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Abstract. Solving depth estimation with monocular cameras enables
the possibility of widespread use of cameras as low-cost depth estima-
tion sensors in applications such as autonomous driving and robotics.
However, learning such a scalable depth estimation model would require
a lot of labeled data which is expensive to collect. There are two popu-
lar existing approaches which do not require annotated depth maps: (i)
using labeled synthetic and unlabeled real data in an adversarial frame-
work to predict more accurate depth, and (ii) unsupervised models which
exploit geometric structure across space and time in monocular video
frames. Ideally, we would like to leverage features provided by both ap-
proaches as they complement each other; however, existing methods do
not adequately exploit these additive benefits. We present S3Net, a self-
supervised framework which combines these complementary features: we
use synthetic and real-world images for training while exploiting geomet-
ric, temporal, as well as semantic constraints. Our novel consolidated
architecture provides a new state-of-the-art in self-supervised depth es-
timation using monocular videos. We present a unique way to train this
self-supervised framework, and achieve (i) more than 15% improvement
over previous synthetic supervised approaches that use domain adapta-
tion and (ii) more than 10% improvement over previous self-supervised
approaches which exploit geometric constraints from the real data.

Keywords: Monocular depth prediction, self-supervised learning, do-
main adaptation, synthetic data, GANs, semantic-aware

1 Introduction

Depth estimation is a fundamental component of 3D scene understanding, with
applications in fields such as autonomous driving, robotics and space exploration.

?? work done at UCSD
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There has been considerable progress in estimating depth through monocular
camera images in the last few years, as monocular cameras are inexpensive and
widely deployed on many robots. However, building supervised depth estimation
algorithms using monocular cameras is challenging, primarily because collecting
ground-truth depth maps for training requires a carefully calibrated setup. As
an example, many vehicles currently sold in the market have monocular cameras
deployed, but there is no trivial way to obtain ground-truth depth information
from the images collected from these cameras. Thus, supervised methods for
depth estimation suffer due to the unavailability of extensive training labels.

To overcome the lack of depth annotation for monocular camera data, exist-
ing work has explored two areas of research: either designing self-supervised/semi-
supervised approaches which require minimal labeling, or leveraging labeled syn-
thetic data. Most self-supervised approaches rely on geometric and spatial con-
straints [44], and have succeeded in reducing the impact of this issue, however
they don’t always perform well in challenging environments with conditions like
limited visibility, object motion, etc. This is because they lack strong training
signal from supervision which lets them learn from and generalize to these con-
ditions. In contrast, some effort has been undertaken to use realistic simulated
environments to obtain additional synthetic depth data which can be used to
compute a supervised training loss.

Synthetic data can be easily generated in different settings with depth labels
- for example by varying the lighting conditions, changing the weather, varying
object motion, etc. Simply training the original model on synthetic data, how-
ever, does not work well in practice as the model does not generalize well to a
real-world dataset. To bridge this domain gap between the real-world and syn-
thetic datasets, many domain adaptation techniques have been proposed. Recent
works, like [46,27], have found success in using adversarial approaches to address
this issue. These solutions typically involve using an adversarial transformation
network to align the domains of the synthetic and real-world images, followed by
a task network that is responsible for predicting depth. Naturally, we pose the
question - can we build a depth estimation network that combines the benefits
of information conveyed through real as well as synthetic data?

We present a novel framework S3Net that trains the depth network by ex-
ploiting these self-supervised constraints (derived from real-world sequential im-
ages) and supervised constraints (derived from synthetic data and the respec-
tive ground-truth depths). This framework is implemented through several in-
tegrated stages which are described below: First, as shown in Fig. 1, we present
a novel Generative Adversarial Network (GAN)-based domain adaptation net-
work which exploits geometric constraints across space and time, as well as the
semantic consistency between original synthetic images and translated images.
These constraints encode additional latent information and thus enhance the
quality of domain adaptation. Next, to leverage ‘synthetic’ supervised cues and
‘real’ self-supervised cues, we present a novel training approach - weights of
the depth estimation network are updated alternatively based on the supervised
and self-supervised losses. Finally, to impose explicit constraints on object ge-
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Fig. 1. Overview of our proposed framework: integrating supervised learning on trans-
lated synthetic data and self-supervised learning on real videos while imposing spatial,
temporal and semantic constraints

ometry we augment the input RGB images with semantic labels, and utilize a
bi-directional auto-masking technique to limit pixels which would violate rigid
motion constraints.

Novel Adversarial Framework: The key idea of our GAN structure is to
utilize flow-based photometric consistency and semantic consistency to better
guide the image translation and reduce the domain gap. By utilizing the flow
and the sequential translated images, the frame at t can be used to reconstruct
the frame at t+ 1. The photometric differences between the reconstructed frame
t+1 and the original frame t+1 are primarily due to imperfect image translation.
Moreover, the semantic information should remain consistent before and after
the image translation. Therefore, we add both a photometric consistency and a
semantic consistency loss to create a novel adversarial framework. These offer
additional constraints on the domain adaptation and further improve the image
translation performance. They also help increase robustness and reduce unde-
sired artifacts in translated images when compared with traditional approaches.

Semantics and Bi-directional Auto-Masking: Inspired by the auto-
masking technique proposed in [16], we propose a novel bi-directional auto-
masking technique for sequential real-world images, which can filter out the pix-
els violating the fundamental rigid motion assumption for self-supervised depth
learning. The key difference from a single direction mask is that the bi-directional
technique fuses the masks learned by reconstructing frame t + 1 from frame t
and vice versa, which can substantially increases the accuracy of the proposed
mask. Moreover, we augment the input images of our model with semantic la-
bels. The semantic labels can provide explicit geometry constraints, which can
be beneficial to further boost the performance of the image translation and the
depth estimation.

The challenges of training our depth model fall under two major categories:
the GAN networks are unstable during training due to the presence of supervised
synthetic losses and self-supervised losses, which results in lack of convergence.
We address the convergence issue by proposing a two-phase training strategy.
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In the first phase, we train the image translation network and depth estima-
tion network with synthetic supervised losses to stabilize the GAN-based image
translation network. In the second phase, we freeze the weights of the image
translation network and further train the depth estimation network with both
supervised and self-supervised losses.

We evaluate our framework on two challenging datasets, i.e., KITTI [26]
and Make3D [35]. The evaluation results show that our proposed model can
outperform the state-of-the-art approaches in all evaluated metrics. In partic-
ular, we show that S3Net can outperform both the state-of-the-art synthetic
supervised domain adaptation approaches [27] by ∼ 15% and self-supervised
approaches [16] by ∼ 10%. Moreover, we only require the depth estimation net-
work during inference, so our inference compute requirements are comparable to
previous state-of-the-art approaches.

2 Related Work

2.1 Supervised Depth Estimation

Eigen et al. [10] proposed the first supervised learning architecture that models
multi-scale information for pixel-level depth estimation using direct regression.
Inspired by this work, many follow-up works have extended supervised depth
estimation in various directions [19,31,22,41,4,32,8,45,40,42,11,39]. However, ac-
quiring these ground-truth depths is prohibitively expensive. Therefore, it is
unlikely to obtain a large amount of labelled training data covering various road
conditions, weather conditions, etc, which indicates that these approaches may
not generalize well.

One promising approach that reduces the labeling cost is to use synthetically
generated data. However, models trained on synthetic data typically perform
poorly on real-world images due to a large domain gap. Domain adaptation
aims to minimize this gap. Recently, GAN-based approaches show promising
performance in domain adaptation [13,14,33,3,34]. Atapour et al. [1] proposed a
CycleGAN-based translator [51] to translate real-world images into the synthetic
domain, and then train a depth prediction network using the synthetic labeled
data. Zheng et al. [47] propose a novel architecture (T 2Net) where the style trans-
lator and the depth estimation network are optimized jointly so that they can
improve each other. Despite promising performance, these approaches inherently
suffer from mode collapse and semantic distortion due to imperfect synthetic-to-
real image translation. Various constraints and techniques have been proposed
to improve the quality of the translated images, but image translation 1 still
remains a challenging task.

2.2 Self-supervised Depth Estimation

In addition to supervised solutions, various approaches have been studied to pre-
dict depths by extracting disparity and depth cues from stereo image pairs or

1 “domain adaptation” and “image translation” are used interchangeably
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monocular videos. Garg et al. [15] introduced a warping loss based on Tay-
lor expansion. An image reconstruction loss with a spatial smoothness con-
straint was introduced in [30,49,20] to learn depth and camera motion. Recent
works [36,50,24,17,16] aim to improve depth estimation by further exploiting
geometry constraints. In particular, Godard et al. [17] employed epipolar geom-
etry constraints between stereo image pairs and enforced a left-right consistency
constraint in training the network. Yin et al.[44] proposed GeoNet, which also
used depth and pose networks in order to compute rigid flow between sequen-
tial images in a video. More specifically, they introduced a temporal, flow-based
photometric loss to predict depth for monocular videos in an unsupervised set-
ting. Bian et al. [2] used a similar approach along with a self discovered mask
to handle dynamic and occluded objects. Gordon et al. [18] also addresses these
issues in a purely geometric approach. Casser et al. [5] adapts a similar frame-
work with an additional online refinement model during inference. Xu et al. [43]
uses region deformer networks along with the earlier constraints to handle rigid
and non-rigid motion. Zhou et al. [48] use a dual network attention based model
which processes low and high resolution images separately. Godard et al. [16] also
presented another unsupervised approach which built on their earlier model [17]
by modifying the implementation of the unsupervised constraints.

Another set of recently adopted approaches involves using semantic infor-
mation, which provides additional constraints on object geometry that can po-
tentially boost the accuracy of depth estimation [25,28,7,29]. Meng et al. [25]
built on top of [44], and proposed several ways to implement a semantic aided
network which helped improve performance. Ranjan et al. [29] used a competi-
tive collaboration framework to leverage segmentation maps, pose and flow for
depth estimation. However, even with various constraints, the self-supervised ap-
proaches predict depth primarily based on indirect and weak-supervision depth
cues, which can be easily affected by undesired artifacts, such as motion blurring
and low visibility.

Our model architecture is influenced by various previous work, e.g. approaches
in [16,47,27,9]. But, compared to these approaches, our S3Net cooperatively com-
bines both supervised depth prediction on synthetic data and self-supervised
depth prediction on sequential images, such that the two strategies can comple-
ment each other in a mutually beneficial setting.

3 Proposed Methods

We propose a joint framework for monocular depth estimation that is trained
on translated synthetic images in a supervised manner and further fine-tuned
on sequences of real-world images in a self-supervised fashion. Our proposed
framework can be broken down into two main components: a) Synthetic-to-Real
Translation and Task Prediction (GS→R, DR, fT ), and, b) View-synthesis guided
self-supervised fine-tuning (Pose, fT )

Novel GAN Architecture Models trained on synthetic data do not gener-
alize well to real-world data because of domain shift. To address this problem, we
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Fig. 2. Our detailed architecture, a) Semantic and photometric consistent GAN for
synthetic supervised depth estimation, b) self-supervised architecture trained on se-
quence of real-world images with warping view-synthesis loss.

build upon the work of T 2Net [46] for supervised depth estimation on translated
synthetic images.

Adversarial Constraints The goal of our generator is to translate a syn-
thetic image Xs to the real domain Xr. To achieve this, a discriminator DR

and a transformer architecture GS→R are trained jointly such that discrimina-
tor tries to predict if the image is real or synthetic. This accounts for our GAN
loss, LGAN as shown in Fig. 2:

LGAN = Exr∼Xr
[logDR(xr)] + Exs∼Xs

[log(1−DR(GS→R(xs)))] (1)

Identity Constraints To improve the quality of translated images, T 2Net
imposes a identity constraint such that if a real image xr is given as input, the
generator network (GS→R)’s output should be the identical real image xr. This
additional constraint is incorporated as an identity loss Lr in Fig. 2:

Lr = ||GS→R(xr)− xr||1 (2)

Semantic Consistency While the identity constraint improves upon a
vanilla GAN architecture, we observe that the translated images had artifacts
as shown in Fig. 4, which cause imperfect domain translation and subsequently
hurt depth prediction. To address this we introduce a semantic consistency loss
Lseg (Fig. 2) based on the idea that given a semantic segmentation model Sseg

trained on the source domain, xs and GS→R(xs) should have identical semantic
segmentation maps. This is intuitive as domain translation shouldn’t affect the
semantic structure of the image. We enforce this by treating Sseg(xs) as a ground
truth label for pixel-wise prediction scores Sseg(GS→R(xs)). These are used to
compute a cross-entropy loss function over semantic labels:

Lseg = −
∑

pixels

∑
labels

Sseg(xs) log(Sseg(GS→R(xs))) (3)
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However, because of domain shift we cannot expect Sseg trained on synthetic
images to generalize well to the translated image domain, and hence we also
continue training Sseg while training our GAN architecture so that it can learn
features that are generalized to both domains.

Photometric Consistency with Ground-truth Flow In addition to se-
mantic constraints we introduce a flow guided photometric loss[44] to exploit
the temporal structure in translated image sequences. By applying ground-truth
flow, a frame t can be used to reconstructed the frame t+1. We represent this as
a transformation F . In Eq. 4 below, GS→R(xs,t) represents the translated image
of a synthetic frame at time t and F(GS→R(xs,t)) indicates the reconstructed
frame t + 1 based on frame t. Lpe(∗) computes the photometric differences be-
tween the reconstructed frame and the true frame. This photometric loss provides
an indirect supervision on the synthetic-to-real image translation.

Lflow = Lpe(F(GS→R(xs,t)), GS→R(xs,t+1)) (4)

Incorporating the above constraints in our GAN framework results in an
improved domain translator that is largely devoid of artifacts and preserves
semantic structure as shown in Fig. 4.

3.1 Combining Supervised and Self-supervised Depth Estimation

Supervised Depth Estimation on Synthetic Data With the ground-truth
depth labels for synthetic data, we formulate the depth estimation on synthetic
data as a regression problem. In Eq. 5 below, fT (GS→R(xs,t)) is the estimated
depth map for frame t and ys,t is the correspond ground-truth label for synthetic
frame t.

Ltask = ||fT (GS→R(xs,t))− ys,t||1 (5)

In accordance with our base network (T 2Net) we add an edge consistency/awareness
loss which penalizes discontinuity (or inconsistency) in the edges between the im-
age xs and its depth map fT (xs).

Ls = |∂xfT (xr)|e−|∂xxr| + |∂yfT (xr)|e−|∂yxr| (6)

Our training is divided into two phases. In the first phase, we train a GAN-based
image transfer network ((GS→R and DR)) and a depth estimation network (fT ).
A detailed explanation of our training methodology follows in Section 3.4. The
first loss objective is a weighted combination of the above constraints (Sections
3.1, 3.2):

Lphase1 = LGAN + αrLr + αsegLseg + αflowLflow + αtaskLtask + αsLs (7)

where αr, αseg, αflow, αtask, and αs are hyper-parameters.

Self-supervised Depth Estimation on Monocular Videos In addition
to supervised depth prediction on translated synthetic images, we also perform
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self-supervised depth estimation on monocular videos. The corresponding pixel
coordinates of one rigid object in two consecutive frames follows the relationship

pt+1 = KTt→t+1fT (pt)K
−1pt pt+1 =W−1pt (8)

where pt and pt+1 are the positions of a pixel in frames at time t and t + 1, K
denotes the camera intrinsic parameters, Tt→t+1 represents the relative camera
pose from frame t to from t+1 andW is the equivalent warping transformation.
By sampling these pixels at pt+1 in frame t+ 1, one can construct frame t from
frame t+1. The photometric difference (denoted by Lpe) between the constructed
image and the true image of frame t provides self-supervision for both the depth
network (fT ) and pose estimation networks (Fig. 2).

Lpose = Lpe(W(xr,t+1), xr,t) (9)

Bi-directional Auto-Masking Inspired by the auto-masking method pro-
posed in [16], we compute the photometric loss for different sequential image
pairs, e.g., from frame t + 1 to frame t and from frame t − 1 to frame t, and
then aggregate these photometric losses by extracting their minimum value, i.e.,

min
t′∈{...t−1,t+1... }

Lpe(W(xr,t′), xr,t). Additionally, the pixels satisfying

mask = min
t′∈{...t−1,t+1... }

Lpe(xr,t′ , xr,t) > min
t′∈{...t−1,t+1... }

Lpe(W(xr,t′), xr,t)

are selected for further loss computation. It is because the discarded pixels are
more likely to belong to moving objects with a similar moving speed as the mov-
ing camera, or stationary objects captured by a stationary camera. For a more
complete loss computation, we consider a bi-directional warping transformation,
i.e., from frame t to frame t′ as well as from frame t′ to frame t.

Lmask =maskt′→t ◦ min
t′∈{...t−1,t+1... }

Lpe(W(xr,t′), xr,t)

+maskt→t′ ◦ min
t′∈{...t−1,t+1... }

Lpe(W(xr,t), xr,t′))
(10)

In the second phase of our training, we train the depth and pose networks (fT
and Pose) with a combination of sequential real images and GAN translated
synthetic images. Our total loss objective which includes training the depth
network fT with supervised loss Ltask from synthetic data, can be written as:

Lphase2 = αposeLpose + αmaskLmask + αtaskLtask (11)

where αpose, αmask and αtask are hyper-parameters.

3.2 Semantic Augmentation

Semantic labels provide important information about object shape and geome-
try. We believe such information helps improve the accuracy of depth estimation
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by imposing additional constraints. For example, on 2D images, the pixels on the
object boundaries can have very different depths. Semantic information can help
regulate the pixels belonging to certain objects and facilitate the learning process
of depth estimation. In this work, to utilize semantic information, we augment
the input RGB images with additional semantic labels. We also experimented
with augmenting RGB images with semantic labels during synthetic-to-real im-
age translation and obtained substantial improvements in the quality of our
translated images.

4 Experiments

In this section, we first present the implementation details of our framework and
then compare our framework with other state-of-the-art work on the KITTI and
Make3D benchmarks . Finally, we study the importance of each component in
our framework through various ablation experiments.

4.1 Implementation Details

Network Implementation Our framework mainly consists of two main sub-
modules: (i) the synthetic-to-real image translation network which translates
synthetic images to real-style images, and (ii) the depth estimation network
which predicts depth maps for both translated synthetic images and real videos.
For the synthetic-to-real image translation network, we build our network on
top of the T 2Net architecture [46], with added constraints that use the synthetic
ground-truth labels for semantic and optical flow. For the semantic consistency
loss we use DeepLab v3+ with a MobileNet backbone as our Sseg model. We
pre-trained the model on vKITTI, achieving a median IoU of 0.898 on the val-
idation set. We tested the U-Net, VGGNet, and ResNet50 architectures for the
depth estimation network and selected the U-Net architecture due to its best
performance. A VGG-based architecture was used to estimate the relative cam-
era poses between sequential images. These depth maps and camera poses are
subsequently used to compute the self-supervised loss.

Data Pre-processing We use vKITTI [12] and KITTI [26] as the synthetic
dataset and the real-world dataset, respectively while training the synthetic-to-
real image translation network. The training dataset consists of 20470 images
from vKITTI and 41740 images from KITTI. The training images of the KITTI
dataset are further divided into small sequences. We use 697 images from KITTI
as our test dataset as per the eigen split [10]. The input images are resized
to 640 × 192 (width × height) during both training and testing. The ground-
truth depth information, semantic labels, and optical flow information from the
synthetic vKITTI dataset are also used during training. Similar to [46], we clip
the synthetic ground truth depths to the range of [0.01, 80] meters. For the real
data, the input sequential images are augmented by the corresponding semantic
labels, which are generated by DeepLab v3+ model [6].
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Model Training Training our model has two major challenges: (i) the train-
ing of GAN-based networks is well-known to be unstable; (ii) the depth estima-
tion in our model consists of two components and thus the weights of the depth
estimation network are updated by two separate loss functions, which can lead
to a convergence issue. To tackle this problem, we design a two-phase training
strategy. In the first phase, we pre-train the synthetic-to-real image translation
network along with synthetic supervised depth estimation to provide a stable ini-
tialization for the image translation network. In phase 2, we freeze the weights
of the image translation network and train the depth estimation network using
both synthetic supervised and self-supervised losses. We primarily tested two
training methods to harmonize the two sources of losses: 1) weighted sum train-
ing : updating the weights of the depth estimation network based on a weighted
sum of the two sources of losses; 2) alternating training : alternatively updating
the weights of the depth estimation networks by the two sources of losses. We
find that the two training methods are resulting in comparable evaluation re-
sults but the alternating training provides another control knob to optimize the
model training, and generalize well to both the data sources and therefore to
unseen datasets. Due to space limitation, we show the results using alternating
training only in this paper.

Further, we use the Adam optimizer [21], with initial learning rate of 2e−5

for the image translation network, 5e−5 for the depth estimation network, and
5e−5 for the camera pose estimation network.

Our network was trained on a RTX 2080Ti GPU and the training took 2.6
hours per epoch. On average, our depth estimation network can process 33 frames
per second during inference.

4.2 Monocular Depth Estimation on KITTI Dataset

We follow the procedure defined in [46] when evaluating on the KITTI dataset.
First, the ground truth depths are generated by projecting 3D LiDAR points
to the image plane and then the depth predictions are clipped at a distance of
80m and 50m. The evaluation results are listed in Table 1, where all metrics are
computed according to the evaluation strategy proposed in [10]. As shown in
the table, our framework shows the best performance across all metrics. We be-
lieve this is because our model can combine the benefits of synthetic supervised
depth estimation and self-supervised depth estimation. Typical supervised syn-
thetic approaches train models by using low-cost synthetic ground-truth depths,
but these approaches also suffer from unstable and inconsistent image trans-
lation, leading to less accurate translated images with low resolution. On the
other hand, self-supervised approaches can learn the depth from high resolution
sequential images; however, these depths are learned from indirect cues which are
sensitive to in-view object movements, blockages, etc. Training the model with
modified supervised and self-supervised constraints in our consolidated frame-
work ensures that we exploit the best of both worlds, which ultimately leads to
better prediction results.
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Method Dataset
Error-related metrics Accuracy-related metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

depth capped at 80m

Zhou et al. [49] K 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Yin et al. [44] K 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Wang et al. [38] K 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Ramirez et al. [28] K 0.143 2.161 6.526 0.222 0.850 0.939 0.972

Casser et al. [5] K 0.141 1.026 5.290 0.215 0.816 0.945 0.979

Ranjan et al. [29] K 0.140 1.070 5.326 0.217 0.826 0.941 0.975

Xu et al. [43] K 0.138 1.016 5.352 0.216 0.823 0.943 0.976

Meng et al. [25] K 0.133 0.905 5.181 0.208 0.825 0.947 0.981

Godard et al. [16] 2 K 0.132 1.044 5.142 0.210 0.845 0.948 0.977

Zheng et al. [46] K + V 0.174 1.410 6.046 0.253 0.754 0.916 0.966

Mou et al. [27] K + V 0.145 1.058 5.291 0.215 0.816 0.941 0.977

Ours K + V 0.124 0.826 4.981 0.200 0.846 0.955 0.982

depth capped at 50m

Yin et al. [44] K 0.147 0.936 4.348 0.218 0.810 0.941 0.977

Zheng et al. [46] K +V 0.168 1.199 4.674 0.243 0.772 0.912 0.966

Mou et al. [27] K + V 0.139 0.814 3.995 0.203 0.830 0.949 0.980

Ours K + V 0.118 0.615 3.710 0.187 0.862 0.962 0.984

Table 1. Monocular depth estimation on KITTI dataset with Eigen et al. [10] split.
The highlighted scores mark the best performance among selected models. In “Dataset”
column, “K” and “V” stands for the KITTI and the vKITTI dataset, respectively.

In Fig. 3 we compare qualitative depth estimation results of purely self-
supervised GeoNet [44], purely synthetic supervised T 2Net [46] and our proposed
framework. Purely self-supervised approaches results in depth maps which are
blurred and do not model depth discontinuity at object boundaries well. On
the other hand purely synthetic supervised approach results in sharper depth
maps but because of imperfect domain translation it fails to predict depth for
surfaces with multiple textures. For example, in the first row of Fig 3, T 2Net
predicts incorrect depth values for the wall on the right because of the window
on the wall adding additional texture. These defects severely limit the real-world
application of purely self-supervised and synthetic supervised techniques. Our
S3Net on the other hand generates sharper depth maps than GeoNet and doesn’t
suffer from the problems discussed for T 2Net depth, further proving our point
about combining best features from both.

In Fig.4 we compare syn-to-real translated images for T 2Net GAN and our
semantic consistent GAN. Without the presence of a specific task loss, e.g. a
depth estimation loss, the resulting objective drives the image translator to gen-
erate a realistic interpretation of synthetic images. However, when a task loss is
introduced the main objective is shifted to project synthetic images to a space
that is optimized for the task. Therefore, some of these differences might not be
visually perceivable but can lead to a large gain in performance. Our approach

2 For fair comparison, we selected the results for the model without pre-training on
the ImageNet dataset
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Fig. 3. Qualitative Depth Prediction Results: Column (a) real-world images from
KITTI, Column (b), (c), (d) are results for GeoNet [44], T 2Net [46], and our S3Net
framework, respectively.

significantly reduces artifacts and successfully retains the semantic structure
across synthetic and translated images.

Fig. 4. Translated images: Column (a) input synthetic images; Column (b) T 2Net;
Column (c) our S3Net GAN with semantic constraints.

We also evaluate our model on the KITTI odometry dataset. We use 3 se-
quential images as input and follow the same evaluation strategy as given in [49].
As shown in Table 2, our model outperforms the state-of-the-art approaches by
a convincing margin.

4.3 Generalization Study on Make3D Dataset

To show the generalization capability, we also test our framework on the Make3D
dataset [35]. We use the model trained using the KITTI dateset and the vKITTI
dataset, and evaluate the model on the Make3D test dataset, following the eval-
uation strategy in [17]. Table 3 shows that our S3Net outperforms other self-
supervised approaches by a considerable margin. It is because our framework
gains knowledge from both synthetic and real datasets. Therefore, our framework
sees more scenarios, which further leads to a better generalization performance.

4.4 Ablation Study

In this subsection, we perform a set of ablation experiments on the KITTI dataset
to discuss how each individual component in our framework contributes to the
final performance. The evaluation results are reported in Table 4.
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Method # of snippets Seq.09 Seq.10

ORB-SLAM (full) 5 0.014 ± 0.008 0.012 ± 0.011

ORB-SLAM (short) 5 0.064 ± 0.141 0.064 ± 0.130

DDVO (Wang et al. [37]) 3 0.045 ± 0.108 0.033 ± 0.074

SfmLearner (Zhou et al. [49]) 5 0.021 ± 0.017 0.020 ± 0.015

SfmLearner [49] updated 5 0.016 ± 0.009 0.013 ± 0.009

GeoNet (Yin et al. [44]) 5 0.012 ± 0.007 0.012 ± 0.009

MonoDepth2* (Godard et al. [16]) 2 0.017 ± 0.008 0.015 ± 0.010

EPC++ (Luo et al. [23]) 3 0.013 ± 0.007 0.012 ± 0.008

Ours 3 0.0097 ± 0.0046 0.0099 ± 0.0071

Table 2. Absolute Trajectory Error (ATE) on the KITTI odometry dataset.

Method
Error-related metrics

Abs Rel Sq Rel RMSE RMSE log

MonoDepth (Godard et al. [17]) 0.544 10.940 11.760 0.193

SfmLearner (Zhou et al. [49]) 0.383 5.321 10.47 0.478

T 2Net (Zheng et al. [46]) 0.508 6.589 8.935 0.574

MonoDepth2 (Godard et al. [16]) 0.322 3.589 7.417 0.163

TCDA (Mou et al. [27]) 0.384 3.885 7.645 0.181

Ours (no semantic augmentation) 0.372 5.699 7.844 0.176

Ours (with semantic augmentation) 0.322 3.238 7.187 0.164

Table 3. Error metrics for depth estimation on the Make3D dataset.

Synthetic Supervised Depth Estimation Due to a large domain gap be-
tween the synthetic and the real domain, a model that is only trained on synthetic
data typically generates unacceptable depth predictions on the real-world data.
Synthetic-to-real image translation is one of the most effective remedies for this
issue. Even with a native image translation network as proposed in [46], the depth
predictions on the real-world data can be improved by about 40%. Additionally,
the flow-guided photometric consistency and semantic consistency constraints
further regulates the image translation and improves our depth prediction accu-
racy by another 8.4% and 8%, respectively. Continuing training Sseg gives better
performance compared to freezing network parameters. This is because Sseg is
trained on synthetic semantic labels and cannot generalize to translated domain
if not trained further.

Synthetic Supervised + Semantic Augmentation We investigate the
importance of semantic augmentation to our model by (i) only augmenting the
input images for the depth estimation network, but keeping RGB images for the
image translation network, and (ii) augmenting the input images for both the
depth estimation network and the image translation networks. Compared with
the first augmentation strategy, the second strategy introduces a larger improve-
ment. It is because the semantic information can impose additional constraints
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Method
Error-related metrics Accuracy-related metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Synthetic Translated Supervised

Without synthetic-to-real image translation 0.278 3.216 6.268 0.322 0.681 0.854 0.929

Native synthetic-to-real image translation 0.168 1.199 4.674 0.243 0.772 0.912 0.966

With flow-guided photometric consistency 0.1539 0.993 4.4492 0.2241 0.7986 0.9356 0.9752

With semantic consistency (frozen Sseg) 0.1555 0.9680 4.7412 0.2324 0.7773 0.9245 0.9721

With semantic consistency 0.1544 0.9633 4.7422 0.2322 0.7786 0.9241 0.9727

Synthetic Translated Supervised with Semantic Augmentation

Semantic augmentation for depth estimation network in-
put only

0.1532 0.9631 4.3872 0.2275 0.7945 0.9325 0.9738

Semantic augmentation for both the image translation
networks & the depth estimation networks

0.1455 0.8869 4.2177 0.2154 0.8133 0.9411 0.9773

Synthetic Translated Supervised + Real-world Self-Supervised

With self-supervised depth estimation 0.1292 0.6969 3.8399 0.1964 0.8428 0.9554 0.9826

With auto-masking 0.1198 0.6671 3.7696 0.1921 0.8637 0.9583 0.9819

With semantic augmentation 0.1183 0.6150 3.7105 0.1876 0.8620 0.9622 0.9844

Table 4. Performance gain in depth estimation from different model components. The
predicted depth is capped at 50m

on object geometry and these constraints are useful for regulating the shape of
objects and determining the depth prediction on the boundary of objects.

Synthetic Supervised + Self-Supervised By adding photometric losses
to real-world sequential images and jointly training the synthetic supervised
and self-supervised depth estimation, the depth estimation accuracy on real-
world dataset is further improved by 11%. The real-world sequential images
are typically clear and accurate, which can compensate for the shortcomings in
the imperfect translated images. However, the photometric losses for real-world
sequential images are computed based on an assumption that the displacement
of pixels is purely caused by movement of the camera. Such an assumption does
not always hold. The direct supervision on the synthetic translated images can
help alleviate the negative effect of violating this assumption. But, our study
indicates that by selecting valid pixels and filtering out the pixels that violate
the assumption, our model is further improved by a noticeable margin.

5 Conclusion and Next Steps

In this paper, we present a framework for monocular depth estimation which
combines the features of both synthetic images and real video frames in a novel
semantic-aware, self-supervised setting. The complexity of our model does not
affect its scalability, as we only require a depth network during inference time.
We outperform all existing approaches on the KITTI benchmark as well as on
our generalization to the new Make3D dataset. These factors contribute to the
increased accuracy, scalability, and robustness of our framework as compared
to other existing approaches. Our framework extends typical dataset-specific
models to improve generalization performance, making it more relevant for real
world applications. In the future, we plan to explore strategies which can apply
similar frameworks to other related tasks in visual perception.
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