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Abstract. The recent advancement of deep learning techniques has
made great progress on hyperspectral image super-resolution (HSI-SR).
Yet the development of unsupervised deep networks remains challenging
for this task. To this end, we propose a novel coupled unmixing network
with a cross-attention mechanism, CUCaNet for short, to enhance the
spatial resolution of HSI by means of higher-spatial-resolution multispec-
tral image (MSI). Inspired by coupled spectral unmixing, a two-stream
convolutional autoencoder framework is taken as backbone to jointly de-
compose MS and HS data into a spectrally meaningful basis and corre-
sponding coefficients. CUCaNet is capable of adaptively learning spectral
and spatial response functions from HS-MS correspondences by enforc-
ing reasonable consistency assumptions on the networks. Moreover, a
cross-attention module is devised to yield more effective spatial-spectral
information transfer in networks. Extensive experiments are conducted
on three widely-used HS-MS datasets in comparison with state-of-the-
art HSI-SR models, demonstrating the superiority of the CUCaNet in
the HSI-SR application. Furthermore, the codes and datasets are made
available at: https://github.com/danfenghong/ECCV2020_CUCaNet.

Keywords: Coupled unmixing, cross-attention, deep learning, hyper-
spectral super-resolution, multispectral, unsupervised

1 Introduction

Recent advances in hyperspectral (HS) imaging technology have enabled the
availability of enormous HS images (HSIs) with a densely sampled spectrum
[26]. Benefited from the abundant spectral information contained in those hun-
dreds of bands measurement, HSI features great promise in delivering faithful
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representation of real-world materials and objects. Thus the pursuit of effective
and efficient processing of HS data has long been recognized as a prominent topic
in the field of computer vision [9,11].

Though physically, the insufficient spatial resolution of HS instruments, com-
bined with an inherently intimate mixing effect, severely hampers the abilities
of HSI in various real applications [2,35]. Fortunately, the multispectral (MS)
imaging systems (e.g., RGB cameras, spaceborne MS sensors) are capable of
providing complementary products, which preserve much finer spatial informa-
tion at the cost of reduced spectral resolution [13]. Accordingly, the research on
enhancing the spatial resolution (henceforth, resolution refers to the spatial reso-
lution) of an observable low-resolution HSI (LrHSI) by merging a high-resolution
MSI (HrMSI) under the same scene, which is referred to hyperspectral image
super-resolution (HSI-SR), has been gaining considerable attention [15,16].

The last decade has witnessed a dominant development of optimization-based
methods, from either deterministic or stochastic perspectives, to tackle the HSI-
SR issue [37]. To mitigate the severe ill-posedness of such an inverse problem,
the majority of prevailing methods put their focus on exploiting various hand-
crafted priors to characterize spatial and spectral information underlying the
desired solution. Moreover, the dependency on the knowledge of relevant sen-
sor characteristics, such as spectral response function (SRF) and point spread
function (PSF), inevitably compromises their transparency and practicability.

More recently, a growing interest has been paid to leverage the tool of deep
learning (DL) by exploiting its merit on low-level vision applications. Among
them, the best result is achieved by investigators who resort to performing HSI-
SR progressively in a supervised fashion [34]. However, the demand for sufficient
training image pairs acquired with different sensors inevitably makes their prac-
ticability limited. On the other hand, though being rarely studied, the existing
unsupervised works rely on either complicated multi-stage alternating optimiza-
tion [25], or an external camera spectral response (CSR) dataset in the context of
RGB image guidance [10], the latter of which also losses generality in confronting
other kinds of data with higher spectral resolution than RGB one.

To address the aforementioned challenges, we propose a novel coupled un-
mixing network with cross-attention (CUCaNet) for unsupervised HSI-SR. The
contributions of this paper are briefly summarized as follows:

1. We propose a novel unsupervised HSI-SR model, called CUCaNet, which is
built on a coupled convolutional autoencoder network. CUCaNet models the
physically mixing properties in HS imaging into the networks to transfer the
spatial information of MSI to HSI and preserve the high spectral resolution
itself simultaneously in a coupled fashion.

2. We devise an effective cross-attention module to extract and transfer signifi-
cant spectral (or spatial) information from HSI (or MSI) to another branch,
yielding more sufficient spatial-spectral information blending.

3. Beyond previous coupled HSI-SR models, the proposed CUCaNet is capable
of adaptively learning PSFs and SRFs across MS-HS sensors with a high
ability to generalize. To find the local optimum of the network more effec-



Coupled Unmixing Nets with Cross-Attention 3

tively, we shrink the solution space by designing a closed-loop consistency
regularization in networks, acting on both spatial and spectral domains.

2 Related Work

Pioneer researches have emerged naturally by adapting the similar but exten-
sively studied pansharpening techniques to HSI-SR [28,22], which usually fail
to well capture the global continuity in the spectral profiles and thus brings
unignorable performance degradation, leaving much room to be desired.

2.1 Conventional Methods

Apace with the advances in statistically modeling and machine learning, recent
optimization-based methods has lifted the HSI-SR ratio evidently. According to
a subspace assumption, Bayesian approach was first introduced by Eismann et
al. utilizing a stochastic mixing model [8], and developed through subsequent
researches by exploiting more inherent characteristics [27,33]. Another class of
methods that have been actively investigated stems from the idea of spectral
unmixing [14], which takes the intimate mixing effect into consideration. Yokoya
et al. brought up coupled non-negative matrix factorization (CNMF) [38] to
estimate the spectral signature of the underlying materials and corresponding
coefficients alternately. On basis of CNMF, Kawakami et al. [4] employed sparse
regularization and an effective projected gradient solver was devised by Lanaras
et al. [20]. Besides, [2,7] adopted dictionary learning and sparse coding techniques
in this context. Various kinds of tensor factorization strategies are also studied,
such as Tucker decomposition adopted by Dian et al. [5] and Li et al. [21] to
model non-local and coupled structure information, respectively.

2.2 DL-Based Methods

To avoid tedious hand-crafted priors modeling in conventional methods, DL-
based methods have attracted increasing interest these years. In the class of
supervised methods, Dian et al. [6] employed CNN with prior training to finely
tune the result acquired by solving a conventional optimization problem, while
Xie et al. [34] introduced a deep unfolding network based on a novel HSI degra-
dation model. Unsupervised methods are more rarely studied. Qu et al. [25]
developed an unsupervised HSI-SR net with Dirichlet distribution-induced layer
embedded, which results in a multi-stage alternating optimization. Under the
guidance of RGB image and an external CSR database, Fu et al. [10] designed
an unified CNN framework with a particular CSR optimization layer. Albeit
demonstrated to be comparatively effective, these methods require either large
training data for supervision or the knowledge of PSFs or SRFs, which are both
unrealistic in real HSI-SR scenario. Very recently, Zheng et al. [40] proposed a
coupled CNN by adaptively learning the two functions of PSFs and SRFs for
unsupervised HSI-SR. However, due to the lack of effective regularizations or
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Fig. 1. An illustration of the proposed end-to-end CUCaNet inspired by spectral un-
mixing techniques, which mainly consists of two important modules: cross-attention
and spatial-spectral consistency.

constraints, the two to-be-estimated functions inevitably introduce more free-
doms, limiting the performance to be further improved.

3 Coupled Unmixing Nets with Cross-Attention

In this section, we present the proposed coupled unmixing networks with a cross-
attention module implanted, which is called CUCaNet for short. For mathemat-
ical brevity, we resort to a 2D representation of the 3D image cube, that is, the
spectrum of each pixel is stacked row-by-row.

3.1 Method Overview

CUCaNet builds on a two-stream convolutional autoencoder backbone, which
aims at decomposing MS and HS data into a spectrally meaningful basis and
corresponding coefficients jointly. Inspired by CNMF, the fused HrHSI is ob-
tained by feeding the decoder of the HSI branch with the encoded maps of the
MSI branch. Two additional convolution layers are incorporated to simulate the
spatial and spectral downsampling processes across MS-HS sensors. To guaran-
tee that CUCaNet can converge to a faithful product through an unsupervised
training, reasonable consistency, and necessary unmixing constraints, are inte-
grated smoothly without imposing evident redundancy. Moreover, we introduced
the cross-attention attention mechanism into the HSI-SR for the first time.

3.2 Problem Formulation

Given the LrHSI X ∈ Rhw×L, and the HrMSI Y ∈ RHW×l, the goal of HSI-SR
is to recover the latent HrHSI Z ∈ RHW×L, where (h,w, s) are the reduced
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Fig. 2. Detail unfolding for two modules in networks: spatial-spectral consistency (left)
and cross-attention (right).

height, width, and number of spectral bands, respectively, and (H,W,S) are
corresponding upsampled version. Based on the linear mixing model that well
explains the phenomenon of mixed pixels involved in Z, we then have the follow-
ing NMF-based representation,

Z = SA, (1)

where A ∈ RK×L and S ∈ RHW×K are a collection of spectral signatures of
pure materials (or say, endmembers) and their fractional coefficients (or say,
abundances), respectively.

On the other hand, the degradation processes in the spatial (X) and the
spectral (Y) observations can be modeled as

X ≈ CZ = CSA = S̃A, (2)

Y ≈ ZR = SAR = SÃ, (3)

where C ∈ Rhw×HW and R ∈ RL×l represent the PSF and SRF from the HrHSI
to the HrMSI and the LrHSI, respectively. Since C and R are non-negative and
normalized, S̃ and Ã can be regarded as spatially downsampled abundances
and spectrally downsampled endmembers, respectively. Therefore, an intuitive
solution is to unmix X and Y based on Eq. (2) and Eq. (3) alternately, which
is coupled with the prior knowledge of C and R. Such a principle has been
exploited in various optimization formulations, obtaining state-of-the-art fusion
performance by linear approximation with converged S and A.

Constraints. Still, the issued HSI-SR problem involves the inversions from
X and Y to S and A, which are highly ill-posed. To narrow the solution space,
several physically meaningful constraints are commonly adopted, they are the
abundance sum-to-one constraint (ASC), the abundance non-negative constraint
(ANC), and non-negative constraint on endmembers, i.e.,

S1K = 1HW , S � 0, A � 0, (4)
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where�marks element-wise inequality, and 1p represents p-length all-one vector.
It is worth mentioning that the combination of ASC and ANC would promote the
sparsity of abundances, which well characterizes the rule that the endmembers
are sparsely contributing to the spectrum in each pixel.

Yet in practice, the prior knowledge of PSFs and SRFs for numerous kinds of
imaging systems is hardly available. This restriction motivates us to extend the
current coupled unmixing model to a fully end-to-end framework, which is only
in need of LrHSI and HrMSI. To estimate C and R in an unsupervised manner,
we introduce the following consistency constraint,

U = XR = CY, (5)

where U ∈ Rhw×l denotes the latent LrMSI.

3.3 Network Architecture

Inspired by the recent success of deep networks on visual processing tasks, we
would like to first perform coupled spectral unmixing by the established two-
stream convolutional autoencoder for the two-modal inputs, i.e., we consider
two deep subnetworks, with f(X) = fde(fen(X;Wf,en);Wf,de) to self-express
the LrHSI, g(Y) = gde(gen(Y;Wg,en);Wg,de) for the HrMSI, and the fused

result can be obtained by Ẑ = fde(gen(Y;Wg,en);Wf,de), herein W collects the
weights of corresponding subpart.

As shown in Fig. 1, both encoders fen and gen are constructed by cascading
“Convolution+LReLU” blocks fl with an additional 1× 1 convolution layer. We
set the sizes of convolutional kernels in fen all as 1×1 while those in gen are with
larger but descending scales of the receptive field. The idea behind this setting
is to consider the low fidelity of spatial information in LrHSI and simultaneously
map the cross-channel and spatial correlations underlying HrMSI. Furthermore,
to ensure that the encoded maps are able to possess the properties of abun-
dances, an additional activation layer using the clamp function in the range of
[0, 1] is concatenated after each encoder. As for the structure of decoders fde and
gde, we simply adopt a 1× 1 convolution layer without any nonlinear activation,
making the weights Wf,de and Wg,de interpretable as the endmembers A and Ã
according to Eq. (2) and Eq. (3). By backward gradient descent-based optimiza-
tion, our backbone network can not only avoid the need for good initialization
for conventional unmixing algorithms but also enjoy the amelioration brought
by its capability of local perception and nonlinear processing.

Cross-Attention. To further exploit the advantageous information from
the two modalities, we devise an effective cross-attention module to enrich the
features across modalities. As shown in Fig. 2, the cross-attention module is
employed on high-level features within the encoder part, with three steps to
follow. First, we compute the spatial and spectral attention from the branch
of LrHSI and HrMSI, since they can provide with more faithful spatial and
spectral guidance. Next, we multiply the original features with the attention
maps from another branch to transfer the significant information. Lastly, we
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concatenate the original features with the above cross-multiplications in each
branch, to construct the input of next layer in the form of such preserved and
refined representation.

Formally, the output features Fl ∈ Rh×w of the l-th layer in the encoder
part, take fen for example, are formulated as

Fl = fl(Fl−1) = fl(fl−1(· · · f1(X) · · · )), (6)

which is similar for obtaining Gl ∈ RH×W from gen. To gather the spatial
and spectral significant information, we adopt global and local convolution to
generate channel-wise and spatial statistics respectively as

oc = uc � F
(c)
l , S =

C∑
c=1

v(c) �G
(c)
l , (7)

where u = [u1, · · · ,uC ] is a set of convolution filters with size h×w, v(c) is the
c-th channel of a 3D convolution filter with spatial size as p× p. Then we apply
a softmax layer to the above statistics to get the attention maps δ(o) ∈ RC , and
δ(S) ∈ RH×W , where δ(·) denotes the softmax activation function. The original
features are finally fused into the input of next layer as concat(Fl;Fl � δ(S)),
and concat(Gl;Gl � δ(o)), where concat(·) denotes the concatenation, and �
denotes the point-wise multiplication.

Spatial-Spectral Consistency. An essential part that tends to be ignored
is related to the coupled factors caused by PSFs and SRFs. Previous researches
typically assume an ideal average spatial downsampling and the prior knowledge
of SRFs, which rarely exist in reality. Unlike them, we introduce a spatial-spectral
consistency module into networks in order to better simulate the to-be-estimated
PSF and SRF, which is performed by simple yet effective convolution layers.

We can rewrite the spectral resampling from the HS sensor to the MS sensor
by revisiting the left part of Eq. (3) more accurately as follows. Given the spec-
trum of i-th pixel in HrHSI zi, for the j-th channel in corresponding LrHSI, the
radiance yi,j is defined as

yi,j =

∫
φ

zi(µ)rj(µ)dµ/Nr, (8)

where φ denotes the support set that the wavelength µ belongs to, Nr denotes
the normalization constant

∫
rj(µ)dµ. We directly replace rj with a set of L

1× 1 convolution kernels with the weights being collected in wj . Therefore, the
SRF layer fr can be well defined as follows,

yi,j = fr(zi;wj) =
∑
φ

zi(µ)wj(µ)/Nw, (9)

where Nw corresponds to an additional normalization with
∑
φwj . The PSF

layer for spatial downsampling is more straightforward. Note that PSF generally
indicates that each pixel in LrHSI is produced by combining neighboring pixels in
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HrHSI with unknown weights in a disjoint manner [30]. To simulate this process,
we propose fs by the means of a channel-wise convolution layer with kernel size
and stride both same as the scaling ratio.

To sum up, multiple consistency constraints derived from the statements in
Section 3.2, either spectrally or spatially, can be defined in our networks as

Ŷ = fr(Ẑ), X̂ = fs(Ẑ), fs(Y) = fr(X), (10)

which enables the whole networks to be trained within a closed loop.

3.4 Network Training

Loss Function. As shown in Fig. 1, our CUCaNet mainly consists of two au-
toencoders for hyperspectral and multispectral data, respectively, thus leading
to the following reconstruction loss:

LR = ‖f(X)−X‖1 + ‖g(Y)−Y‖1, (11)

in which the `1-norm is selected as the loss criterion for its perceptually satisfying
performance in the low-level image processing tasks [39].

The important physically meaningful constraints in spectral unmixing are
considered, building on Eq. (4), we then derive the second ASC loss as

LASC = ‖1hw − fen(X)1K‖1 + ‖1HW − gen(Y)1K‖1, (12)

and the ANC is reflected through the activation layer used behind the encoders.
To promote the sparsity of abundances of both stream, we adopt the Kullback-

Leibler (KL) divergence-based sparsity loss term by penalizing the discrepancies
between them and a tiny scalar ε,

LS =
∑
n

KL(ε||(fen(X))n) +
∑
m

KL(ε||(gen(Y))m), (13)

where KL(ρ||ρ̂) = ρ log ρ
ρ̂ + (1− ρ) log 1−ρ

1−ρ̂ is the standard KL divergence [24].
Last but not least, we adopt the `1-norm to define the spatial-spectral con-

sistency loss based on Eq. (10) as follows,

LC = ‖fs(Y)− fr(X)‖1 + ‖X̂−X‖1 + ‖Ŷ −Y‖1. (14)

By integrating all the above-mentioned loss terms, the final objective function
for the training of CUCaNet is given by

L = LR + αLASC + βLS + γLC, (15)

where we use (α, β, γ) to trade-off the effects of different constituents.
Implementation Details. Our network is implemented on PyTorch frame-

work. We choose Adam optimizer under default parameters setting for training
with the training batch parameterized by 1 [18]. The learning rate is initialized
with 0.005 and a linear decay from 2000 to 10000 epochs drop-step schedule is
applied [23]. We adopt Kaiming’s initialization for the convolutional layers [12].
The hyperparameters are determined using a grid search on the validation set
and training will be early stopped before validation loss fails to decrease.
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4 Experimental Results

In this section, we first review the HSI-MSI datasets and setup adopted in our
experiments. Then, we provide an ablation study to verify the effectiveness of
the proposed modules. Extensive comparisons with the state-of-the-art methods
on indoor and remotely sensed images are reported at last.

Dataset and Experimental Setting. Three widely used HSI-MSI datasets
are investigated in this section, including CAVE dataset [36]1, Pavia University
dataset, and Chikusei dataset [37]2. The CAVE dataset captures 32 different
indoor scenes. Each image consists of 512×512 pixels with 31 spectral bands
uniformly measured in the wavelength ranging from 400nm to 700nm. In our
experiments, 16 scenes are randomly selected to report performance. The Pavia
dataset was acquired by ROSIS airborne sensor over the University of Pavia,
Italy, in 2003. The original HSI comprises 610×340 pixels and 115 spectral bands.
We use the top-left corner of the HSI with 336×336 pixels and 103 bands (after
removing 12 noisy bands), covering the spectral range from 430nm to 838nm.
The Chikusei dataset was taken by a Visible and Near-Infrared (VNIR) imaging
sensor over Chikusei, Japan, in 2014. The original HSI consists of 2,517×2,335
pixels and 128 bands with a spectral range of 363nm to 1,018nm. We crop 6
non-overlapped parts with size of 576×448 pixels from the bottom part for test.

Considering the diversity of MS sensors in generating the HrMS images,
we employ the SRFs of Nikon D700 camera[25] and Landsat-8 spaceborne MS
sensor[3]3 for the CAVE dataset and two remotely sensed datasets4, respectively.
We adopt the Gaussian filter to obtain the LrHS images, by constructing the
filter with the width same as SR ratio and 0.5 valued deviations. The SR ratios
are set as 16 for the Pavia University dataset and 32 for the other two datasets.

Evaluation Metrics. We use the following five complementary and widely-
used picture quality indices (PQIs) for the quantitative HSI-SR assessment, in-
cluding peak signal-to-noise ratio (PSNR), spectral angle mapper (SAM) [19],
erreur relative globale adimensionnellede synthèse (ERGAS) [29], structure sim-
ilarity (SSIM) [32], and universal image quality index (UIQI) [31]. SAM reflects
the spectral similarity by calculating the average angle between two vectors of
the estimated and reference spectra at each pixel. PSNR, ERGAS, and SSIM
are mean square error (MSE)-based band-wise PQIs indicating spatial fidelity,
global quality, and perceptual consistency, respectively. UIQI is also band-wisely
used to measure complex distortions among monochromatic images.

4.1 Ablation Study

Our CUCaNet consists of a baseline network – coupled convolutional autoen-
coder networks – and two newly-proposed modules, i.e., the spatial-spectral

1 http://www.cs.columbia.edu/CAVE/databases/multispectral
2 http://naotoyokoya.com/Download.html
3 http://landsat.gsfc.nasa.gov/?p=5779
4 We select the spectral radiance responses of blue-green-red(BGR) bands and BGR-

NIR bands for the experiments on Pavia and Chikusei datasets, respectively.
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Table 1. Ablation study on the Pavia University dataset by our CUCaNet with dif-
ferent modules and a baseline CNMF. The best results are shown in bold.

Method
Module Metric

Clamp SSC CA PSNR SAM ERGAS SSIM UQI

CNMF - - - 32.73 7.05 1.18 0.830 0.973

CUCaNet 7 7 7 34.25 6.58 1.01 0.862 0.975
CUCaNet 3 7 7 35.67 5.51 0.92 0.897 0.981
CUCaNet 3 3 7 36.55 4.76 0.85 0.904 0.991
CUCaNet 3 7 3 36.49 4.63 0.86 0.902 0.989

CUCaNet 3 3 3 37.22 4.43 0.82 0.914 0.991

consistency module (SSC) and the cross-attention module (CA). To investigate
the performance gain of different components in networks, we perform ablation
analysis on the Pavia University dataset. We also study the effect of replacing
clamp function with conventional softmax activation function at the end of each
encoder. Table 1 details the quantitative results, in which CNMF is adopted as
the baseline method.

As shown in Table 1, single CUCaNet can outperform CNMF in all metrics
owing to its benefit from employing deep networks. We find that the performance
is further improved remarkably by the use of clamp function. Meanwhile, single
SSC module performs better than single CA module except in SAM, which
means that CA module tend to favor spectral consistency. By jointly employing
the two modules, the proposed CUCaNet achieves the best results in HSI-SR
tasks, demonstrating the effectiveness of our whole network architecture.

4.2 Comparative Experiments

Compared Methods. Here, we make comprehensive comparison with the fol-
lowing eleven state-of-the-art (SOTA) methods in HSI-RS tasks: pioneer work,
GSA [1]6, NMF-based approaches, CNMF [38]6 and CSU [20]7, Bayesian-based
approaches, FUSE [33]8 and HySure [27]9, dictionary learning-based approach,
NSSR [7]10, tensor-based approaches, STEREO [17]11, CSTF [21]12, and LTTR
[5]12, and DL-based methods, unsupervised uSDN [25]13 and supervised MHFnet
[34]14. As for the supervised deep method MHFnet, we use the remaining part
of each dataset for the training following the strategies in [34].

Note that most of the above methods rely on the prior knowledge of SRFs
and PSFs. We summarize the properties of all compared methods in learning

6 http://naotoyokoya.com/Download.html
7 https://github.com/lanha/SupResPALM
8 https://github.com/qw245/BlindFuse
9 https://github.com/alfaiate/HySure

10 http://see.xidian.edu.cn/faculty/wsdong
11 https://github.com/marhar19/HSR via tensor decomposition
12 https://sites.google.com/view/renweidian
13 https://github.com/aicip/uSDN
14 https://github.com/XieQi2015/MHF-net
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Table 2. The ability of learning unkonwn SRF and PSF of competing methods.

Functions GSA CNMF CSU FUSE HySure NSSR STEREO CSTF LTTR uSDN MHFnet CUCaNet

SRF 7 7 7 7 3 7 7 7 7 7 3 3

PSF 7 7 7 7 3 7 7 7 7 - 3 3
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Fig. 3. The HSI-SR performance on the CAVE dataset (fake and real food) of CUCaNet
in comparison with SOTA methods. For each HSI, the 20th (590nm) band image is
displayed with two demarcated areas zoomed in 3 times for better visual assessment,
and two main scores (PSNR/SAM) are reported with the best results in bold.

Table 3. Quantitative performance comparison with the investigated methods on the
CAVE dataset. The best results are shown in bold.

Metric
Method

GSA CNMF CSU FUSE HySure NSSR STEREO CSTF LTTR uSDN MHFnet CUCaNet

PSNR 27.89 30.11 30.26 29.87 31.26 33.52 30.88 32.74 35.45 34.67 37.30 37.51
SAM 19.71 9.98 11.03 16.05 14.59 12.09 15.87 13.13 9.69 10.02 7.75 7.49

ERGAS 1.11 0.69 0.65 0.77 0.72 0.69 0.75 0.64 0.53 0.52 0.49 0.47
SSIM 0.713 0.919 0.911 0.876 0.905 0.912 0.896 0.914 0.949 0.921 0.961 0.959
UQI 0.757 0.911 0.898 0.860 0.891 0.904 0.873 0.902 0.942 0.905 0.949 0.955

SRFs and PSFs (see Table 2), where only HySure and MHFnet are capable of
learning the two unknown functions. More specifically, HySure adopts a multi-
stage method and MHFnet models them as convolution layers under a supervised
framework. Hence our CUCaNet serves as the first unsupervised method that
can simultaneously learn SRFs and PSFs in an end-to-end fashion.

Indoor Dataset. We first conduct experiments on indoor images of the
CAVE dataset. The average quantitative results over 16 testing images are sum-
marized in Table 3 with the best ones highlighted in bold. From the table, we
can observe that LTTR and CSTF can obtain better reconstruction results than
other conventional methods, mainly by virtue of their complex regularizations
under tensorial framework. Note that the SAM values of earlier methods CNMF
and CSU are still relatively lower because they consider the coupled unmix-
ing mechanism. As for the DL-based methods, supervised MHFnet outperforms
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Fig. 4. The HSI-SR performance on the CAVE dataset (chart and staffed toy) of CU-
CaNet in comparison with SOTA methods. For each HSI, the 7th (460nm) band image
is displayed with two demarcated areas zoomed in 3.5 times for better visual assess-
ment, and two main scores (PSNR/SAM) are reported with the best results in bold.

unsupervised uSDN evidently, while our proposed CUCaNet achieves the best
results in terms of four major metrics. Only the SSIM value of ours is slightly
worse than that of the most powerful competing method MHFnet, due to its
extra exploitation of supervised information.

The visual comparison on two selected scenes demonstrated in Fig. 3 and
Fig. 4 exhibits a consistent tendency. From the figures, we can conclude that
the results of CUCaNet maintain the highest fidelity to the groundtruth (GT)
compared to other methods. For certain bands, our method can not only estimate
background more accurately, but also maintain the texture details on different
objects. The SAM values of CUCaNet on two images are obviously less than
others, which validates the superiority in capturing the spectral characteristics
via joint coupled unmixing and degrading functions learning.

Remotely Sensed Dataset. We then carry out more experiments using air-
borne HS data to further evaluate the generality of our method. The quantitative
evaluation results on the Pavia University and Chikusei datasets are provided
in Table 4 and Table 5, respectively. Generally, we can observe a significant per-
formance improvements than on CAVE, since more spectral information can be
used as the number of HS bands increases. For the same reason, NMF-based and
Bayesian-based methods show competitive performance owing to their accurate
estimation of high-resolution subspace coefficients [37]. The limited performance
of tensor-based methods suggests they may lack robustness to the spectral dis-
tortions in real cases. The multi-stage unsupervised training of uSDN makes it
easily trapped into local minima, which results in only comparable performance
to state-of-the-art conventional methods such as HySure and FUSE. It is par-
ticularly evident that MHFnet performs better on Chikusei rather than Pavia
University. This can be explained by the fact that training data is relatively ade-
quate on Chikusei so that the tested patterns are more likely to be well learned.
We have to admit, however that MHFnet requires extremely rich training sam-
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Fig. 5. The HSI-SR performance on the Pavia University dataset (cropped area) of all
competing methods. The false-color image with bands 61-36-10 as R-G-B channels is
displayed. One demarcated area (red frame) as well as its RMSE-based residual image
(blue frame) with respect to GT are zoomed in 3 times for better visual assessment.

Table 4. Quantitative performance comparison with the investigated methods on the
Pavia University dataset. The best results are shown in bold.

Metric
Method

GSA CNMF CSU FUSE HySure NSSR STEREO CSTF LTTR uSDN MHFnet CUCaNet

PSNR 30.29 32.73 33.18 33.24 35.02 34.74 31.34 30.97 29.98 34.87 36.34 37.22
SAM 9.14 7.05 6.97 7.78 6.54 7.21 9.97 7.69 6.92 5.80 5.15 4.43

ERGAS 1.31 1.18 1.17 1.27 1.10 1.06 1.35 1.23 1.30 1.02 0.89 0.82
SSIM 0.784 0.830 0.815 0.828 0.861 0.831 0.751 0.782 0.775 0.871 0.919 0.914
UQI 0.965 0.973 0.972 0.969 0.975 0.966 0.938 0.969 0.967 0.982 0.987 0.991

Table 5. Quantitative performance comparison with the investigated methods on the
Chikusei dataset. The best results are shown in bold.

Metric
Method

GSA CNMF CSU FUSE HySure NSSR STEREO CSTF LTTR uSDN MHFnet CUCaNet

PSNR 32.07 38.03 37.89 39.25 39.97 38.35 32.40 36.52 35.54 38.32 43.71 42.70
SAM 10.44 4.81 5.03 4.50 4.35 4.97 8.52 6.33 7.31 3.89 3.51 3.13

ERGAS 0.98 0.58 0.61 0.47 0.45 0.63 0.74 0.66 0.70 0.51 0.42 0.40
SSIM 0.903 0.961 0.945 0.970 0.974 0.961 0.897 0.929 0.918 0.964 0.985 0.988
UQI 0.909 0.976 0.977 0.977 0.976 0.914 0.902 0.915 0.917 0.976 0.992 0.990

ples, which restricts its practical applicability to a great extent. Remarkably,
our CUCaNet can achieve better performance in most cases, especially showing
advantage in the spectral quality measured by SAM, which confirms that our
method is good at capturing the spectral properties and hence attaining a better
reconstruction of HrHSI.

Fig. 5 and Fig. 6 show the HSI-SR results demonstrated in false-color on these
two datasets. Since it is hard to visually discern the differences of most fused
results, we display the RMSE-based residual images of local windows compared
with GT for better visual evaluation. For both datasets, we can observe that
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Fig. 6. The HSI-SR performance on the Chikusei dataset (cropped area) of all com-
peting methods. The false-color image with bands 61-36-10 as R-G-B channels is dis-
played. One demarcated area (red frame) as well as its RMSE-based residual image
(blue frame) with respect to GT are zoomed in 3 times for better visual assessment.

GSA and STEREO yield bad results with relatively higher errors. CNMF and
CSU show evident patterns in residuals that are similar to the original image,
which indicates that their results are missing actual details. The block pattern-
like errors included in CSTF and LTTR make their reconstruction unsmooth.
Note that residual images of CUCaNet and MHFnet exhibit more dark blue
areas than other methods. This means that the errors are small and the fused
results are more reliable.

5 Conclusion

In this paper, we put forth CUCaNet for the task of HSI-SR by integrating the
advantage of coupled spectral unmixing and deep learning techniques. For the
first time, the learning of unknown SRFs and PSFs across MS-HS sensors is
introduced into an unsupervised coupled unmixing network. Meanwhile, a cross-
attention module and reasonable consistency enforcement are employed jointly
to enrich feature extraction and guarantee a faithful production. Extensive ex-
periments on both indoor and airborne HS datasets utilizing diverse simulations
validate the superiority of proposed CUCaNet with evident performance im-
provements over competitive methods, both quantitatively and perceptually. Fi-
nally, we will investigate more theoretical insights on explaining the effectiveness
of the proposed network in our future work.
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