve whose derivative to its tangent vectors is zero. We extend this notion
of a “straight line” to curved manifolds by defining the shortest path (on M)
between its endpoints u and v placed on M, as a geodesic curve γ(u, v).

Simplicial complex We begin by providing some general definitions before we
can formally define a simplicial complex. More background can be found in [24].

Given a set V = {v0, . . . , vn} of (n+1) affinely independent points in Rn+1, a
n-dimensional simplex (also called n-simplex) σ(n) with vertices V is the convex
hull of V , i.e., more formally

σ(n) =

{
(k0, k1, . . . , kn) ∈ Rn+1 |

n∑
i=0

ki = 1, ki ≥ 0 ∀i

}
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The dimension of n-simplex σ(n) is denoted by dim(σ(n)). For example, a point
/ vertex (0-simplex), an edge (1-simplex), and a triangle (2-simplex) are rep-
resented as σ(0), σ(1), and σ(2), respectively. For 0 ≤ i ≤ n, the i-th facet fi
of the n-simplex σ(n) is the (n − 1)-simplex σ(n−1), whose vertices are those
underlying σ(n), except the i-th vertex. For example, a 2-simplex (triangle) has
three 1-simplices (edges) as facets. The boundary ∂σ(n) of the n-simplex σ(n)

is
⋃n
i=0 fi. Finally, a simplicial complex K is a set of simplices that satisfy the

following conditions: (i). Any face of a simplex in K is a simplex in K and (ii).
Intersection of distinct simplices σi and σj in K, is a common face of both σi
and σj

2. The p-skeleton K(p) ⊂ K is formed by the set of k-simplices σ(k), where
k ≤ p. Additionally, we denote by Kk the set of k-simplices in K. The dimen-
sion dim(K) of a simplicial complex K is the maximum of the dimensions of its
constituent simplices.

Problem definition Our problem consists of first constructing geometric
simplicial complexes between landmark points given on curved manifolds, fol-
lowed by finding an optimal (i.e., least cost) assignment between a pair of such
geometric simplicial complexes by matching simplices of the same dimension, one
dimension at a time. More formally, Let P and P ′ denote two sets of landmark
points on curved manifolds M and M′, respectively. We construct geometric
simplicial complexes K and K′ whose set of vertices (0-simplices) are P and P ′.
The edges/arcs (1-simplices) in K and K′ are given by geodesics between select
few pairs of vertices, from their corresponding vertex sets.

Given two simplicial complexes K and K′, we assume without loss of gener-
ality, that the number of simplices of each corresponding dimension are equal
in both complexes. Then, our goal is to find a set of h bijective matching func-
tions {mk}hk=0 : K −→ K′ that match the set of k-simplices in K (i.e., Kk) to
k-simplices in K′ (i.e., K′k), for dimensions k = 0 . . . h, to minimize the overall
objective function

argmin
m0,...,mh

h∑
k=0

|Kk|∑
i=1

c(σ
(k)
i ,mk(σ

(k)
i )) (1)

where c(·, ·) is the geometric matching cost between a k-simplex σ(k) in K to a k-
simplexm(σ(k)) inK′ and simplicial complex dimension h = min(dim(K), dim(K′)).
Unlike formulations proposed in graph matching methods [38], where only node
and pairwise geometric relations are considered, our combinatorial optimiza-
tion formulation takes into consideration higher-order geometric constraints,
which better excludes ambiguous matchings. In subsequent sections, we show
how we construct such geometric simplicial complexes from the landmark points
on curved manifolds (Section 3), followed by a detailed explanation of our as-
signment algorithm (Section 4).

2 For ease of notation, we drop the dimension superscript and index subscript for a
simplex when it is understood from context.
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3 Building a Simplicial Complex on a Curved Manifold

In this section, inspired by the work of Dey et. al. [11], we similarly construct
a graph-induced simplicial complex, which is built upon a graph connecting the
landmark points. We begin by describing the process of constructing the under-
lying graph.

Graph construction Let (P, g) denote the set of landmark points P with
a metric g that denotes the geodesic distance between a pair of points on M.
Additionally, let the k-neighborhood Nk(u) denote the set of k nearest neighbors
of landmark point u ∈ P (inclusive of u) on manifoldM according to the geodesic
metric g.

Considering all ordered pairs (u, v), where u, v ∈ P , an undirected edge/arc
is introduced between points u and v, when their corresponding k-neighborhoods
Nk(u) and Nk(v) have a non-empty intersection, i.e., Nk(u) ∩ Nk(v) 6= ∅. All
such edges are collected into a set denoted by E. This completes the construction
of our underlying graph G = (P,E). Observe that the vertex set (landmarks) P
form the 0-skeleton K(0)(G) and the sets E and P together form the 1-skeleton
K(1)(G), of our graph-induced simplicial complex that we will denote by K(G).

Recall that a n-clique in a graph is a complete subgraph between n vertices,
i.e., it consists of n vertices and

(
n
2

)
edges.

Graph-induced complex K(G) is defined as the simplicial complex where
a n-simplex σ(n) = {p1, p2, . . . , pn+1} is in K(G), if and only if there exists
a (n + 1)-clique {p1, p2, . . . , pn+1} ⊆ P in the underlying graph G = (P,E).
In words, the cliques of the underlying graph G = (P,E) form the simplices in
K(G) because cliques satisfy both conditions of being a simplicial complex (which
can be trivially verified). In order to be used in our assignment algorithm, we
must represent the graph-induced simplicial complex K(G) as a set of boundary
matrices, which we present next.
Matrix representation of K(G): Given K(G) and its p-skeleton K(p)(G) that
contains cliques upto size p+1, we represent it as a boundary matrix Mp ∈ Zn×m
defined as

Mp =


σ
(p)
1 ... σ(p)

m

τ
(p−1)
1 a11 . . . a1m

...
...

. . .
...

τ(p−1)
n an1 . . . anm


where aij = 1 if and only if the i-th (p− 1)-simplex τ

(p−1)
i is a facet of the j-th

p-simplex σ
(p)
j , otherwise aij = 0. Then, the boundary of a j-th p-simplex is

given by ∂pσ
(p)
j =

∑n
i=1 aijτ

(p−1)
i .

Observe that the p-th boundary matrix Mp captures all possible relationships
between p-simplices and their (p− 1)-simplex boundaries (or facets). Boundary
matrix Mp is made for each p-skeleton and therefore K(G) is expressed as a set
of boundary matrices {Mp}hp=1, where h = dim(K(G)).

Remark 1. Our underlying graph G already contains as a subgraph a simple
k-nearest neighbor graph which is constructed by introducing edges between a
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Algorithm 1 Matching graph induced simplicial complexes

Input: K(G) = {Mp}hp=1 and K(G′) = {M ′p}hp=1

1: for p = h . . . 1 do
2: Build cost matrix L(p) for Mp and M ′p (*account for L(p−1))

3: X∗p := Solve QAP (Mp,M
′
p,L(p))

4: L(p−1) := Build cost matrix of (p− 1)-faces
5: from successful p-simplex matches.
6: end for

Return: {X∗1 , . . . , X∗h} # set of permutation matrices

vertex in question and its k nearest neighbors. Therefore, our underlying graph
G has more edges and thus has a higher likelihood to form higher-order relations
between vertices. On the other hand, while the Delaunay triangulation is simple
to compute and is a good vehicle for extracting topology of sampled spaces, its
size becomes prohibitively large for reasonable computations and thus adversely
affects the QAP matching algorithm.

In summary, our underlying graph G which is inspired by the Vietoris-
Rips complex construction provides a good proximity structure, which is neither
too sparse (like simple k-NN graphs) or too dense (like Delaunay triangulated
graphs) and encodes useful higher-order information about local relations of
points in P .

4 Assignment Algorithm

Recall our problem definition (Section 2) of trying to find a set of assignments /
matching functions between two graph-induced simplicial complexes K(G) and
K(G′). Here, we outline the details of our assignment algorithm.

Given a boundary matrix Mp ∈ Zn×m that represents a p-skeleton K(p)(G),
we first capture the geodesic neighborhood geometry of simplices in Mp. We
begin by defining an adjacency operator ∼ between two simplices followed by a
definition of a neighborhood of a simplex. This neighborhood of a simplex is then
elegantly captured by affine weight vectors, which are later used in the matching
algorithm.

Definition 1 (adjacency relation). Given two simplices σ(d) and σ′(d
′), each

of arbitrary dimension d and d′, we consider them to be adjacent to one another
if and only if they share a common simplex. We denote this adjacency relation
by σ(d) ∼ σ′(d

′). The dimension of the common simplex can take values from 0
to min(d, d′).

For example, two 2-simplices / triangles σ(2) and σ′(2) could either be connected
at a common 0-simplex / vertex or share a common 1-simplex / edge; both cases
would result in the simplices being adjacent, i.e., σ(2) ∼ σ′(2).
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Simplex neighborhood The boundary matrix Mp’s columns encode p-

simplices σ
(p)
1 , . . . , σ

(p)
m and its rows encode (p − 1)-simplices τ

(p−1)
1 , . . . , τ

(p−1)
n .

The computation of the neighborhood N(·) for p-simplices and (p− 1)-simplices
differ slightly. The neighborhood of a p-simplex consists of p-simplices (same
dimension) and (p− 1)-simplices (one dimension lower) that are adjacent to it.
While, the neighborhood of a (p− 1)-simplex consists of (p− 1)-simplices (same
dimension) and p-simplices (one dimension higher) that are adjacent to it. More

formally, the neighborhood of the i-th p-simplex σ
(p)
i is N(σ

(p)
i ) = {σ(p)

j | σ(p)
j ∼

σ
(p)
i }∪{τ

(p−1)
j | τ (p−1)j ∼ σ(p)

i } and the neighborhood of the i-th (p− 1)-simplex

τ
(p−1)
i is N(τ

(p−1)
i ){τ (p−1)j | τ (p−1)j ∼ τ

(p−1)
i } ∪ {σ(p)

j | σ(p)
j ∼ τ

(p−1)
i } Such

neighborhoods are computed for all the p- and (p − 1)-simplices in Mp, where
i 6= j.

Affine weight vectors For a p-simplex σ(p), let B(σ(p)) denote the set
of all the barycenters {b1, . . . , b|N(σ(p))|} of the simplices in the neighborhood

N(σ(p)). Then, σ(p) is represented as an affine combination of the barycenters

in B(σ(p)), i.e.,
∑|B(σ(p))|
i=1 αibi, where

∑|B(σ(p))|
i=1 αi = 1 (i.e., weights αi’s must

sum to 1). Therefore, σ(p) is expressed as an affine weight vector α(σ(p)) of
dimension (n+m), with |B(σ(p))| positions corresponding to N(σ(p)) filled with
non-empty affine weights and the rest set to zero. Such an affine weight vector is
computed for every simplex of dimension p and (p− 1) contained in Mp. Among
all possible affine representations of a simplex, we chose to use least squares to
guarantee minimal error under L2-norm, and furthermore it assigns non-zero
weights to each of its adjacent simplex barycenters, thereby better capturing the
local geometric properties in its neighborhood.

Remark 2. The affine weight vectors act as locally affine invariant descriptors
that can handle complex and natural transformations of the underlying mani-
fold M. Additionally, it allows for much fewer variables and can be much more
easily linearized in the subsequent QAP formulation. Furthermore, the inclusion
of barycenters from neighborhoods of each simplex act as higher-order geomet-
ric constraints that easily excludes ambiguous matchings. In comparison, simple
matching models that rely on just a distance matrix with pairwise geodesic dis-
tances on the manifold are not invariant to local and global affine transformations
and completely disregard higher-order relationships.

Cost matrix construction Next, we describe the construction of a cost
matrix that is needed to compute assignments between Mp ∈ Zn×m and M ′p ∈
Zn
′×m′ . We begin by constructing two cost matrices C(p−1) ∈ Rn×n′ and C(p) ∈

Rm×m
′

to measure the Euclidean distance between the affine weight vectors of
(p − 1)-simplices and the Euclidean distance between the affine weight vectors
of p-simplices, respectively.

More specifically, c
(p−1)
ii′ = ‖α(τ

(p−1)
i )−α(τ

(p−1)
i′ )‖2, measures the Euclidean

distance between the affine weight vectors of the i-th (p− 1)-simplex of Mp and

the i′-th (p− 1)-simplex of M ′p, while c
(p)
kk′ = ‖α(σ

(p)
k )− α(σ

(p)
k′ )‖2, measures the
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Fig. 1. Pair of spheres with simplicial complexes constructed between the landmark
points on the spheres along with assignments between cliques.

.

Euclidean distance between the affine weight vectors of the k-th p-simplex of Mp

and the k′-th p-simplex of M ′p.
Similar to the affinity matrix construction in [38], we combine both the cost

matrices in a single geodesic-cost matrix L(p) = (lii′,jj′) ∈ Rnn
′×mm′ as

l
(p)
ii′,jj′ =


c
(p−1)
ii′ i = j , i′ = j′

c
(p)
kk′ i 6= j , i′ 6= j′ , aikajka

′
i′k′a

′
j′k′ = 1

0 otherwise

The diagonal and off-diagonal entries of matrix L(p) capture the Euclidean dis-
tances between the affine weight vectors of (p − 1)-simplices and the Euclidean
distances between the affine weight vectors of p-simplices, respectively. Therefore,
our QAP can now be formulated as

argmin
X1,...,Xh

h∑
p=1

vec(Xp)
TL(p)vec(Xp)

subject to ∀p ≤ h,1TXp = 1, XT
p 1 = 1

(2)

where Xp is a permutation matrix and vec(Xp) is it’s vector representation.
Our solution to Equation 2 is concisely outlined in Algorithm 1. As we solve a
QAP from highest to lowest dimension p-skeleton, we track the (p−1)-simplices
whose matchings are induced by higher order simplex matches. On finding (p−1)-
simplices that have the lowest cost and cannot be improved by solving a lower
level QAP, we eliminate such simplices, causing the size of the matrix to shrink
in subsequent iterations, leading to substantial speedups. Also, we use a spectral
relaxation proposed by Lordeneu et. al. [20] to solve our QAP efficiently.

Example We illustrate with an example the bijective assignment produced by
our algorithm between cliques / simplices of a pair of graph-induced spherical
simplicial complexes, as shown in Figure 1. We consider two simplicial complexes
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Table 1. Matchings of 3, 2-cliques of simplicial complexes K and K′ shown in Figure 1.

k-Clique Matching between K & K′
3-Cliques (1, 2, 3), (1, 3, 4), (3, 4, 5), (2, 18, 19), (1, 2, 3), (1, 3, 4), (3, 4, 5), (2, 3, 19),

(5, 6, 7), (6, 8, 9), (12, 13, 14), (5, 6, 8), (6, 8, 9), (12, 13, 14),
(13, 14, 17), (14, 15, 16), (16, 19, 20). (13, 14, 17), (14, 15, 16), (16, 19, 20).

2-Cliques (1, 2), (1, 3), (2, 3), (1, 4), (3, 4), (1, 2), (1, 3), (2, 3), (1, 4), (3, 4),
(3, 5), (4, 5), (2, 19), (18, 19), (5, 6), (3, 5), (4, 5), (2, 19), (3, 19), (5, 6),
(5, 7), (6, 8), (6, 9), (8, 9), (12, 13), (5, 8), (6, 8), (6, 9), (8, 9), (12, 13),
(12, 14), (13, 14), (13, 17), (14, 17), (12, 14), (13, 14), (13, 17), (14, 17),
(14, 15), (14, 16), (15, 16), (16, 19), (14, 15), (14, 16), (15, 16), (16, 19),
(16, 20), (19, 20), (3, 8), (8, 18), (16, 20), (19, 20), (3, 8), (8, 13),
(9, 10), (9, 13), (17, 18). (9, 12), (9, 13), (17, 8).

K and K′ each embedded on S2, with 20 and 16 vertices, respectively. Matching
of corresponding 3-cliques and 2-cliques are mentioned in the Table 1. Matching
between vertices (1-cliques) is shown by marking them with the same label on
both spheres.

Time complexity analysis The major cost incurred by our algorithm arises
from matching cliques between two simplicial complexes. Therefore, we first
derive an upper bound on the number of cliques that need to be matched as
follows (proof in supplementary notes).

Lemma 1. Let K(G) represent the simplicial complex induced from graph G
with n and m number of vertices and edges, respectively. Let h denote the maxi-
mum order of cliques in G and δ be the maximum degree of a vertex in G. Then,
the total number of k-cliques in K(G) for k = (1, . . . , h), are at most

n+
2m

δ(δ + 1)

[
min

{
(δ + 1)h + 1,

(
e(δ + 1)

h

)h}
− δ − 2

]

Neglecting lower order terms, the number of cliques are of order O(n+m(δh−2−
δ)). We know that the spectral relaxation proposed by Lordeneu et. al. [20]
has a complexity of O(n3/2), where n is the number of points to match on
each side. Our higher order matching of cliques then has a time complexity
of O({n + m(δh−2 − δ)}3/2). In practice, for maximum order of cliques, h =
3 (triangles) and h = 4 (tetrahedrons), observe that the complexity drops to
O(n3/2) and O({n+mδ2}3/2), respectively, which is very efficient.

5 Experiments

For our experiments, we considered synthetic and real-world datasets that cover
both spherical and planar images. Spherical images can broadly be categorized
as: parabolic omnidirectional (360◦), fish-eye, and panoramic images. Note that
our matching algorithm does not require any calibration parameters of cameras.
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(a) (b) (c)

Fig. 2. Instances of matchings between (a) Chinese vase images for Tensor based
method, (b) flat version of Chinese vase images for Tensor based method, and (c)
Chinese vase images for our method. Green/red lines show correct/incorrect matches
respectively. Isolated points show no matches.

To evaluate our matching algorithm, we compared against three main cate-
gories. (i) Planar matching methods extended with geodesic metric on 3D man-
ifolds: Here, we extended the factorized graph matching (FGM) [38] algorithm
by feeding it a k-NN graph based on geodesic distances between points to serve
as our naive baseline method (called “FGM+geodesic”). The rest of the meth-
ods were feature-descriptor based. (ii) Planar matching methods on 2D projected
(unwrapped3) manifolds. (iii) Planar matching methods on 2D planar images:
Here, we proposed a flat version of our algorithm with Euclidean distance as the
underlying metric (called “OurPlanar”) to work on flat 2D images.

Furthermore, we also perform experiments using RANSAC [16] for geometric
verification and rectification. In our ablative studies, we analyze the robustness
of our algorithm under affine transformations (rotation, reflection, scaling, and
shear).

(a) (b)

Fig. 3. Instances of matchings between (a) Fundus images for Tensor based method,
(b) Fundus images for our method. Green/yellow lines show correct/incorrect matches
respectively. Isolated points show no matches.

3 unwrapped: planar projection of a spherical image with minimal distortion [9] [15].
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Baselines We group the state-of-the-art methods as: (i) Feature descrip-
tor based matching for spherical and planar images: BRISK [21], ORB [27],
SPHORB [37]. (ii) Graph based matching for planar images: based on employ-
ing an affinity matrix (FGM) [38,39] and eigenvalues (EigenAlign) [13]. (iii)
Higher-order based matching for planar images: using random clique complex
(RCC) [30] and higher-order matching (Tensor) [12]. (iv) Finally, a naive base-
line (FGM+geodesic) proposed by us that extends FGM by constructing a graph
based on geodesic distances. Our code4 is publicly available.

Table 2. Error (%) of pairwise matching between spherical images (omnidirectional,
fish-eye and panorama) of five datasets for different methods.

Algorithms Kamaishi Chessboard Desktop Parking Table

OurWarped 0.79±0.0% 3.89±0.0% 0.32±0.0% 0.0±0.0% 0.74±0.0%

FGM+geo 55.6±0.10% 79.2±1.21% 23.3±0.03% 37.5±0.0% 64.3±6.58%
SPHORB 90.0±0.0% 58.5±0.0% 91.1±0.0% 95.0±0.0% 78.5±0.0%
BRISK 85.6±0.0% 53.6±0.0% 78.9±0.0% 81.6±0.0% 69.2±0.0%
ORB 90.2±0.0% 53.8±0.0% 51.7±0.0% 71.1±0.0% 64.4±0.0%
Tensor 37.7±0.69% 60.5±0.41% 23.9±1.7% 23.7±7.5% 85.1±1.05%
FGM 53.3±0.21% 80.0±0.11% 31.9±0.12% 36.0±1.5% 65.5±0.01%

Our method vs. planar matching methods with geodesic metric on 3D
curved manifolds Here, we match pairwise images directly on the warped im-
ages on curved manifolds (as shown in Figures 2, 3, and 4(b)). The comparison
between standard higher-order graph matching (Tensor) [12] and our method
on manifold is shown in Figures 2 and 3 using Chinese vases5 and Fundus im-
ages [17], respectively. We observe from Figures 2(a) and 3(a) that the Tensor
based method does not perform well on warped images. Although, the match-
ing does improve when images are flattened to reduce the effect of curvature in
Figure 2(b). Our method outperforms the baseline and has a maximum number
of correct matches in Figures 2(c) and 3(b).

The error percentages of our warped image matching algorithm (OurWarped)
are shown in the first row of Table 2. We observe that our method outperforms
all other matching methods, including spherical feature descriptor based ones as
well. Additional multimodal warped-planar matching experiments can be found
in our supplementary notes.

For matches between spherical and planar images, we find two variants which
match between a spherical and a planar image (Figure 4(a)) and matching be-
tween different types of spherical images (Figure 4(b)). In Table 2, there is
a slight increase in error percentages when matching across different types of
spherical images, i.e., 3.89% for Chessboard, as compared to matching similar
types, i.e., 0.32% for Desktop, due to differences in distortion levels. In spite of

4 Our Method 5 from Google images

https://github.com/charusharma1991/PointCorrespondence
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this, we find that our method significantly outperforms naive baseline and other
matching methods on spherical images.

Table 3. Error (%) of pairwise matching between unwrapped equirectangular version
of spherical (omnidirectional and fish-eye) images of four datasets for different methods
including graph matching methods on flat surfaces.

Algorithms Chessboard Desktop Parking Table

OurWarped 3.64 ± 0.0 % 1.06 ± 0.0 % 0.0 ± 0.0 % 0.57 ± 0.0 %

RCC 28.6 ± 0.94 % 11.6 ± 0.74 % 13.2 ± 11.8 % 11.6 ± 0.57 %
EigenAlign 98.47 ± 0.0 % 95.24 ± 0.0 % 97.5 ± 0.0 % 97.9 ± 0.0 %
Tensor 68.9 ± 0.16 % 26.1 ± 0.58 % 19.0 ± 3.75 % 72.4 ± 0.67 %
FGM 84.0 ± 0.0 % 31.0 ± 0.0 % 38.0 ± 0.0 % 52.0 ± 0.0 %
SPHORB 58.6 ± 0.0 % 90.3 ± 0.0 % 97.5 ± 0.0 % 79.2 ± 0.0 %
BRISK 54.9 ± 0.0 % 84.9 ± 0.0 % 100.0 ± 0.0 % 74.2 ± 0.0 %
ORB 49.5 ± 0.0 % 78.2 ± 0.0 % 82.5 ± 0.0 % 70.3 ± 0.0 %

(a) (b)

Fig. 4. Instances of matchings between (a) Desktop omnidirectional and planar im-
ages and (b) Chessboard omnidirectional and fish-eye images. Green/red lines show
correct/incorrect matches, respectively. Isolated points show no matches.

Our method vs. planar matching methods on 2D-projected curved man-
ifolds Matching between spherical images can also be performed by applying
planar graph matching methods on unwrapped equirectangular versions of spher-
ical images. This makes the image flat and standard planar matching algorithms
can then be employed. However, any kind of projection (on a flat surface in this
case) introduces distortions in the resulting image. We flattened spherical images
for four datasets mentioned in Table 3. We used two different methods to flatten
omnidirectional and fish-eye images. The 360◦ image is unwrapped by dividing
it into four parts (quadrants) and concatenated into a single flat image. On the
other hand, fish-eye images do not cover the complete view of the scene and add
distortion to the image due to curved mirrors and lenses of the cameras. We try
to reduce the distortion by removing curves and flattening the image using cal-
ibration techniques outlined in [28]. Since any projection will lead to distortion,
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Fig. 5. Error(%) in matching when varying the percentage (20% to 60%) of transformed
images in the set of spherical images of Desktop (a)-(d). (a) 40◦ rotation, (b) reflection,
(c) scaling and (d) shear.

we can compare the results from Table 2 with Table 3. Both the experimental
outcomes are based on the same set of spherical images. Our matching algorithm
significantly outperforms its competitors on both the spherical images and on
curved manifolds.

Our method vs. planar matching methods on 2D planar images Our
proposed method can also be reduced to a higher-order planar graph match-
ing method. To show the importance of higher-order combinatorial matching
not only with geodesic neighborhood, but also with euclidean neighborhood, we
run our planar variant (OurPlanar) on popular 2D image datasets, competing
with standard matching algorithms. We pick four well-known difficult matching
datasets (Books, Building, Magazine, and Butterfly) that suffer from heavy oc-
clusions and non-affine transformations [30]. Results for such an experiment are
shown in Table 4. From the results, we observe that our method also serves as
a powerful planar matching method and is still competitive using an euclidean
neighborhood for our affine weight vectors. It significantly outperforms both the
popular planar matching methods.

Table 4. Error (%) of pairwise matching between planar images of four datasets for
different methods.

Algorithms Magazine Building Books Butterfly

OurPlanar 0.0 ± 0.0 % 1.03 ± 0.01 % 19.72 ± 0.20 % 0.0 ± 0.0 %
FGM 0.0 ± 0.0 % 74.87 ± 0.07 % 97.54 ± 0.01 % 16.12 ± 0.0 %
Tensor 0.0 ± 0.0 % 43.24 ± 2.98 % 32.35 ± 0.15 % 1.07 ± 0.17%

RANSAC: Geometric Verification and Rectification We also performed
fundamental matrix based geometric verification using RANSAC algorithm [16]
after descriptor based matching on two datasets for spherical and their planar
versions for SPHORB and ORB in Table 5. We observed that the results are
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improved (but still not better than our proposed method) in some cases but
prune a lot of matches. Nearly 40 − 50% of matches are considered as outliers
which makes it difficult to handle the noise. On the other hand, our method
performs much better in any case while considering outliers.

Table 5. Error (%) of pairwise matching between spherical images of Desktop and
Parking datasets and on their unwrapped versions for verification.

Algorithms Desktop Desktop flat Parking Parking flat

OurWarped 0.32 ± 0.0 % 1.06 ± 0.0 % 0.0 ± 0.0 % 0.0 ± 0.0 %
SPHORB+RANSAC 96.1 ± 0.0 % 93.9 ± 0.0 % 95.0 ± 0.0 % 100.0 ± 0.0 %
ORB+RANSAC 29.3 ± 0.0 % 70.6 ± 0.0 % 55.0 ± 0.0 % 100.0 ± 0.0 %

We performed rectification [5] on spherical images of Desktop dataset fol-
lowed by BRISK descriptor for matching. The results improved from 78.9% (in
Table 2) to 52.11% error. However, we observed that despite these improvements,
our method still outperforms them. Also, in most of the cases, the rectification
algorithm does not perform well and outputs noisy or distorted images. So, there
is no guarantee to find the best solution.

Ablative Studies (Effect of Affine Transformation) We remove com-
pletely at random 40 − 80% of landmark points on the Desktop dataset, and
introduce affine transformations on these points. Figure 5 shows the results of
affine transformation like rotation, reflection, scaling, and shear. We rotated im-
ages (clockwise) by 40◦ and performed matching for four algorithms. Then, we
generated mirror images along the x-axis from the same dataset to introduce
reflection. We also conducted transformation by scaling and shear of 360◦ im-
ages. We resized images in both the directions with scales 0.5 and 1.5 randomly.
For shearing, we stretched images with 0.5 factor along y-axis. For all types
of transformations, we observe that the results shown in Figure 5 clearly indi-
cates that our method is robust to all kinds of affine transformations and easily
outperforms other state-of-the-art methods.

6 Conclusion

We presented a bijective assignment between sets of landmark points embedded
on a pair of images warped onto curved manifolds by the following steps. First, we
built a graph induced simplicial complex on the warped images. Second, we pro-
posed a constrained QAP that matches corresponding co-dimensional simplices
between two simplicial complexes along with an efficient algorithm to solve the
constrained QAP. Finally, we conducted extensive experiments, broadly grouped
as comparative matching and ablative studies, in order to gain insight into the
accuracy and robustness of our method. We are currently exploring the possibil-
ity of integrating such high-dimensional combinatorial structures into Spherical
CNNs [6] to capture higher-order and latent structure.
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