
Distance-Normalized Unified Representation
for Monocular 3D Object Detection

Xuepeng Shi1, Zhixiang Chen1, and Tae-Kyun Kim1,2

1 Imperial College London
2 Korea Advanced Institute of Science and Technology
x.shi19, zhixiang.chen, tk.kim@imperial.ac.uk

Abstract. Monocular 3D object detection plays an important role in
autonomous driving and still remains challenging. To achieve fast and
accurate monocular 3D object detection, we introduce a single-stage
and multi-scale framework to learn a unified representation for objects
within different distance ranges, termed as UR3D. UR3D formulates dif-
ferent tasks of detection by exploiting the scale information, to reduce
model capacity requirement and achieve accurate monocular 3D object
detection. Besides, distance estimation is enhanced by a distance-guided
NMS, which automatically selects candidate boxes with better distance
estimates. In addition, an efficient fully convolutional cascaded point re-
gression method is proposed to infer accurate locations of the projected
2D corners and centers of 3D boxes, which can be used to recover object
physical size and orientation by a projection-consistency loss. Experi-
mental results on the challenging KITTI autonomous driving dataset
show that UR3D achieves accurate monocular 3D object detection with
a compact architecture.

Keywords: Monocular 3D Object Detection, Unified Representation
Across Different Distance Ranges, Distance-Guided NMS, Fully Convo-
lutional Cascaded Point Regression.

1 Introduction

Object detection is a fundamental and challenging problem in computer vi-
sion [25]. In the past years, with the emergence of deep learning [18, 11] and the
availability of large-scale annotated datasets [6, 24], the state of the art in 2D
object detection has improved significantly [10, 34, 27, 23, 4, 40]. Object detection
in the 2D image plane, however, is not sufficient for autonomous driving, which
often requires accurate 3D localization of targets in the scene. Currently, the
foremost methods [45, 36, 49, 17] on 3D object detection heavily rely on expen-
sive LiDAR sensors to provide accurate depth information as input. Monocular
3D object detection [3, 2, 31, 44, 19, 26, 16, 30] is a promising low-cost solution,
but it is much harder due to the ill-posed nature, i.e., lack of depth cues. The
performance gap between LiDAR-based approaches and monocular methods is
still substantial.

2 X. Shi et al.

One key challenge for monocular 3D object detection is in handling large
distance variations so that the detector can estimate 3D locations accurately.
Learning the distance-specific feature requires specific sophisticated designs [33,
42, 29, 1], while simply learning the feature covering all possible locations is diffi-
cult and costs much capacity of the model, resulting in a heavy and slow model
for good accuracy. In this work, we solve the learning efficiency problem by
introducing a single-stage and multi-scale framework that learns a unified rep-
resentation of objects in different scales and distance ranges, termed as UR3D.
The deep model is relieved from learning different representations for objects
within different scale and distance ranges, which significantly reduces the cost of
network capacity. Besides, the unified object representation reduces the number
of learnable parameters and thus prevents overfitting. Consequently, we achieve
accurate monocular 3D object detection with a lightweight network.

An important step for monocular 3D object detection is Non-Maximum Sup-
pression (NMS), which is usually based on the confidence from the classification
branch [33, 1]. This may cause omissions of candidate boxes with high-quality
3D information prediction, because the higher classification confidence doesn’t
always interpret as the better 3D information prediction. To solve the mismatch,
we propose a distance-guided NMS, which automatically selects candidate boxes
with better distance estimations. With the distance-guided NMS, UR3D achieves
better distance estimation and 3D detection accuracy.

Another challenge for monocular 3D object detection is recovering object
physical sizes. Such physical parameters are abstract 3D quantities not directly
linked to how objects appear in images [14]. It is thus hard to directly predict the
physical sizes of 3D bounding boxes by CNNs. Besides, estimating orientations
of 3D boxes is shown imprecise by direct regression [14, 31, 1]. To tackle this
problem, we propose a fully convolutional cascaded point regression to estimate
the projected 2D center points and corner points of 3D boxes accurately and
efficiently. Then the predicted keypoints are used to post-optimize the physical
sizes and orientations by minimizing a projection-consistency loss [14], which
improves the estimates. The contributions of the proposed UR3D are summarised
below:

1. UR3D is a single stage and multi-scale framework that can learn a unified
representation of objects within different distance ranges for monocular 3D
object detection, which leads to a compact and robust network.

2. A distance-guided NMS is proposed, which selects the candidate boxes with
better distance estimations.

3. A fully convolutional cascaded point regression is proposed to estimate the
projected 2D center points and corner points precisely and efficiently. The
predicted keypoints are used to post-optimize the estimated physical sizes
and orientations by minimizing a projection-consistency loss.

4. Experimental results on the KITTI [9] autonomous driving dataset show
that our method achieves accurate monocular 3D object detection with a
compact architecture.

Distance-Normalized Unified Representation for Monocular 3D Detection 3

2 Related Work

2.1 2D Object Detection

Scale-Aware Designs. Large scale variation is one of the key challenges for 2D
object detection. Image pyramid [41, 20, 48, 37, 39] is a classical solution, but not
efficient enough. Faster RCNN [34] utilizes multi-scale anchor boxes to achieve
multi-scale object detection. SSD [27] further uses multi-scale features to approx-
imate the image pyramid. Recent works [22, 23, 40, 21] not only adopt multi-scale
features, but also share the convolutional weights of detection heads on different
layers to get better object representation. However, learning the unified object
representation across different scales and distance ranges for monocular 3D ob-
ject detection is not a trivial problem. The reason is that the quantities for 3D
boxes are much more complicated, especially the distance is highly nonlinear.
Our UR3D learns robust and compact distance-normalized unified object repre-
sentation via proposed designs.

Score Mismatch in NMS. [13, 12] find that probabilities for class labels natu-
rally reflect classification confidence instead of localization confidence, thus they
predict the score or uncertainty of bounding box regression, which can be used to
guide the NMS procedure to preserve accurately localized bounding boxes. We
reveal the severe score mismatch problem in the NMS of monocular 3D object
detection and propose distance-guided NMS to tackle it.

2.2 Monocular 3D Object Detection

Distance-Aware Designs. Handling large distance variations in monocular 3D
object detection is challenging, which requires distance-specific representation.
MonoDIS [38] uses a two-stage architecture for monocular 3D object detection,
in which the 2D module first detects objects then all the detected objects are
fed into a 3D detection head to predict 3D parameters. MonoDIS further dis-
entangles dependencies of different parameters by introducing a loss enabling
to handle groups of parameters separately. MonoGRNet [33] is a multi-stage
method consisting of four specialized modules for different tasks: 2D detection,
instance depth estimation, 3D location estimation and local corner regression.
MonoGRNet first predicts objects’ 3D locations progressively and then estimates
the corner coordinates locally.

MonoPSR [16] uses a network to jointly compute 3D bounding boxes from
2D ones and estimate instance point clouds to help recover shape and scale in-
formation. Pseudo-Lidar [42] and AM3D [29] convert the estimated depth image
into 3D point clouds to utilize the geometry information, then LiDAR-based 3D
object detection methods are employed.

To help the spatial feature learning, OFTNet [35] proposes an orthographic
feature transform to map image-level feature into a 3D voxel map, which is
then reduced to 2D bird’s eye view representation. M3D-RPN [1] is a single-
stage framework that exploits 3D anchor boxes to utilize 3D location priors and

4 X. Shi et al.

proposes depth-aware convolution to generate distance-specific feature, which
eases the difficulty of learning the distance-information in the full possible range.

To learn the spatial location information, previous works utilize careful multi-
stage designs [38, 33], point cloud feature [16, 42, 29], or feature transforma-
tion [35, 1]. Prior methods directly learn object representation covering all pos-
sible distance locations, without considering the feature reuse between different
distance ranges. UR3D solves the learning efficiency problem by learning a uni-
fied representation for objects within different distance ranges.

3D Box Fitting via Projection-Consistency. Deep3DBox [31] and M3D-
RPN [1] fit better 3D boxes by constraining the consistency between the pro-
jected 2D boxes from camera coordinate to image coordinate and the network-
predicted 2D boxes. SS3D [14] improves the accuracy of 3D box estimation in
the similar way. SS3D further optimizes the 3D location, physical size and ori-
entation together. As a comparison, our UR3D solves the projection-consistency
loss of corner points and center points as a post-optimization, but only optimizes
physical size and orientation prediction.

2.3 Cascaded Point Regression

Cascaded point regression is a classical mechanism for keypoint regression [5,
47, 28]. [47, 28] predict facial keypoints by a multi-stage cascaded structure, i.e.,
a global stage to predict coarse shapes and local stages using shape-indexed
feature as input to predict fine shapes. Previous works mainly focus on cascaded
point regression with a single object input, which are inefficient when predicting
keypoints for thousands of candidates simultaneously. In contrast, our proposed
fully convolutional cascaded point regression makes dense prediction efficient.

3 Proposed UR3D

We first detail the overall framework, then present the three key components,
i.e., distance-normalized unified representation, followed by the distance-guided
NMS, and finally the fully convolutional cascaded point regression and projection-
consistency based post-optimization. We term our method as UR3D and the
main architecture is illustrated in Fig. 1.

3.1 Basic Framework

We address the problem of monocular 3D object detection, which predicts the
3D bounding boxes of targets in camera coordinate from a RGB image. As
commonly assumed [9], we only consider yaw angles, and set roll and pitch angles
as zero. We also assume that per-image calibration parameters are available both
at training and testing phase [9]. For a given RGB image x ∈ RH×W×3, UR3D
reports all objects of concerned categories, and the output for each object is the

1. class label cls and confidence score,

Distance-Normalized Unified Representation for Monocular 3D Detection 5

Heads

Heads

Heads

Heads

Heads

Share Weights

H×W ResNet-34 Unified Representation Detection Heads

2D

3D

Classification
H×W×C

Bounding Box
H×W×4

Distance
H×W×C

Keypoint
H×W×18C

Size & Yaw
H×W×5C

384×1280

48×160

24×80

12×40

6×20

3×10

Fig. 1. Framework of our UR3D. UR3D learns a compact and robust unified repre-
sentation for objects within different distance ranges, which relieves the model from
learning the complicated distance-specific representation covering all possible locations.

2. 2D bounding box represented by its top-left and bottom-right corners b =
(a1, b1, a2, b2),

3. 2D projected center point and eight corner points in image coordinate of 3D
box in camera coordinate, encoded as p = (x0, x1, .., x8, y0, y1, .., y8),

4. distance of center point of the 3D bounding box, in image coordinate, en-
coded as z0,

5. 3D bounding box parameters encoded as m = (w, h, l, sin(θ), cos(θ)), where
w, h, l are the physical dimensions, and θ is the allocentric pose of the 3D
box. UR3D predicts sin(θ) and cos(θ), then converts them to θ.

UR3D predicts the center point (x0, y0, z0) in image coordinate and converts it
to camera coordinate using the calibration parameters during the testing phase.

UR3D is a single-stage and multi-scale architecture (Fig. 1). During the train-
ing stage, we assign targets onto five different layers based on their scales. With
the rules, we make the scale range of objects assigned on a layer is larger than
that of objects assigned on the previous layer. Since the distance is related to
scale, objects within different distance ranges are also assigned to different layers.
Detailed assignment rules can be found in Section 3.5.

3.2 Distance-Normalized Unified Representation

At this part we detail the distance-normalized unified representation. As shown
in Fig. 1, there are five different detection heads on each detection layer, cor-
responding to five tasks, i.e., classification, bounding box regression, distance
estimation, keypoint regression and physical size and yaw angle prediction. To
learn a unified representation for objects assigned on different detection layers,
we first share the learnable weights of the detection heads on different layers,
then we normalize each task’s training targets on different layers to a same range
according to their relationships with scale, details as follows:

6 X. Shi et al.

Scale-Invariant Task. Object category, physical size and orientation are at-
tributes not related to the apparent scale, so the classification and physical size
and yaw angle prediction are scale-invariant tasks. Thus the learnable weights
of the classification head and size and yaw head on different layers can naturally
be shared to form a unified representation between different layers.

Scale-Linear Task. The numerical ranges of 2D bounding box and keypoint
are linearly dependent on the apparent scale, so the bounding box regression
and keypoint regression are two tasks linear to scale. We normalize the targets
of these two tasks by introducing learnable parameters αi and βi, and the loss
functions of an object are defined as:

Lbbox = loss(b̂i,bi) = loss(b̂i, αibi
′), (1)

Lpoint = loss(p̂i,pi) = loss(p̂i, βipi
′), (2)

where i = 0, 1, 2, 3, 4 denotes the index of the object-assigned detection layer,
b̂i and p̂i are groundtruths of bounding box regression and keypoint regression
respectively, bi

′ and pi
′ are network-predicted bounding box regression result

and keypoint regression result respectively, 0 < α0 < α1 < α2 < α3 < α4

and 0 < β0 < β1 < β2 < β3 < β4. During the training phase, the network
learns the best normalization parameters αi and βi automatically. During the
testing phase, we use bi = αibi

′ and pi = βipi
′ as outputs for the bounding box

regression and keypoint regression respectively.

Scale-Nonlinear Task. To investigate the relationship between distance val-
ues and apparent scales, we show some statistics of the car category in KITTI
training set [9] in Fig. 2(a). The left figure shows the relationship of distance vs.
height, the middle figure shows the curve of depth value of the center point vs.
height, and the right figure shows their difference vs. height. The depth images
are generated by a monocular depth estimation model [8] as in [42, 29]. Appar-
ently the relationships of distance vs. height and depth vs. height are highly
nonlinear but in the similar trends (left figure and middle figure), i.e., subtract-
ing the depth can reduce the degree of nonlinearity of distance (right figure).

To get accurate distance estimation, we first introduce learnable parameters
γi multiplied with the output of ith distance head to use a piece-wise linear curve
to fit the nonlinear distance curve. However, the capacity of our piece-wise linear
distance estimation model consisting of only five parts is limited, and we still
cannot fit the highly nonlinear distance precisely. We further subtract the depth
value of a low resolution depth image with the same size of the distance head
(Fig. 2(b)), to reduce the degree of nonlinearity of distance, which significantly
eases the distance learning. The distance loss of an object is defined as:

Ldist = loss(ẑ0i, z0i) = loss(ẑ0i, γiz0i
′ + depth), (3)

where i = 0, 1, 2, 3, 4 denotes the index of the object-assigned detection layer,
ẑ0i is the groundtruth distance, z0i

′ is the network-predicted distance result,

Distance-Normalized Unified Representation for Monocular 3D Detection 7

aaaa

(a) Statistics of car category in KITTI [9] training set. The curves of distance vs. height
and depth vs. height are highly nonlinear but in the similar trends. Distance and depth
are in image coordinate, height is in pixels. The curves are general conclusions not only
limited to KITTI [9], under the assumption of autonomous driving application.

Image Distance Head Add LR Depth Image Final Result

𝜸

Same Height & Width

(b) Illustration of the distance head. We first introduce the learnable parameter γ mul-
tiplied with the output to use a piece-wise linear curve to fit the nonlinear distance
curve, then we further add the depth value from a estimated depth image to reduce the
nonlinearity degree of distance. Such designs ease the distance learning significantly.

Fig. 2. Illustration of distance estimation method.

γ0 > γ1 > γ2 > γ3 > γ4 > 0, and depth is the depth value from the correspond-
ing position of the low resolution depth image. During the training phase, the
network can learn the best slope parameters γi automatically. During the testing
phase, we use z0i = γiz0i

′ + depth as output for distance estimation. For both
train and test, we run the depth estimation model [8] once and downsample the
depth map five times to feed into each distance head, and the maximum size of
depth maps we need is only one eighth of the size of depth maps required by
[42, 29].

3.3 Distance-Guided NMS

In this part, we detail the distance-guided NMS. Firstly, to get the score of dis-
tance estimation, we extend an uncertainty-aware regression loss [15] for distance
estimation, as follows:

Ldist(ẑ0, z0) = λdist
loss(ẑ0, z0)

σ2
+ λuncertainlog(σ2), (4)

where ẑ0 and z0 are the groundtruth and estimated distance respectively, loss(ẑ0, z0)
is a normal regression loss, λdist and λuncertain are positive parameters to bal-
ance the two parts. σ2 is a positive learnable parameter and 1

σ2 can be regarded
as the score of distance estimation.

8 X. Shi et al.

Fig. 3. Illustration for distance estimation error vs. different scores of candidate boxes.
Classification score × distance score can best push boxes with inaccurate estimates to
the left side. Statistics are based on a UR3D model trained with KITTI [9] car class.

Algorithm 1 Distance-Guided NMS.
B: N × 27 matrix of initial 2D/3D boxes,
S: corresponding classification scores,
C: classification scores normalized by distance estimation variances,
D: final detection set, Ωnms: NMS threshold,
top(k): function finding the top k largest elements,
Ave(z1, .., zK , w1, .., wK): function returning the average of z1, .., zK weighted by
w1, .., wK ,
K: number of boxes participating the average.
The lines in blue and in red are traditional NMS and Distance-Guided NMS
respectively.

Input: B = {o1, o2, .., oN},
S = {score1, score2, .., scoreN},
C = { score1

σ2
1
, score2

σ2
2
, .., scoreN

σ2
N
}, K, Ωnms,

Output: D ← {}
while B 6= empty do

m← arg maxS
D ← D

⋃
om

B ← B − om
m1,m2, ..,mK ← arg top(K)C
temp← om1

temp.z0 =
Ave(om1 .z0, .., omK .z0,

scorem1
σ2
m1

, ..,
scoremK
σ2
mK

)

D ← D
⋃
temp

B ← B − om1

T ← B
for oi ∈ B do

if IoU(om, oi) > Ωnms then
T ← T − oi

end if
end for
B ← T

end while
return D

Distance-Normalized Unified Representation for Monocular 3D Detection 9

In Fig. 3, we show the correlations between the distance estimation error
of predicted 3D bounding boxes and corresponding score, 1

σ2 , score
σ2 . As can be

seen, scoreσ2 best pushes candidates with inaccurate distance estimates to the left
side. Traditional NMS does not select the candidate boxes with better distance
estimates, we propose Distance-Guided NMS (Algorithm 1) to solve the problem.

3.4 Fully Convolutional Cascaded Point Regression

The proposed efficient fully convolutional cascaded point regression (Fig. 4) is
adapted from [4] and consists of two stages. In the first stage, we directly regress
the positions of center point and eight corner points, and the results of position
q are encoded as:

p0 = {p0, p1, . . . , p8} = {(x0, y0), (x1, y1), . . . , (x8, y8)},

In the second stage, we extract the shape-indexed feature guided by p0, and
predict the residual values of keypoints. The extraction of shape-indexed feature
can be formulated as an efficient convolutional layer as in [4], instead of tradi-
tional time-consuming multi-patch extraction [47, 28]. Let the nine positions of a
3× 3 convolutional kernels correspond to the nine keypoints. The convolutional
layer for the extraction consists of two steps: 1) sampling using p0 as the kernel
point positions over the input feature map fin; 2) summation of sampled values
weighted by kernel weights w to get the output feature map fout, i.e.,

fout(q) =

8∑
i=0

w(i) · fin(pi). (5)

The sampling is on the irregular locations. As the location pi is typically frac-
tional, Eq. (5) fin(pi) is obtained by bilinear interpolation. The detailed imple-
mentation is similar to [4]. Note during the training, the gradients will not be
backpropagated to pi through Eq. (5), because pi has its own supervised loss.
The keypoint losses for two stages are:

Lpoint0 = loss(p̂,p0), (6)

Lpoint1 = loss(p̂,p) = loss(p̂,p0 + p1), (7)

where p̂ is the groundtruth of keypoint regression, p0 and p1 are the outputs of
the first and second stage respectively, and p = p0 + p1 is the final output of
keypoint regression.

Fully convolutional cascaded point regression achieves accurate prediction of
thousands of candidates simultaneously. Then we use the estimated keypoints to
post-optimize the physical size and yaw angle prediction. Given a set of center
point (x0, y0, z0), physical size w, h, l, and yaw angle θ, we calculate the center
and corner points of corresponding 3D bounding box in camera coordinate with

10 X. Shi et al.

Keypoint Head Global Regression Local Residual Regression Final Result

offsets

Fig. 4. Illustration of fully convolutional cascaded point regression, which formulates
dense cascaded point regression as an efficient convolutional layer.

calibration parameters. Denote the calculation function as F(x0, y0, z0, w, h, l, θ).
We try to find a set of w′, h′, l′, θ′ to minimize the objective function:

arg min
w′,h′,l′,θ′

λpost ‖F(x0, y0, z0, w
′, h′, l′, θ′)− p‖22

+
[
(w′ − w)2 + (h′ − h)2 + (l′ − l)

]2
,

(8)

where x0, y0, z0, w, h, l, θ are the network-predicted results, w′, h′, l′, θ′ are the
post-optimized results. This is a standard nonlinear optimization problem, which
can be solved by an optimization toolbox.

3.5 Implementation Details

Object Assignment Rule. During the training stage, we assign a position q
on a detection layer fi (i = 0, 1, 2, 3, 4) to an object, if 1) q falls in the object, 2)
the maximum distance from q to the boundaries of the object is within a given
range ri, and 3) the distance from q to the center of the object is less than a
given value di. ri denotes the scale range of objects assigned on each detection
layer [40], and di defines the radius of positive samples on each detection layer.
ri is [0, 64], [64, 128], [128, 256], [256, 512], [512, 1024] for the five layers, and di is
12, 24, 48, 96, 192 respectively, all in pixels. Positions without assigning to any
object will be regarded as negative samples, except that the positions adjacent
with the positive samples are treated as ignored samples.

Network Architecture. The backbone of UR3D is ResNet-34 [11]. All the
head depth of the detection heads is two. Images are scaled to a fixed height of
384 pixels for both training and testing.

Loss. We use the focal loss [23] for classification task, IoU loss [46] for bounding
box regression, smooth L1 loss [10] for keypoint regression, and Wing loss [7] for
distance, size and orientation estimation. The loss weights are 1, 1, 0.003, 0.1, 0.05,
0.1, 0.001 for the classification, bounding box regression, keypoint regression, dis-
tance estimation, distance variance estimation, size and orientation estimation,
and post-optimization, respectively.

Distance-Normalized Unified Representation for Monocular 3D Detection 11

Optimization. We adopt the step strategy to adjust a learning rate. At first
the learning rate is fixed to 0.01 and reduced by 50 times every 3×104 iterations.
The total iteration number is 9× 104 with batch size 5. The only augmentation
we perform is random mirroring. We implement our framework using Python
and PyTorch [32]. All the experiments run on a server with 2.6GHz CPU and
GTX Titan X.

4 Experiments

We evaluate our method on KITTI [9] dataset with the car class under the
two 3D localization tasks: Bird’s Eye View (BEV) and 3D Object Detection.
The method is comprehensively tested on two validation splits [3, 43] and the
official test dataset. We further present analyses on the impacts of individual
components of the proposed UR3D. Finally we visualize qualitative examples of
UR3D on KITTI (Fig. 5).

4.1 KITTI

The KITTI [9] dataset provides multiple widely used benchmarks for computer
vision problems in autonomous driving. The Bird’s Eye View (BEV) and 3D
Object Detection tasks are used to evaluate 3D localization performance. These
two tasks are characterized by 7481 training and 7518 test images with 2D and
3D annotations for cars, pedestrians, cyclists, etc. Each object is assigned with
a difficulty level, i.e., easy, moderate or hard, based on its occlusion level and
truncation degree.

We conduct experiments on three common data splits including val1 [3],
val2 [43], and the official test split [9]. Each split contains images from non-
overlapping sequences such that no data from an evaluated frame, or its neigh-
bors, are used for training. We report the AP|R11 and AP|R40 on val1 and val2,
and AP|R40 on test subset. We use the car class, the most representative, and
the official IoU criteria for cars, i.e., 0.7.

Val Set Results. We evaluate UR3D on val1 and val2 as detailed in Tab. 1
and Tab. 2. Using the same monocular depth estimator [8] as in AM3D [29] and
Pseudo-LiDAR [42], UR3D can compete with them on the two splits. The time
cost of depth map generation of our UR3D can be much smaller than that of [29,
42], since the size of depth maps we need is only one eighth of the size of depth
maps required by them. We use depth priors to normalize the learning targets
of distance instead of converting to point clouds as in [29, 42], leading to a more
compact and efficient architecture.

Test Set Results. We evaluate the results on test set in Tab. 3. Compared with
FQNet [26], ROI-10D [30], GS3D [19], and MonoGRNet [33], UR3D outperforms

12 X. Shi et al.

Method Time(ms)
AP|R11 [val1 / val2] AP|R40 [val1 / val2]

Easy Mod Hard Easy Mod Hard

ROI-10D [30] 200 14.76 / − 9.55 / − 7.57 / − − / − − / − − / −
MonoPSR [16] 200 20.63 / 21.52 18.67 / 18.90 14.45 / 14.94 − / − − / − − / −
MonoGRNet [33] 60 24.97 / − 19.44 / − 16.30 / − 19.72 / − 12.81 / − 10.15 / −
M3D-RPN [1] 160 25.94 / 26.86 21.18 / 21.15 17.90 / 17.14 20.85 / 21.36 15.62 / 15.22 11.88 / 11.28
Pseudo-LiDAR [42] − 40.60 / − 26.30 / − 22.90 / − − / − − / − − / −
AM3D [29] 400 43.75 / − 28.39 / − 23.87 / − − / − − / − − / −

UR3D (Ours) 120 37.35 / 36.15 26.01 / 25.25 20.84 / 20.12 33.07 / 32.35 20.84 / 20.05 15.25 / 14.4

Table 1. Bird’s Eye View. Comparisons on the Bird’s Eye View task (APBEV) on
val1 [3] and val2 [43] of KITTI [9].

Method Time(ms)
AP|R11 [val1 / val2] AP|R40 [val1 / val2]

Easy Mod Hard Easy Mod Hard

ROI-10D [30] 200 10.25 / − 6.39 / − 6.18 / − − / − − / − − / −
MonoPSR [16] 200 12.75 / 13.94 11.48 / 12.24 8.59 / 10.77 − / − − / − − / −
MonoGRNet [33] 60 13.88 / − 10.19 / − 7.62 / − 11.90 / − 7.56 / − 5.76 / −
M3D-RPN [1] 160 20.27 / 20.40 17.06 / 16.48 15.21 / 13.34 14.53 / 14.57 11.07 / 10.07 8.65 / 7.51
Pseudo-LiDAR [42] − 28.20 / − 18.50 / − 16.40 / − − / − − / − − / −
AM3D [29] 400 32.23 / − 21.09 / − 17.26 / − − / − − / − − / −

UR3D (Ours) 120 28.05 / 26.30 18.76 / 16.75 16.55 / 13.60 23.24 / 22.15 13.35 / 11.10 10.15 / 9.15

Table 2. 3D Detection. Comparisons on the 3D Detection task (AP3D) on val1 [3]
and val2 [43] of KITTI [9].

Method Reference Time(ms)
AP|R40 [Easy / Mod / Hard]
AP3D APBEV

FQNet [26] CVPR 2019 500 2.77 / 1.51/ 1.01 5.40 / 3.23/ 2.46
ROI-10D [30] CVPR 2019 200 4.32 / 2.02/ 1.46 9.78 / 4.91/ 3.74
GS3D [19] CVPR 2019 2000 4.47 / 2.90 / 2.47 8.41 / 6.08/ 4.94
MonoGRNet [33] AAAI 2019 60 9.61 / 5.74/ 4.25 18.19 / 11.17/ 8.73
MonoDIS [38] ICCV 2019 - 10.37 / 7.94 / 6.40 17.23 / 13.19/ 11.12
M3D-RPN [1] ICCV 2019 160 14.76 / 9.71 / 7.42 21.02 / 13.67/ 10.23
AM3D [29] ICCV 2019 400 16.50 / 10.74 / 9.52 25.03 / 17.32/ 14.91

UR3D (Ours) 120 15.58 / 8.61/ 6.00 21.85 / 12.51/ 9.20

Table 3. Test Set Results. Comparisons of our UR3D to SOTA methods of monoc-
ular 3D object detection on the test set of KITTI [9].

them significantly in all indicators. Compared with MonoDIS [38], UR3D out-
performs it by a large margin in three indicators, i.e., AP3D of easy subset,
AP3D of moderate subset and APBEV of easy subset. Note MonoDIS [38] is a
two-stage method while ours is a more compact single-stage method. Compared
with another single-stage method, M3D-RPN [1], UR3D outperforms it on two
indicators, i.e., AP3D and APBEV of easy subset, with a more lightweight back-
bone. Compared with AM3D [29], UR3D runs with a much faster speed.

Distance-Normalized Unified Representation for Monocular 3D Detection 13

Setting Time(ms)
AP|R40 [Easy / Mod / Hard]
AP3D APBEV

Baseline 90 11.26 / 6.52 / 4.25 18.26 / 10.25 / 8.55
+ LR Depth Image 90 18.57 / 10.65 / 7.90 27.65 / 15.25 / 12.52
+ Distance Guided NMS (K = 1) 90 19.75 / 11.35 / 8.50 30.55 / 18.47 / 14.18
+ Distance Guided NMS (K = 2) 90 20.20 / 11.59 / 8.85 31.69 / 19.68 / 14.81
+ Post-Optimization 110 22.50 / 12.95 / 9.90 32.58 / 20.54 / 15.05

+ Cascaded Regression (UR3D) 120 23.24 / 13.35 / 10.15 33.07 / 20.84 / 15.25

Table 4. Ablations. We ablate the effects of key components of UR3D with respect
to accuracy and inference time.

Learned Parameters. We initialize αi and βi with 32, 64, 128, 256, 512, and
16, 8, 4, 2, 1 for γi. The learned results on val1 split are 5.7, 10.6, 20.7, 41.0, 82.3
for αi, 5.3, 10.4, 20.6, 41.4, 82.2 for βi, and 2.3, 1.4, 0.8, 0.3, 0.2 for γi.

4.2 Ablation Study

We conduct ablation experiments to examine how each proposed component
affects the final performance of UR3D. We evaluate the performance by first
setting a simple baseline which doesn’t adopt proposed components, then adding
the proposed designs one-by-one, as shown in Tab. 4. For all ablations we use the
KITTI val1 dataset split and evaluate based on the car class. From the results
listed in Tab. 4, some promising conclusions can be summed up as follows:

Distance-Normalized Unified Representation is crucial. The results of
“+ LR Depth Image” show that adding the low resolution depth image to help
normalize the distance improves the AP3D and APBEV of baseline a lot, which
indicates that reducing the nonlinear degree of distance estimation eases the
unified object representation learning dramatically.

Distance-Guided NMS is promising. The AP3D and APBEV of “+ Distance-
Guided NMS (K = 1)” are much better than the results of “+ LR Depth Image”.
It supports that our distance-guided NMS can select the candidate boxes with
better distance estimates automatically and effectively. Increasing the number
of candidates participating the average (from K = 1 to K = 2) also helps, sug-
gesting that the candidate with the best distance estimate may not be the top
one but among the top K due to the noise of distance score.

Fully Convolutional Cascaded Point Regression is effective. The results
of “+ Post-Optimization” illustrate that introducing the projection-consistency
based post-optimization improves AP3D and APBEV. The results of “+ Cascaded
Regression” show that adding the fully convolutional cascaded point regression

14 X. Shi et al.

further improves AP3D and APBEV. The fully convolutional cascaded point re-
gression only costs 10ms with a non-optimized Python implementation.

Fig. 5. Qualitative Examples. We visualize qualitative examples of UR3D. All il-
lustrated images are from the val1 [3] split and not used for training. Bird’s eye view
results (right) are also provided and the red lines indicate the yaw angles of cars.

5 Conclusions

In this work, we present a monocular 3D object detector, i.e., UR3D, which learns
a distance-normalized unified object representation, in contrast to prior works
which learns to represent objects in full possible range. UR3D is uniquely de-
signed to learn the shared representation across different distance ranges, which
is robust and compact. We further propose a distance-guided NMS to select can-
didate boxes with better distance estimates and a fully convolutional cascaded
point regression predicting accurate keypoints to post-optimize the 3D boxes pa-
rameters, both of which improve the accuracy. Collectively, our method achieves
accurate monocular 3D object detection with a compact architecture.

Acknowledgment The authors are partly funded by Huawei.

Distance-Normalized Unified Representation for Monocular 3D Detection 15

References

1. Brazil, G., Liu, X.: M3D-RPN: monocular 3d region proposal network for object
detection. In: ICCV. pp. 9287–9296 (2019)

2. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3d
object detection for autonomous driving. In: CVPR. pp. 2147–2156 (2016)

3. Chen, X., Kundu, K., Zhu, Y., Berneshawi, A.G., Ma, H., Fidler, S., Urtasun, R.:
3d object proposals for accurate object class detection. In: NeurIPS. pp. 424–432
(2015)

4. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convo-
lutional networks. In: ICCV. pp. 764–773 (2017)

5. Dollár, P., Welinder, P., Perona, P.: Cascaded pose regression. In: CVPR. pp.
1078–1085 (2010)

6. Everingham, M., Eslami, S.M.A., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisser-
man, A.: The pascal visual object classes challenge: A retrospective. International
Journal of Computer Vision 111(1), 98–136 (2015)

7. Feng, Z., Kittler, J., Awais, M., Huber, P., Wu, X.: Wing loss for robust facial
landmark localisation with convolutional neural networks. In: CVPR. pp. 2235–
2245 (2018)

8. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression
network for monocular depth estimation. In: CVPR. pp. 2002–2011 (2018)

9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI
vision benchmark suite. In: CVPR. pp. 3354–3361 (2012)

10. Girshick, R.B.: Fast R-CNN. In: ICCV. pp. 1440–1448 (2015)
11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR. pp. 770–778 (2016)
12. He, Y., Zhu, C., Wang, J., Savvides, M., Zhang, X.: Bounding box regression with

uncertainty for accurate object detection. In: CVPR. pp. 2888–2897 (2019)
13. Jiang, B., Luo, R., Mao, J., Xiao, T., Jiang, Y.: Acquisition of localization confi-

dence for accurate object detection. In: ECCV. pp. 816–832 (2018)
14. Jörgensen, E., Zach, C., Kahl, F.: Monocular 3d object detection and box fit-

ting trained end-to-end using intersection-over-union loss. CoRR abs/1906.08070
(2019)

15. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: CVPR. pp. 7482–7491 (2018)

16. Ku, J., Pon, A.D., Waslander, S.L.: Monocular 3d object detection leveraging ac-
curate proposals and shape reconstruction. In: CVPR. pp. 11867–11876 (2019)

17. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:
Fast encoders for object detection from point clouds. In: CVPR. pp. 12697–12705
(2019)

18. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–444
(2015)

19. Li, B., Ouyang, W., Sheng, L., Zeng, X., Wang, X.: GS3D: an efficient 3d object
detection framework for autonomous driving. In: CVPR. pp. 1019–1028 (2019)

20. Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G.: A convolutional neural network
cascade for face detection. In: CVPR. pp. 5325–5334 (2015)

21. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object
detection. In: CVPR. pp. 6054–6063 (2019)

22. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature
pyramid networks for object detection. In: CVPR. pp. 936–944 (2017)

16 X. Shi et al.

23. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV. pp. 2999–3007 (2017)

24. Lin, T., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: common objects in context. In: ECCV. pp. 740–
755 (2014)

25. Liu, L., Ouyang, W., Wang, X., Fieguth, P.W., Chen, J., Liu, X., Pietikäinen,
M.: Deep learning for generic object detection: A survey. International Journal of
Computer Vision 128(2), 261–318 (2020)

26. Liu, L., Lu, J., Xu, C., Tian, Q., Zhou, J.: Deep fitting degree scoring network for
monocular 3d object detection. In: CVPR. pp. 1057–1066 (2019)

27. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.:
SSD: single shot multibox detector. In: ECCV. pp. 21–37 (2016)

28. Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep regression architecture
with two-stage re-initialization for high performance facial landmark detection. In:
CVPR. pp. 3691–3700 (2017)

29. Ma, X., Wang, Z., Li, H., Ouyang, W., Zhang, P.: Accurate monocular 3d object
detection via color-embedded 3d reconstruction for autonomous driving. In: ICCV.
pp. 6851–6860 (2019)

30. Manhardt, F., Kehl, W., Gaidon, A.: ROI-10D: monocular lifting of 2d detection
to 6d pose and metric shape. In: CVPR. pp. 2069–2078 (2019)

31. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3d bounding box estimation
using deep learning and geometry. In: CVPR. pp. 5632–5640 (2017)

32. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS.
pp. 8024–8035 (2019)

33. Qin, Z., Wang, J., Lu, Y.: Monogrnet: A geometric reasoning network for monoc-
ular 3d object localization. In: AAAI. pp. 8851–8858 (2019)

34. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NeurIPS. pp. 91–99 (2015)

35. Roddick, T., Kendall, A., Cipolla, R.: Orthographic feature transform for monoc-
ular 3d object detection. In: British Machine Vision Conference (2019)

36. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection
from point cloud. In: CVPR. pp. 770–779 (2019)

37. Shi, X., Shan, S., Kan, M., Wu, S., Chen, X.: Real-time rotation-invariant face
detection with progressive calibration networks. In: CVPR. pp. 2295–2303 (2018)

38. Simonelli, A., Bulò, S.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Dis-
entangling monocular 3d object detection. In: ICCV. pp. 1991–1999 (2019)

39. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection SNIP.
In: CVPR. pp. 3578–3587 (2018)

40. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object
detection. In: CVPR. pp. 9627–9636 (2019)

41. Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of
Computer Vision 57(2), 137–154 (2004)

42. Wang, Y., Chao, W., Garg, D., Hariharan, B., Campbell, M.E., Weinberger, K.Q.:
Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection
for autonomous driving. In: CVPR. pp. 8445–8453 (2019)

43. Xiang, Y., Choi, W., Lin, Y., Savarese, S.: Subcategory-aware convolutional neural
networks for object proposals and detection. In: WACV. pp. 924–933 (2017)

Distance-Normalized Unified Representation for Monocular 3D Detection 17

44. Xu, B., Chen, Z.: Multi-level fusion based 3d object detection from monocular
images. In: CVPR. pp. 2345–2353 (2018)

45. Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3d object detection from point
clouds. In: CVPR. pp. 7652–7660 (2018)

46. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.S.: Unitbox: An advanced object
detection network. In: ACM MM. pp. 516–520. ACM (2016)

47. Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks
(CFAN) for real-time face alignment. In: ECCV. pp. 1–16 (2014)

48. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using
multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10),
1499–1503 (2016)

49. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: CVPR. pp. 4490–4499 (2018)

