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Abstract. Few-shot semantic segmentation (FSS) has great potential
for medical imaging applications. Most of the existing FSS techniques re-
quire abundant annotated semantic classes for training. However, these
methods may not be applicable for medical images due to the lack of
annotations. To address this problem we make several contributions: (1)
A novel self-supervised FSS framework for medical images in order to
eliminate the requirement for annotations during training. Additionally,
superpixel-based pseudo-labels are generated to provide supervision; (2)
An adaptive local prototype pooling module plugged into prototypical
networks, to solve the common challenging foreground-background im-
balance problem in medical image segmentation; (3) We demonstrate the
general applicability of the proposed approach for medical images using
three different tasks: abdominal organ segmentation for CT and MRI, as
well as cardiac segmentation for MRI. Our results show that, for medi-
cal image segmentation, the proposed method outperforms conventional
FSS methods which require manual annotations for training.

1 Introduction

Automated medical image segmentation is a key step for a vast number of clinical
procedures and medical imaging studies, including disease diagnosis and follow-
up [1,2,3], treatment planning [4,5] and population studies [6,7]. Fully supervised
deep learning based segmentation models can achieve good results when trained
on abundant labeled data. However, the training of these networks in medical
imaging is often impractical due to the following two reasons: there is often a
lack of sufficiently large amount of expert-annotated data for training due the
considerable clinical expertise, cost and time associated with annotation; This
problem is further exacerbated by differences in image acquisition procedures
across medical devices and hospitals, often resulting in datasets containing few
manually labeled images; Moreover, the number of possible segmentation targets
(different anatomical structures, different types of lesions, etc.) are countless. It
is impractical to cover every single unseen class by training a new, specific model.

∗Equal contribution.
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Fig. 1. (a). Proposed superpixel-based self-supervised learning. For each unlabeled
image, pseudolabels are generated on superpixels. In each iteration during training,
a randomly selected pseudolabel and the original image serve as the candidate for
both support and query. Then, random transforms (marked in blue boxes) are applied
between the support and the query. The self-supervision task is designed as segmenting
the pseudolabel on the query with reference to the support, despite the transforms
applied in between. (b). The proposed ALPNet solves the class-imbalance-induced
ambiguity problem by adaptively extracting multiple local representations of the large
background class (in blue). Each of them only represents a local region of background.

As a potential solution to these two challenges, few-shot learning has been
proposed [8,9,10,11,12,13]. During inference, a few-shot learning model distills
a discriminative representation of an unseen class from only a few labeled ex-
amples (usually denoted as support) to make predictions for unlabeled examples
(usually denoted as query) without the need for re-training the model. If apply-
ing few-shot learning to medical images, segmenting a rare or novel lesion can
be potentially efficiently achieved using only a few labeled examples.

However, training an existing few-shot semantic segmentation (FSS) model
for medical imaging has not had much success in the past, as most of FSS
methods rely on a large training dataset with many annotated training classes
to avoid overfitting [14,15,16,17,18,19,20,21,17,22,23,24,25]. In order to bypass
this unmet need of annotation, we propose to train an FSS model on unla-
beled images instead via self-supervised learning, an unsupervised technique that
learns generalizable image representations by solving a carefully designed task
[26,27,28,29,30,31,32,33]. Another challenge for a lot of state-of-the-art FSS net-
work architectures is the loss of local information within a spatially variant class
in their learned representations. This problem is in particular magnified in med-
ical images since extreme foreground-background imbalance commonly exists
in medical images. As shown in Fig. 1 (b)., the background class is large and
spatially inhomogeneous whereas the foreground class (in purple) is small and
homogeneous. Under this scenario, an ambiguity in prediction on foreground-
background boundary might happen if the distinct appearance information of
different local regions (or saying, parts) in the background is unreasonably av-
eraged out. Unfortunately, this loss of intra-class local information exists in a
lot of recent works, where each class is spatially averaged into a 1-D representa-
tion prototype [16,18,19,34] or weight vectors of a linear classifier [17]. In adjust
to this problem, we instead encourage the network to preserve intra-class local
information, by extracting an ensemble of local representations for each class.
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In order to break the deadlock of training data scarcity and to boost segmen-
tation accuracy, we propose SSL-ALPNet, a self-supervised few-shot semantic
segmentation framework for medical imaging. The proposed framework exploits
superpixel-based self-supervised learning (SSL), using superpixels for eliminat-
ing the need for manual annotations, and an adaptive local prototype pooling
enpowered prototypical network (ALPNet), improving segmentation accuracy
by preserving local information in learned representations. As shown in Fig. 1
(a), to ensure image representations learned through self-supervision are well-
generalizable to real semantic classes, we generate pseudo-semantic labels using
superpixels, which are compact building blocks for semantic objects [35,36,37].
In addition, to improve the discriminative ability of learned image representa-
tions, we formulate the self-supervision task as one-superpixel-against-the-rest
segmentation. Moreover, to enforce invariance in representations between sup-
port and query, which is crucial for few-shot segmentation in real-world, we
synthesis variants in shape and intensity by applying random geometric and in-
tesity transforms between support and query. In our experiments, we observed
that by purely training with SSL, our network outperforms those trained with
manual annotated classes by considerable margins. Besides, as shown in Fig. 1,
to boosts segmentation accuracy, we designed adaptive local prototype module
(ALP) for preserving local information of each class in their prototypical rep-
resentations. This is achieved by extracting an ensemble of local representation
prototypes, each focus on a different region. Of note, the number of prototypes
are allocated adaptively by the network based on the spatial size of each class.
By this mean, ALP alleviates ambiguity in segmentation caused by insufficient
local information.

Overall, the proposed SSL-ALPNet framework has the following major ad-
vantages: Firstly, compared with current state-of-the-art few-shot segmentation
methods which in general rely on a large number of annotated classes for training,
the proposed method eliminates the need for annotated training data instead. By
completely detaching representation extraction from manual labeling, the pro-
posed method potentially expands the application of FSS in annotation-scarce
medical images. In addition, unlike most of self-supervised learning methods
for segmentation where fine-tuning on labeled data is still required before test-
ing [27,28,29,30,32,38], the proposed method requires no fine-tuning after SSL.
Moreover, compared to some of novel modules [39,40,41] used in FSS where
slight performance gain are at the cost of heavy computations, the proposed
ALP is simple and efficient in contrast to its significant performance boosting.
No trainable parameters is contained in ALP.

Our contributions are summarized as follows:

– We propose SSL-ALPNet, the first work that explores self-supervised learn-
ing for few-shot medical image segmentation, to the best of our knowledge. It
outperforms peer FSS methods, which usually require training with manual
annotations, by merely training on unlabeled images.
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– We propose adaptive local prototype pooling, a local representation compu-
tation module that significantly boosts performance of the state-of-the-art
prototypical networks on medical images.

– We for the first time evaluated FSS on different imaging modalities, segmen-
tation classes and with the presence of patient pathologies. The established
evaluation strategy not only highlights wide applicability of our work, but
also facilitates future works that seek to evaluate FSS in a more realistic
scenario.

2 Related Work

2.1 Few-shot semantic segmentation

Recent work by [31] firstly introduces self-supervised learning into few-shot im-
age classification. However, few-shot segmentation is often more challenging:
dense prediction needs to be performed at a pixel level. To fully exploit infor-
mation in limited support data, most of popular FSS methods directly inject
support to the network as guiding signals [20,21,42,43], or construct discrimina-
tive representations from support as reference to segment query [15,16,17,19,18].
The pioneering work [15] learns to generate classifier weights from support; [17]
extends weights generation to multi-scale. [14] instead directly use support to
condition segmentation on query by fusing their feature maps. Exploiting net-
work components such as attention modules [39,44] and graph networks [41,40],
recent works boost segmentation accuracy [21] and enable FSS with coarse-level
supervisions [42,22,24]. Exploiting learning-based optimization, [23,25] combine
meta-learning with FSS. However, almost all of these methods assume abundant
annotated (including weakly annotated) training data to be available, making
them difficult to translate to segmentation scenarios in medical imaging.

One main stream of FSS called prototypical networks focuses on exploiting
representation prototypes of semantic classes extracted from the support. These
prototypes are utilized to make similarity-based prediction [8,18,34] on query,
or to tune representations of query [16]. Recently, prototypical alignment net-
work (PANet) [18] has achieved state-of-the-art performance on natural images.
This is achieved simply with a generic convolutional network and an alignment
regularization. However, these works aim to improve performance on training-
classes-abundant natural images. Their methodologies focus on network design.
Our work, by contrast, focuses on utilizing unlabeled medical image for training
by exploiting innovative training strategies and pesudolabels. Nevertheless, since
PANet is one of state-of-the-art and is conceptually simple, we take this method
as our baseline to highlight our self-supervised learning as a generic training
strategy.

In medical imaging, most of recent works on few-shot segmentation only focus
on training with less data [45,46,47,48,49]. These methods usually still require re-
training before applying to unseen classes, and therefore they are out-of-scope in
our discussion. Without retraining on unseen classes, the SE-Net [43] introduces
squeeze and excite blocks [50] to [14]. To the best of our knowledge, it is the first
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FSS model specially designed for medical images, with which we compared our
method in experiments.

2.2 Self-supervised learning in semantic segmentation

A series of self-supervision tasks have been proposed for semantic segmentation.
Most of these works focus on intuitive handcrafted supervision tasks including
spatial transform prediction [51], image impainting [32], patch reordering [27],
image colorization [33], difference detection [52], motion interpolation [53] and so
on. Similar methods have been applied to medical images [54,38,55,56]. However,
most of these works still require a second-stage fine-tuning after initializing with
weights learned from self-supervision. In addition, features learned from hand-
crafted tasks may not be sufficiently generalizable to semantic segmentation, as
two tasks might not be strongly related [57]. In contrast, in our work, segment-
ing superpixel-based pseudolabels is directly related to segmenting real objects.
This is because superpixels are compact building blocks for semantic masks for
real objects. Recent works [58,48,59] on medical imaging rely on second-order
optimization [60]. These works differ from our work in key method and task.

Our proposed SSL technique shares a similar spirit as [61] (or arguably, as
some recent works on contrastive learning [62,63,64,65]) in methodology. Both
methods encourage invariance in image representation by intentionally creating
variants. While [61] focuses on visual information clustering, we focus on the
practical but challenging few-shot medical image segmentation problem.

2.3 Superpixel segmentation

Superpixels are small, compact image segments which are usually piece-wise
smooth [66,35]. Superpixels are generated by clustering local pixels using sta-
tistical models with respect to low-level image features. These models include
Gaussian mixture [37] and graph cut [67]. In this work, we employed off-the-shelf,
efficient and unsupervised graph-cut-based algorithm by [68]. Compared with
the popular SLIC method [37], superpixels generated by [68] are more diverse
in shape. Training with these superpixels intuitively improves generalizability of
the network to unseen classes in various shapes.

3 Method

We first introduce problem formulation for few-shot semantic segentation (FSS).
Then, the ALPNet architecture is introduced with a focus on adaptive local
prototype pooling and the corresponding inference process. We highlight our
superpixel-based self-supervised learning (SSL) with details in pseudolabel gen-
eration process and episode formation in Section 3.3. Finally, we introduce the
overall end-to-end training objective under the proposed SSL technique. Of note,
after the proposed self-supervised learning, ALPNet can be directly applied to
unseen classes with its weights fixed, and with reference to a few human-labeled
support slices. There is no fine-tuning required in this testing phase.
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Fig. 2. (a). Workflow of the proposed network: The feature extractor fθ(·) takes the
support image and query image as input to generate feature maps fθ(x

s) for support
and fθ(x

q) for query. The proposed adaptive local prototype pooling module then takes
support feature map and support label as input to obtain an ensemble of representation
prototypes pk(cj)’s. These prototypes are used as references for comparing with query
feature map fθ(x

q). Similarity maps generated by these comparisons are fused together
to form the final segmentation. This figure illustrates a 1-way segmentation setting,
where cL is the foreground class, c0 is the background. (b). Illustration of the adaptive
local prototype pooling module: Local prototypes are calculated by spatially averaging
support feature maps within pooling windows (orange boxes); class-level prototypes
are averaged under the entire support label (purple region).

3.1 Problem Formulation

The aim of few-shot segmentation is to obtain a model that can segment an
unseen semantic class, by just learning from a few labeled images of this unseen
class during inference without retraining the model. In few-shot segmentation,
a training set Dtr containing images with training semantic classes Ctr (e.g.,
Ctr = {liver, spleen, spine}), and a testing set Dte of images containing testing
unseen classes Cte (e.g., Cte = {heart, kidney}), are given, where Ctr ∩ Cte = Ø.
The task is to train a segmentation model on Dtr (e.g. labeled images of livers,
spleens and spines) that can segment semantic classes Cte in images in Dte, given
a few annotated examples of Cte (e.g. to segment kidney with reference to a few

labeled images of kidney), without re-training. Dtr = {(x,y(cĵ))} is composed

of images x ∈ X and corresponding binary masks y(cĵ)’s ∈ Y of classes cĵ ∈ Ctr,
where ĵ = 1, 2, 3, ..., N is the class index. Dte is defined in the same way but
for testing images and masks with Cte. In each inference pass, a support set S
and a query set Q are given. The support S = {(xsl ,ysl (cĵ))} contains images xsl
and masks ysl (c

ĵ), and it serves as examples for segmenting cĵ ’s; the query set
Q = {xq} contains images xq’s to be segmented. Here, the superscripts denote an
image or mask is from support (s) or query (q). And l = 1, 2, 3, ...,K is the index

for each image-mask pair of class cĵ . One support-query pair (S,Q) comprises
an episode. Every episode defines a N -way K-shot segmentation sub-problem if
there are N classes (also called N tasks) to be segmented and K labeled images
in S for each class. Note that the background class is denoted as c0 and it does
not count towards Ctr or Cte.
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3.2 Network Architecture

Overview: Our network is composed of: (a) a generic feature extractor network
fθ(·) : X −→ E parameterized by θ, where E is the representation space (i.e.
feature space) on which segmentation operates; (b) the proposed adaptive local
prototype pooling module (ALP) g(·, ·) : E ×Y −→ E for extracting representation
prototypes from support features and labels; (c) and a similarity based classifier
sim(·, ·) : E×E −→ Y for segmention by comparing prototypes and query features.

As shown in Fig. 2, in inference, the feature extractor network fθ(·) provides
ALP with feature maps by mapping both xsl ’s and xq’s to feature space E , pro-

ducing feature maps {(fθ(xq), fθ(xsl ))} ∈ E . ALP takes each (fθ(x
s
l ),y

s
l (c

ĵ)) pair
as input to compute both local prototypes and class-level prototypes of semantic

class cĵ and background c0. These prototypes will later be used as references of
each class for segmenting query images. Prototypes of all cj ’s forms a prototype
ensemble P = {pk(cj)}, j = 0, 1, 2, ..., N where k is prototype index and k ≥ 1
for each cj . This prototype ensemble is used by the classifier sim(·, ·) to pre-
dict the segmentation for the query image, saying ŷq = sim(P, fθ(xq)). This is
achieved by first measuring similarities between each pk(cj)’s and query feature
map fθ(x

q), and then fusing these similarities together.
Adaptive local prototype pooling: In contrast to previous works [18,17,34],
where intra-class local information is unreasonably spatially averaged out under-
neath the semantic mask, we propose to preserve local information in prototypes
by introducing adaptive local prototype pooling module (ALP). In ALP, each
local prototype is only computed within a local pooling window overlaid on the
support and only represents one part of object-of-interest.

Specifically, we perform average pooling with a pooling window size (LH , LW )
on each fθ(x

s
l ) ∈ RD×H×W where (H,W ) is the spatial size and D is the chan-

nel depth. Of note, (LH , LW ) determines the spatial extent under which each
local prototype is calculated in the representation space E . The obtained lo-
cal prototype pl,mn(c) with undecided class c at spatial location (m,n) of the
average-pooled feature map is given by

pl,mn(c) = avgpool(fθ(x
s
l ))(m,n) =

1

LHLW

∑
h

∑
w

fθ(x
s
l )(h,w), (1)

where mLH ≤ h < (m+ 1)LH , nLW ≤ w < (n+ 1)LW .

To decide the class c of each pl,mn(c), we average-pool the binary mask ysl (c
ĵ)

of the foreground class cĵ to the same size ( H
LH

, WLW
). Let yal,mn be the value of

ysl (c
ĵ) after average pooling at location (m,n), c is assigned as:

c =

{
c0 yal,mn < T

cĵ yal,mn ≥ T
where yal,mn = avgpool(ysl (c

ĵ))(m,n). (2)

T is the lower-bound threshold for foreground which is empirically set to 0.95.
To ensure at least one prototype is generated for objects smaller than the

pooling window (LH , LW ), we also compute a class-level prototype pgl (c
ĵ) using
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masked average pooling [19,18]:

pgl (c
ĵ) =

∑
h,w

ysl (c
ĵ)(h,w)fθ(x

s
l )(h,w)∑

h,w

ysl (c
ĵ)(h,w)

. (3)

In the end, pl,mn(cj)’s and pgl (c
ĵ)’s are re-indexed with subscript k’s for conve-

nience, and hence comprise the representation prototype ensemble P = {pk(cj)}.
This ensemble therefore preserves more intra-class local distinctions by explicitly
representing different local regions into separate prototypes.
Similarity-based segmentation: The similarity-based classifier sim(·, ·) is de-
signed to make dense prediction on query by exploiting local image information
in P. This is achieved by firstly matching each prototype to a corresponding
local region in query, and then fusing the local similarities together.

As a loose interpretation, to segment a large liver in query, in the first stage,
a local prototype pk(cL) with class cL = liver, whose pooling window falls over
the right lobe of the liver particularly finds a similar region which looks like a
right lobe in query (instead of matching the entire liver). Then, to get an entire
liver, results from right lobe, and left lobe are fused together to form a liver.

Specifically, sim(·, ·) first takes query feature map fθ(x
q) and prototype en-

semble P = {pk(cj)} as input to compute local similarity maps Sk(cj)’s between
fθ(x

q) and all pk(cj)’s respectivelyy. Each entry Sk(cj)(h,w) at spatial location
(h,w) corresponding to fθ(x

q) is given by

Sk(cj)(h,w) = αpk(cj)� fθ(xq)(h,w), (4)

where � denotes cosine similarly, which is bounded, same as in [18]: a � b =
〈a,b〉
‖a‖2‖b‖2 , a, b ∈ RD×1×1, α is a multiplier, which helps gradients to back-

propagate in training [69]. In our experiments, α is set to 20, same as in [18].
Then, to obtain similarity maps (unnormalized) with respect to each class cj

as a whole, local similarity maps Sk(cj)’s are fused for each class separately into
class-wise similarities S′(cj), this is done through a softmax function:

S′(cj)(h,w) =
∑
k

Sk(cj)(h,w) softmax
k

[Sk(cj)(h,w)]. (5)

softmax
k

[Sk(cj)(h,w)] refers to the operation of first stacking all Sk(cj)(h,w)’s

along channel dimension and then computing softmax function along channels.
To obtain the final dense prediction, in the end, class-wise similarities are

normalized into probabilities:

ŷq(h,w) = softmax
j

[S′(cj)(h,w)]. (6)

3.3 Superpixel-based Self-supervised Learning

To obtain accurate and robust results, two properties are highly desirable for
similarity based-classifiers. For each class, the representations should be clus-
tered in order to be discriminative under a similarity metric; meanwhile, these
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Fig. 3. Workflow of the proposed superpixel-based self-supervised learning technique.

representations should be invariant across images (in our case any combinations
of support and query) to ensure robustness in prediction [61].

These two properties are encouraged by the proposed superpixel-based self-
supervised learning (SSL). As annotations for real semantic classes are unavail-
able, SSL exploits pseudolabels to enforce clustering at a superpixel-level. This is
naturally achieved by back-propagating segmentation loss via cosine-similarity-
based classifier. Here, the superpixel-level clustering property can be transferred
to real semantic classes, since one semantic mask is usually composed of several
superpixels [36,35]. Additionally, to encourage representations to be invariant
against shape and intensity differences between images, we perform geometric
and intensity transforms between support and query. This is because shape and
intensity are the largest sources of variations in medical images [70].

The proposed SSL framework consists of two phases: offline pseudolabel gen-
eration and online training. The entire workflow can be seen in Fig. 3.
Unspervised pseudolabel generation: To obtain candidates for pseudola-
bels, a collection of superpixels Yi = F(xi) are generated for every image xi.
This is efficiently done with the unsupervised algorithm [68] denoted by F(·).
Online episode composition: For each episode i, an image xi and a randomly
chosen superpixel yri (c

p) ∈ Yi form the support Si = {(xi,yri (cp))}. Here yri (c
p)

is a binary mask with index r = 1, 2, 3, ..., |Yi| and cp denotes the pseudolabel
class (corresponding background mask yri (c

0) is given by 1−yri (c
p)). Meanwhile,

the query set Qi = {(Tg(Ti(xi)))}, Tg(yri (cp))) is constructed by applying ran-
dom geometric and intensity transforms: Tg(·) and Ti(·) to the support. By this
mean, each (Si,Qi) forms a 1-way 1-shot segmentation problem. In practice,
Tg(·) includes affine and elastic transforms, Ti(·) is gamma transform.

End-to-end training: The network is trained end-to-end, where each iteration
i takes an episode (Si,Qi) as input. Cross entropy loss is employed where the
segmentation loss Liseg for each iteration is written as:

Liseg(θ;Si,Qi) = − 1

HW

H∑
h

W∑
w

∑
j∈{0,p}

Tg(yri (cj))(h,w) log(ȳri (c
j)(h,w)), (7)
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where ȳri (c
p) is the prediction of query pseudolabel Tg(yri (cp)) and is obtained

as described in Section 3.2. In practice, weightings of 0.05 and 1.0 are given
to c0 and cp separately for mitigating class imbalance. We also inherited the
prototypical alignment regularization in [18]: taking prediction as support, i.e.
S ′ = (Tg(Ti(xi)), ȳri (cp)), it should correctly segment the original support image
xi. This is presented as

Lireg(θ;S ′i,Si) = − 1

HW

H∑
h

W∑
w

∑
j∈{0,p}

yri (c
j)(h,w) log(ŷri (c

j)(h,w)), (8)

where ŷri (c
p) is the prediction of yri (c

p) taking xi as query.
Overall, the loss function for each epioside is:

Li(θ;Si,Qi) = Liseg + λLireg, (9)

where λ control strength of regularization as in [18].
After self-supervised learning, the network can be directly used for inference

on unseen classes.

4 Experiments

Datasets: To demonstrate the general applicability of our proposed method un-
der different imaging modalities, segmentation classes and health conditions of
the subject, we performed evaluations under three scenarios: abdominal organs
segmentation for CT and MRI (Abd-CT and Abd-MRI) and cardiac segmenta-
tion for MRI (Card-MRI). All three datasets contain rich information outside
their regions-of-interests, which benefits SSL by providing sources of superpixels.
Specifically,

– Abd-CT is from MICCAI 2015 Multi-Atlas Abdomen Labeling challenge
[71]. It contains 30 3D abdominal CT scans. Of note, this is a clinical dataset
containing patients with various pathologies and variations in intensity dis-
tributions between scans.

– Abd-MRI is from ISBI 2019 Combined Healthy Abdominal Organ Segmen-
tation Challenge (Task 5) [72]. It contains 20 3D T2-SPIR MRI scans.

– Card-MRI is from MICCAI 2019 Multi-sequence Cardiac MRI Segmenta-
tion Challenge (bSSFP fold) [73], with 35 clinical 3D cardiac MRI scans.

To unify experiment settings, all images are re-formated as 2D axial (Abd-
CT and Abd-MRI) or 2D short-axis (Card-MRI) slices, and resized to 256× 256
pixels. Prepossessings are applied following common practices. Each 2D slice is
repeated for three times in channel dimension to fit into the network.

To comparatively evaluate the results on classes with various shapes, loca-
tions and textures between partically-pathologic, imhomogeneous Abd-CT and
all-healthy, homogeneous Abd-MRI, we construct a shared label set containing
left kidney, right kidney, spleen and liver; For Card-MRI, the label set contains
left-ventricle blood pool (LV-BP), left-ventricle myocardium (LV-MYO) and
right-ventricle (RV). In all experiments, we perform five-fold cross-validation.
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Evaluation: To measure the overlapping between prediction and ground truth,
we employ Dice score (0-100, 0: mismatch; 100: perfectly match), which is com-
monly used in medical image segmentation researches. To evaluate 2D segmen-
tation on 3D volumetric images, we follow the evaluation protocol established

by [43]. In a 3D image, for each class cĵ , images between the top slice and the

bottom slice containing cĵ are divided into C equally-spaced chunks. The middle
slice in each chunk from the support scan is used as reference for segmenting all
the slices in corresponding chunk in query. In our experiments C is set to be 3.
Of note, the support and query scans are from different patients.

To evaluate generalization ability to unseen testing classes, beyond the stan-
dard few-shot segmentation experiment setting for medical images established
by [43] (setting 1), where testing class might appear as background in training
data, we introduce a setting 2. In setting 2, we force testing classes (even un-
labeled) to be completely unseen by removing any image that contains a testing
class, from the training dataset.

Labels are therefore partitioned differently according to the settings and
types of supervision. In setting 1, when training with SSL, no label partitioning
is required for training. When training with annotated images, each time we take
one class for testing and the rest for training. To observe if the learned represen-
tations encode spatial concepts like left and right, we deliberately group 〈left/
right kidney〉 to appear together in training or testing. In setting 2, as 〈spleen,
liver〉, or 〈left/ right kidney〉 usually appear together in a 2D slice respectively,
we group them into upper abdomen and lower abdomen groups separately. In
each experiment all slices containing the testing group will be removed from
training data. For Card-MRI, only setting 1 is examined as all the labels usually
appear together in 2D slices, making label exclusion impossible.

To simulate the scarcity of labeled data in clinical practice, all our experi-
ments in this section are performed under 1-way 1-shot setting.
Implementation Details: The network is implemented with PyTorch based on
official PANet implementation1 [18]. To obtain high spatial resolutions in feature
maps, fθ(·) is configured as an off-the-shelf fully-convolutional ResNet101, which
is pre-trained on part of MS-COCO for higher segmentation performance [18,74]
(same for vanilla PANet in our experiments). It takes a 3× 256× 256 image as
input and produces a 256×32×32 feature map. Local pooling window (LH , LW )
for prototypes is set to 4×4 for training and 2×2 for inference on feature maps.
The loss in Equ. 9 is minimized for 100k iterations using stochastic gradient
descent with a batch size of 1. The learning rate is 0.001 with a stepping decay
rate of 0.98 per 1000 iterations. The self-supervised training takes ∼3h on a
single Nvidia RTX 2080Ti GPU, consuming 2.8GBs of memory.

4.1 Quantitative and qualitative Results

Comparison with state-of-the-art methods: Table 1 - 3 show the com-
parisons of our method with vanilla PANet, one of state-of-the-art methods on

1https://github.com/kaixin96/PANet
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Fig. 4. Qualitative results of our method on all three combinations of imaging modal-
ities and segmentation tasks. The proposed method achieves desirable segmentation
results which are close to ground truth. To highlight the strong generalization ability,
examples of results from the proposed method on Abd-CT and Abd-MRI are from
setting 2, where images containing testing classes are strictly excluded in training set
even though they are unlabeled. See supplemental materials for more examples.

natural images and SE-Net2 [43], the lastest FSS method for medical images.
Without using any manual annotation, our proposed SSL-ALPNet consistently
outperforms them by an average Dice score of >25. As shown in Fig. 4, the
proposed framework yields satisfying methods on organs with various shapes,
sizes and intensities. Of note, for all evaluated methods, results on Abd-MRI
are in general higher than those on Abd-CT. This not suprising as Abd-MRI is
more homogeneous, and most of organs in Abd-MRI have distinct contrast to
surrounding tissues, which helps to reduce ambiguity at boundaries.

Importantly, Table 1 demonstrates the strong generalization ability of our
method to unseen classes. This implies that the proposed superpixel-based self-

2https://github.com/abhi4ssj/few-shot-segmentation
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Table 1. Experiment results (in Dice score) on abdominal images under setting 2.

Method Manual Anno.?
Abdominal-CT Abdominal-MRI

Lower Upper
Mean

Lower Upper
Mean

LK RK Spleen Liver LK RK Spleen Liver

SE-Net [43] X 32.83 14.34 0.23 0.27 11.91 62.11 61.32 51.80 27.43 50.66
Vanilla PANet [18] X 32.34 17.37 29.59 38.42 29.43 53.45 38.64 50.90 42.26 46.33

ALPNet-init - 13.90 11.61 16.39 41.71 20.90 19.28 14.93 23.76 37.73 23.93
ALPNet X 34.96 30.40 27.73 47.37 35.11 53.21 58.99 52.18 37.32 50.43
SSL-PANet × 37.58 34.69 43.73 61.71 44.42 47.71 47.95 58.73 64.99 54.85
SSL-ALPNet × 63.34 54.82 60.25 73.65 63.02 73.63 78.39 67.02 73.05 73.02

Table 2. Experiment results (in Dice score) on abdominal images under setting 1.

Method Manual Anno.?
Abdominal-CT Abdominal-MRI

Kidneys
Spleen Liver Mean

Kidneys
Spleen Liver Mean

LK RK LK RK

SE-Net [43] X 24.42 12.51 43.66 35.42 29.00 45.78 47.96 47.30 29.02 42.51
Vanilla PANet [18] X 20.67 21.19 36.04 49.55 31.86 30.99 32.19 40.58 50.40 38.53

ALPNet X 29.12 31.32 41.00 65.07 41.63 44.73 48.42 49.61 62.35 51.28
SSL-PANet × 56.52 50.42 55.72 60.86 57.88 58.83 60.81 61.32 71.73 63.17
SSL-ALPNet × 72.36 71.81 70.96 78.29 73.35 81.92 85.18 72.18 76.10 78.84

Zhou et al. [75] Ful. Sup. 95.3 92.0 96.8 97.4 95.4 -
Isenseen et al. [76] Ful. Sup. - - 94.6

Table 3. Experiment results (in Dice score) on cardiac images under setting 1.

Method Manual Anno.? LV-BP LV-MYO RV Mean

SE-Net [43] X 58.04 25.18 12.86 32.03
Vanilla PANet [18] X 53.64 35.72 39.52 42.96

ALPNet X 73.08 49.53 58.50 60.34
SSL-PANet × 70.43 46.79 69.52 62.25
SSL-ALPNet × 83.99 66.74 79.96 76.90

supervised learning has successfully trained the network to learn more diverse
and generalizable image representations from unlabeled images.

The upperbounds obtained by fully-supervised learning on all labeled images
are shown in Table 2 for reference.

Performance boosts by ALP and SSL: The separate performance gains ob-
tained by introducing adaptive local prototype pooling or self-supervised learn-
ing can be observed in rows ALPNet and SSL-PANet in Table 1 - 3. These results
suggests both SSL and ALP contribute greatly. The performance gains of SSL
highlight the benefit of a well-designed training strategy that encourages learning
generalizable features, which is usually overlooked in recent few-shot segmenta-
tion methods. More importantly, the synergy between them (SSL-ALPNet) leads
to significant performance gains by learning richer image representations and by
constructing more effective inductive bias. To be assured that MS-COCO ini-
tialization alone cannot do FSS, we also include the results when the ALPNet
is directly tested after initialization, shown in ALPNet-init in Table 1.

Robustness under patient pathology: As shown in Fig 4, despite the large
dark lesion on right-kidney in Abd-CT, the proposed method stably produces
satisfying results.
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4.2 Ablation studies

Ablation studies are performed on Abd-CT under setting 2. This scenario is
challenging but close to clinical scenario in practice.
Importance of transforms between the support and query: To demon-
strate the importance of geometric and intensity transformations in our method,
we performed ablation studies as shown in Table. 4. Unsurprisingly, the high-
est and lowest overall results are obtained by applying both or no transforms,
proving the effectiveness of introducing random transforms. Interestingly, apply-

Table 4. Ablation study on types trans-
formations.

Int. Geo. LK RK Spleen Liver Mean

× × 45.49 48.40 53.05 73.60 55.13
X × 55.56 49.12 59.20 73.39 59.31
× X 59.32 51.45 57.74 78.93 61.86
X X 63.34 54.82 60.25 73.65 63.02

Table 5. Ablation study on minimum
pseudolabel sizes.

Min. size (px) LK RK Spleen Liver Mean

100 52.92 47.45 53.16 68.40 55.49
400 63.34 54.82 60.25 73.65 63.02
1600 51.74 44.83 56.99 74.73 57.08

Avg. Size in 2D (px) 798 799 1602 5061

ing intensity transform even hurts performance on liver. This implies that the
configuration of intensity transforms in our experiments may deviate from the
actual intensity distribution of livers in the dataset.
Effect of pseudolabel sizes: To investigate the effect of pseudolabel sizes on
performance, we experimented with pseudolabel sets with different minimum
superpixel sizes. Table 5 shows that the granularity of superpixels should be rea-
sonably smaller than sizes of actual semantic labels. This implies that too-coarse
or too-fine-grained pseudolabels might divert the granularity of clusters in the
learned representation space from that of real semantic classes.

5 Conclusion

In this work, we propose a self-supervised few-shot segmentation framework for
medical imaging. The proposed method successfully outperforms state-of-the-
art methods without requiring any manual labeling for training. In addition,
it demonstrates strong generalization to unseen semantic classes in our experi-
ments. Moreover, the proposed superpixel-based self-supervision technique pro-
vides an effective way for image representation learning, opening up new possibil-
ities for future works in semi-supervised and unsupervised image segmentation.
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