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1 Robustness to weight initialization approaches

In our work, we used PyTorch’s [9] default initialization method [7] for the fully
connected layers of LWE. To verify robustness to initialization, we change inial-
ization approach to Xavier initialization [1] for ResNet50[4] training on ImageNet
[10]. We find similar top-1 accuracy of 77.1%. This shows preliminary evidence
that the benefits of LWE may not be sensitive to the initialization of the weights
of LWE.

2 Robustness to exploding and vanishing gradients

We trained ResNet50 without BN [5] (or other normalization) to introduce van-
ishing/exploding gradient - this resulted in failed optimization after a few iter-
ations in first epoch; however, ResNet50-LWE is still able to optimize without
such normalization modules and reaches 52.4% accuracy at 30 epoch. Thus, LWE
is robust to exploding and vanishing gradients problems.

3 Effectiveness of LWE in pruning

Removing the most location-wise unimportant filter kernels (i.e., removing h x w
filters having the lowest m values) in each layer results in 0.03% accuracy im-
provement on ResNet50-LWE trained on ImageNet. As a preliminary investi-
gation on effectiveness in pruning using LWE-based training, on CIFARI10 [6],
we use LWE-based convolution blocks in training the recent Dynamic Sparse
Training pruning algorithm that jointly trains and prunes a ConvNet [8]. Using
this pruning strategy on WideResNet-16-8-LWE reduces model parameters to
around 10% of baseline WideResNet-16-8 without compromising much accuracy
(0.1% loss in accuracy), whereas using the Dynamic Sparse Training pruning
algorithm with WideResNet-16-8 reduces model parameters to around 11% of
baseline at the loss of 0.13% accuracy. This preliminary analysis suggests that us-
ing LWE-based convolution during training can be helpful in pruning algorithms
as well (e.g. [8,3,2]).
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