Supplementary Material - Leveraging Seen and Unseen Semantic Relationships for Generative Zero-Shot Learning

Maunil R Vyas, Hemanth Venkateswara, and Sethuraman Panchanathan

Arizona State University, Tempe AZ 85281, USA {mrvyas, hemanthv, panch}@asu.edu

1 Time complexity of the SR-loss

1. For the semantic similarity:

- Cosine Similarity matrix $(n \times n) : \mathcal{O}(n^2 L)$, L length of semantic feature, n total classes
- To get the K similar classes : $\mathcal{O}(n^2\log K), \ \mathcal{O}(n\log K)$ for each class, heap sort.
- Overall cost : $\mathcal{O}(n^2 L) + \mathcal{O}(n^2 \log K)$

2. For the visual similarity:

- Cosine Similarity matrix $(B \times K) : \mathcal{O}(BKV)$, V length of visual feature, B batch size classes, K neighbour classes.
- Overall cost : $\mathcal{O}(BKVE)$, E total number of epochs.
- Time Complexity SR-loss (Clean Attributes): $\mathcal{O}(BKVE) + \mathcal{O}(n^2L) + \mathcal{O}(n^2\log K)$
- Time Complexity SR-loss (Noisy Text): $\mathcal{O}(BKVE) + \mathcal{O}(n^2 LE) + \mathcal{O}(n^2 \log KE)$

Clearly, the overall time complexity is linear in terms of E, K, B, V, and L and degree 2 polynomial with log in terms of the total classes. It is worth noticing that the complexity is not exponential and the running time cost is manageable.

2 Vyas et al.

2 Training Algorithm

Below, we illustrate our training procedure for the LsrGAN model. We train the Generator (G_{θ}) and Discriminator (D_{θ}) alternately with the Adam optimizer. Notice that the training of LsrGAN contains two phases, one for the seen classes and another for the unseen classes.

Algorithm 1 Training procedure for the LsrGAN 1: Input: number of epochs N_E , the batch size m, discriminator iterations $N_d = 5$ for seen classes, loss hyper parameters λ_c , λ_{vp} and λ_{sr} , $N_c = 1$ or 2 discriminator iterations for unseen classes, and Adam parameters $\beta_1 = 0.5$ and $\beta_2 = 0.9$. 2: for iter = $1, ..., N_E$ do 3: // Seen Class Training 4: for $i = 1, ..., N_d$ do Minibatch sampling from \mathcal{T}^s with matching images from \mathcal{X}^s and noise \mathcal{Z} 5: $\tilde{\boldsymbol{x}} \leftarrow G_{\theta_a}(\boldsymbol{t}^s, \mathcal{Z})$ 6: Discriminator and classifier loss computation \mathcal{L}_d and \mathcal{L}_c using Eq. 2 and 3 7: $\theta_d \leftarrow \operatorname{Adam}(\nabla_{\theta_d^r} \mathcal{L}_d, \bigtriangledown_{\theta_d^c} \mathcal{L}_c, \theta_d, \lambda_c, \beta_1, \beta_2)$ 8: 9: end for 10: Minibatch sampling from \mathcal{T}^s and noise \mathcal{Z} 11:Generator loss computation L_G using Eq. 8 12: $\tilde{\boldsymbol{x}} \leftarrow G_{\theta_a}(\boldsymbol{t}^s, \boldsymbol{\mathcal{Z}})$ $\theta_g \leftarrow \operatorname{Adam}(\nabla_{\theta_q} \mathcal{L}_d, \nabla_{\theta_q} \mathcal{L}_{vp}, \nabla_{\theta_q} \mathcal{L}_c, \nabla_{\theta_q} \mathcal{L}_{sr}^s, \theta_g, \lambda_c, \lambda_{vp}, \lambda_{sr}, \beta_1, \beta_2)$ 13:14: // Unseen Class Training for $i = 1, ..., N_c$ do 15:16:Minibatch sampling from \mathcal{T}^u and noise \mathcal{Z} 17: $\tilde{\boldsymbol{x}} \leftarrow G_{\theta_g}(\boldsymbol{t}^u, \boldsymbol{\mathcal{Z}})$ 18: Classifier loss computation \mathcal{L}_c using Eq. 3 19: $\theta_d^c \leftarrow \operatorname{Adam}(\nabla_{\theta_d^c} \mathcal{L}_c, \theta_d^c, \lambda_c, \beta_1, \beta_2)$ end for 20: 21: Minibatch sampling from \mathcal{T}^u and noise \mathcal{Z} 22:Generator loss computation L_G using Eq. 8 23: $\tilde{\boldsymbol{x}} \leftarrow G_{\theta_a}(\boldsymbol{t}^u, \boldsymbol{\mathcal{Z}})$ $\theta_g \leftarrow \operatorname{Adam}(\nabla_{\theta_g} \mathcal{L}_c, \nabla_{\theta_g} \mathcal{L}_{sr}^u, \theta_g, \lambda_c, \lambda_{sr}, \beta_1, \beta_2)$ 24:25: end for