
Extract and Merge: Superpixel Segmentation
with Regional Attributes

Jianqiao An1,2, Yucheng Shi1,2, Yahong Han1,2,3[0000−0003−2768−1398]†,
Meijun Sun1[0000−0002−8691−8677], and Qi Tian4[0000−0002−7252−5047]

1 College of Intelligence and Computing, Tianjin University, Tianjin, China
2 Tianjin Key Lab of Machine Learning, Tianjin University, Tianjin, China

3 Peng Cheng Laboratory, Shenzhen, China
{anjianqiao, yucheng, yahong, sunmeijun}@tju.edu.cn

4 Noah’s Ark Lab, Huawei Technologies
tian.qi1@huawei.com

Abstract. For a certain object in an image, the relationship between
its central region and the peripheral region is not well utilized in ex-
isting superpixel segmentation methods. In this work, we propose the
concept of regional attribute, which indicates the location of a cer-
tain region in the object. Based on the regional attributes, we propose
a novel superpixel method called Extract and Merge (EAM). In the
extracting stage, we design square windows with a side length of a power
of two, named power-window, to extract regional attributes by calcu-
lating boundary clearness of objects in the window. The larger windows
are for the central regions and the smaller ones correspond to the periph-
eral regions. In the merging stage, power-windows are merged according
to the defined attraction between them. Specifically, we build a graph
model and propose an efficient method to make the large windows merge
the small ones strategically, regarding power-windows as vertices and the
adjacencies between them as edges. We demonstrate that our superpixels
have fine boundaries and are superior to the respective state-of-the-art
algorithms on multiple benchmarks.

Keywords: superpixel, power-window, boundary clearness, graph model

1 Introduction

Superpixel segmentation is to divide an image into several fragments without
intersecting, as illustrated in Fig. 1. The major advantage of using superpixels is
computational efficiency. It can be a helpful pre-process of numerous computer-
vision tasks such as image semantic segmentation [12, 5], object detection [14,
17], salient object detection [18, 21], tracking [19] etc. Some work in the field
of deep learning that specifically utilizes the features of the superpixels has also
been proposed in recent years. SPN [8] employs superpixel segmentation as
a pooling layout to reflect low-level image structure for learning and inferring

†Corresponding author

2 J. An et al.

Fig. 1. The images in the first and third columns show superpixel boundaries and the
ones in the second and fourth columns show superpixels colored by their mean colors.
From left to right, the results are generated by SLIC [1] and the proposed EAM,
respectively, with both 300 superpixels.

semantic segmentation. However, this requires the superpixel boundaries gen-
erated by algorithms can be as close as possible to the object boundary of the
original image under various complicated conditions, so that the semantic infor-
mation expressed by superpixels is almost equivalent to that expressed by the
original image.

In light of fundamental importance of superpixels in the computer vision, var-
ious representative superpixel segmentation algorithms have been proposed and
widely applied, including unsupervised methods [1, 20, 13, 2] and deep learning
based methods [16, 6] etc. Deep learning based methods relies on the train-
ing set, which is inefficient and lacks generalization ability. Here we list some
disadvantages of existing superpixel methods:

1) Pixels are directly merged into superpixels which are not well resistant to
noise and complex textures in the images.

2) Most of the algorithms focus on the color and spatial information but ignore
the deeper relationship between image pixels.

3) The superpixels cannot be flexibly allocated according to the regional fea-
tures, thus complicated details cannot be well segmented (see Fig. 1).

Innovatively, we divide the image region of an object into several categories,
from the central region to the peripheral region. The concept of regional at-
tribute is proposed to describe the labels for each category. Instead of directly
merging independent original image pixels, we extract regional attributes of each
image region through a proposed structure called Power-Window and merge
them into superpixels. Superpixels generated in this way are more disciplined
and more consistent with human vision. The contributions of this paper are
summarized as follows:

1) Extract and Merge (EAM), a novel method focusing on regional at-
tributes of objects in an image is proposed.

2) An ingenious structure called power-window is proposed to classify pixels
by regional attribute. Moreover, the definition and solution of boundary
clearness is proposed to help accomplish this extract regional attributes.

Extract and Merge 3

3) A graph model is built on power-windows and the solution called attrac-
tion competition is designed to merge windows into flexible and diverse
superpixels.

4) Experimental comparisons with several state-of-the-art superpixel segmen-
tation methods are taken on the BSDS500 dataset. The results show that
EAM keeps almost all the details of the original images and performs favor-
ably against the state-of-the-art.

2 Related Work
The superpixel segmentation methods can be roughly divided into two cate-
gories: unsupervised methods and deep learning methods. Unsupervised methods
include graph-based approach and clustering-based approach.

Graph-based methods: Prominent graph-based approaches for image seg-
menation rely on pixel graphs. Superpixels are generated by minimizing a cost
function using a graph model, in which pixels are vertices and pixel-level similari-
ties are treated as edge weights. The normalized cuts (NC) algorithm [7] is one of
the representative works of graph-based methods, which creates superpixels by
recursively computing normalized cuts for the pixel graph. However, NC suffers
from the high computational complexity cost. Felzenszwalb and Huttenlocher
(FH) [4] propose a minimum spanning tree based segmentation approach. Their
algorithm progressively joins components until a stopping criterion is met, which
prevents the spannning tree from covering the whole image. Although the FH
method preserves boundaries well, it often generates both extremely large and
small segments. The ERS [10] algorithm presents a superpixel segmentation
method by maximizing an objective function of entropy rate on graph topol-
ogy, which generates homogeneous superpixels and adhere to the boundaries. A
greedy algorithm is used to obtain solutions. Lazy random walk (LRW) [13] ad-
heres to object boundary well and preserves texture regions by translating input
image into a graph. The graph vertex is the image pixel, and then superpixels are
initialized and optimized iteratively by an energy function. In general, separate
image pixels are treated as vertices in these graph-based methods, causing them
susceptible to noise interference.

Clustering-based methods: Series of clustering-based superpixel methods
are developed based on clustering techniques. SLIC [1] produces superpixels by
adopting k-means clustering approach in the five dimensional CIELab color and
position feature space to cluster pixels. The LSC [20] method projects the five
dimensional features to a ten dimensional space and performs clustering in the
projected space. Normalized cuts formulation is adopted in LSC to generate
the final superpixels. The SEEDS [2] algorithm uses uniform blocks as initial
approximation of superpixels and iteratively exchanges neighboring blocks in a
coarse-to-fine manner based on an objective function. However, these clustering-
based methods are still in units of a single pixel, affecting the quality of the
superpixels.

Deep learning methods: Recently, deep learning based methods for su-
perpixel segmentation have been proposed. Two representative deep learning

4 J. An et al.

based superpixel segmentation methods are SEAL [16] and SSN [6]. In SEAL,
a new loss function is proposed to take the segmentation error into account for
affinity learning and Pixel Affinity Net is designed for affinity prediction. SSN
presents a differentiable superpixel sampling model which can be integrated into
end-to-end trainable networks.

Individual pixels are the basic unit in all of these algorithms, which cause the
algorithms to be insensitive to semantic information. Pre-extracting the central
and peripheral regions, and then merging these regions (instead of independent
pixels) into superpixels is demonstrated by us to be a smarter way.

3 The Proposed Method

Fig. 2. The EAM pipeline consists of two parts: the extracting process on the left and
the merging process on the right. The green arrow in the figure indicates the input and
the red arrow indicates the output. Refer to Fig. 3 and Fig. 4 for more details of the
extracting stage.

In this section we will describe in detail the EAM method. Our method (See
Fig. 2) consists of two stages, extracting and merging. The extracting stage is
essentially a process of pixel classification. According to the proposed concept of
regional attribute, we use squares with various sizes (power-window) to classify
pixels into several categories. The pixels in each window are regarded as a whole,
and they have the same regional attribute. The larger the window is, the closer it
is to the central region of a certain object, and vice versa. In the merging stage,
the classified power-windows are merged according to their regional attributes.
The power-windows of the central region are first merged. Then we build graph
model to define the attraction between the power-windows and merge the re-
maining windows according to their regional attribute from central to peripheral.
In this way, we can generate superpixels that are not disorganized while at the
same time maximize the consistency with the human visual object boundaries.
The degree of detail as well as the number of superpixels can be determined by
one parameter ϵdelta, under the condition of semi-manual intervention, which
will be further explained later.

Extract and Merge 5

3.1 Extracting

Fig. 3. To show the process of extracting more clearly, we deliberately choose an image
with simple and clear color. The size of the input image is 321 × 321, hence we take
the value of kmax to be 5 and iterate 5 times in total to get the regional attributes.

We perform bilateral filtering [15] on the original image before extracting.
The bilateral filtering method can remove the noise in the image while keeping
the boundary definition as much as possible, which can greatly help our subse-
quent extracting process. The method can be easily used by calling the opencv
package in python.

Power-Window: In order to extract the regional attributes of the pixels
in the image, we designed a structure of (kmax + 1) different sizes of square
windows with a side length of 20, 21, ..., 2kmax (called power-window) to assist
the process. k is called the power size of a power-window with the side length
of 2k. We define that

kmax = ⌊log2
min(h,w)

10
⌋ (1)

where h is the height of the image and w is the width. Each power-window
can be defined as a triple (x, y, k), where (x, y) represents the coordinate of the
upper left corner of the window and k represents its power size. The algorithm
is executed as follows. First, we initialize the original image (size h× w) into a
series of power-windows with power size of kmax, h

kmax
rows and w

kmax
columns.

If h or w are not divisible by kmax, we pad black pixels to the bottom and right
sides of the original image corresponding to the amount missing (padding) and
remove them (de-padding) when the stage is complete. Then we enumerate the
windows in order k from kmax to 0. For the current window with power size k,
if its boundary clearness < ϵbc, the attribute k of this region will be determined.
Otherwise it will be divided into four power-windows with power size k − 1 for
the next iteration and so on, until the power size equals to 1. Boundary clearness
is a quantity that we define to determine whether a power-window contains a
single object, which will be explained in more detail in the following section.

6 J. An et al.

And ϵbc is the threshold for boundary clearness which is set to 3 in this paper.
Refer to the Alg. 1 and Fig. 3 for more details.

Algorithm 1 Attributes Extracting
Input: Input image I after bilateral filtering and padding
Output: Sets of power-windows with different sizes: set0, set1, ..., setkmax

1: Empty set0, set1, ..., setkmax

2: Split I into power-windows with power size kmax

3: Insert the power-windows into setkmax

4: for k = kmax → 1 do
5: for each pwi ∈ setk do
6: if BoundaryClearness(pwi) < ϵbc then
7: Erase pwi from setk
8: Split pwi into 4 smaller power-windows.
9: Insert the 4 power-windows into setk−1

10: end if
11: end for
12: end for
13: return set0, set1, ..., setkmax

Boundary Clearness : To determine whether a power-window contains
only one single object, it is necessary to calculate the boundary clearness of the
image within the window. We present a graph-based definition of the concept of
boundary clearness and propose a corresponding calculation method. Items in a
power-window can be interpreted as a graph G = (V,E), where four corners of
each pixel in the window are the vertices and the boundaries between pixels are
the edges (see Fig. 4). We define the weight of each edge as the Euclidean distance
in [rgb] space of the two pixels with this edge as a dividing line. Our proposed
algorithm for calculating boundary clearness can be roughly seen as a process of
adding edges to the graph. First, we add to the graph all the outermost edges,
which represent the boundaries of the power-window and form a large cycle.
Next, we add the remaining edges one by one according to the descending order
of their weights, until a new cycle appears in the graph. The weight of the last
edge added to the graph is the expected boundary clearness. To explain further,
if the weight is large enough, it means that the two regions inside and outside
the new cycle have clear boundaries, which can be considered as two objects.
Refer to the Alg. 2 and Fig. 4 for more details.

The resulting power-windows with different power sizes through this stage
correspond to different regional attributes. The larger the resulting power-window
is, the closer it is to the central region of a certain object, and vice versa. In the
graph struture of the method calculating boundary clearness, the number of
vertices and edges are both on the same order of magnitude as the number of
pixels in the power-window. We use the DSU (disjoint-set-union) to determine if
a new cycle is generated, so the time complexity of the method is linear. For the

Extract and Merge 7

Fig. 4. Computation flow of boundary clearness. The example shows a portion
of an image with nine pixels. A weighted graph is set up and the edge list is sorted at
first. The edges are added one by one until a new cycle is generated. The cycle encloses
three pixels in the right bottom corner that express another object in the image. The
last edge weight 24.56 represents the boundary clearness of these two regions. The
larger the boundary clearness value is, the less likely we think these two regions belong
to the same object and we should try smaller power-windows, and vice versa.

Algorithm 2 Boundary Clearness
Input: Input power-window P
Output: The Boundary Clearness of P
1: Initialize set V
2: V contains corner nodes of pixels in P .
3: Initialize set E
4: E contains edges represented as triples (u, v, w), which u, v ∈ V and w is defined as

the Euclidean distance in [rgb] space of the two pixels which divided by the edge.
5: Initialize set E′ as a subset of E containing the outermost edges of P .
6: Initialize G = (V,E′)
7: List E \ E′ into L as [edge1, edge2, ...]
8: Sort L by edge.w in descending order.
9: for each edgei ∈ L do

10: Add edgei to G
11: if a new cycle in G generated by edgei then
12: LastEdge← edgei
13: break
14: end if
15: end for
16: return LastEdge.w

8 J. An et al.

entire extracting method, the number of iterations is at most Kmax, which is on
the order of logarithm. Therefore, the time complexity of extracting method is
O(NlogN), where N is the number of pixels in the input image. The proposed
method has the following outstanding features:

1) Simple definition of power-windows. Each window is a square structure which
could be defined simply by the upper left coordinate (x, y) and the power
size k.

2) The square structure with a side length of 2k can be easily cut into four
squares with the same side length of 2k−1, which can be seen as an efficient
half-interation process.

3) The proposed definition and solution method of boundary clearness can itel-
ligently ignore the color gradation in the same object and be sensitive to the
real object boundaries.

3.2 Merging

Using the resulting power-windows extracted in last stage, we propose a graph-
based methods for merging them into superpixels. Since the image pixels in each
power-window have the same regional attribute, each power-window is integrally
treated as an independent vertex in the graph, and the adjacencies between
power-windows are the edges. The two types of power-windows with the largest
power size (i.e. kmax, kmax−1) are first merged through BFS-based (breath-first
search) algorithm. For the smaller windows, we enumerate in descending order of
power size values and merge them through the proposed Attractive Competive
method. Each of the superpixel we ultimately generate is mapped to a label,
called spColor. The output of the merging stage is a map called ColorMap,
which records the spColor of each vertices in the graph structure. The initial
spColor of all vertices is 0, and the final spColor of them are integer numbers
between 1 and the total number of superpixels generated. Our final superpixels
are generated according to ColorMap by mapping the spColor of the vertices to
the corresponding pixel area in the original image. Image pixels with the same
spColor belong to the same superpixel.

Graph Structure: To merge power-windows into superpixels, the proposed
method represents the image as a graph where vertices are power-windows and
the edge weight are the similarities between the adjacent windows (i.e. sharing a
boundary). In this work, the [rgb] color of a power-window is defined as the mean
color of the pixels inside it and the similarity of two adjacent power-windows is
defined as the Euclidean distance in [rgb] space of their colors. It is clear that the
number of vertices and edges are both of the same order as the number of pixels
of the image, expressed by N . The structure is more clearly shown in Fig. 5.

BFS-based Merging: The power-windows with the two largest power size
kmax, kmax − 1 represent the central regions, which should be merged into con-
nected regions first. The algorithm consists of two iterations, while each power-
windows with kmax and kmax−1 power size are traversed respectively to expand
into some connected regions. The expansion of vertices has three limitations.

Extract and Merge 9

Fig. 5. Graph structure: Three types of power-windows separated by red lines with
different sizes are represented in the shown graph by three different types of vertices.
The purple lines in the figure are the edges connecting adjacent vertices.

Algorithm 3 BFS-based Merging
Input: Graph G = (V,E) created on power-windows
Output: ColorMap

1: function BfsExtension(v, ColorMap, spColor)
2: Initialize an empty Queue
3: Push v into Queue
4: ColorMap[v]← spColor
5: while Queue is not empty do
6: Pop a vertex v from Queue
7: for each uncolored v′ adjacent to v do
8: if Distance(v.color, v′.color) ≤ ϵbfs then
9: ColorMap[v′]← spColor

10: Push v′ into Queue
11: end if
12: end for
13: end while
14: end function
15:
16: for each uncolored v ∈ V do
17: if v.power_size ≥ kmax − 1 then
18: spColor ← spColor + 1
19: BfsExtension(v, ColorMap, spColor)
20: end if
21: end for
22: return ColorMap

10 J. An et al.

1) Only adjacent vertices can be expanded, just as in general BFS algorithm.
2) Only vertices with power size ≥ kmax − 1 can be expanded.
3) A vertex only expands the vertices which the weight of the edge between

them < ϵbfs. The threshold ϵbfs is set to 25 in this work.

The limitations are intended to form better initial subject regions, laying the
groundwork for the subsequent Attractive Competive algorithm. Refer to the
Alg. 3 and Fig. 2 for more details.

Attraction Competition: In this section, We define the concept of at-
traction between two vertices as the length of the shortest path between them.
Further more, we propose an efficient competition algorithm based on Dijkstra
Alg. [3]. The proposed algorithm goes through kmax − 1 iterations (i.e. from
power size (kmax − 2) downto 0). For each iteration, we compute the shortest
path from the colored vertices (spColor of which is not 0) to the uncolored ones
with Dijkstra algorithm. When one vertex u relaxes another vertex v in the pro-
cess, we assign the spColor of u to v temporarily. As v may be relaxed again
soon by another vertex u′ and the spColor of v should change to the the spColor
of u′, the process is just like an attraction competition between the vertices. We
do iterations in order of power size from (kmax−2) to 0, so in each iteration only
the vertices with the current power size are colored. For the verices that are far
away from any colored vertices, we take a clustering approach to merge them and
form new color regions, similar to SLIC [1]. This is done in the five-dimensional
[rgbxy] space, where [rgb] is the color of the power-window represented by a
vertex, and [xy] is the middle pixel position of the power-window. The initial
cluster centers are selected randomly and the distance measure D is defined as

D = drgb + αdxy (2)

where drgb and dxy is the Euclidean norm in [rgb] space and [xy] space re-
spectively. α is set to 0.02 in this paper. A binary search method is taken
to minimize the number of new colors to added under the condition that the
maximum color difference in one cluster is ≤ ϵcl. The threshold ϵcl is the only
parameter in this work allowing us to control the degree of detail and the num-
ber of superpixels. The smaller ϵcl is set, the finer the superpixels are and the
more the superpixel numbers, vice versa. In particular, for vertices with power
size = 0, we only let them be attracted to the colored regions but cannot cluster
by themselves as they express the details of the image boundaries. Refer to the
Alg. 4 and Fig. 2 for more details of Attraction Competition method.

As the number of vertices and edges in our proposed graph structure are
both of the same order as the number of the pixels of the image, expressed
by N , the time complexity of BFS-based Merging is O(N). For the subsequent
Attraction Competition method, kmax − 1 iterations are executed which is on
the order of logarithm. Further more, the complexity of Dijkstra algorithm with
priority queue is O(NlogN) and the complexity of the Cluster Method with few
constant number of iterations is O(N). So the total complexity of this algorithm
is O(Nlog2N).

Extract and Merge 11

Algorithm 4 Attraction Competition
Input: Graph G = (V,E) created on power-windows
Output: ColorMap

1: for k = kmax − 2→ 0 do
2: Setori ← colored vertices
3: Setter ← vertices with power size k
4: Dijkstra(Setori, Setter, ColorMap)
5: Update ColorMap
6: if k > 0 then
7: Set′ ← uncolored vertices in Setter
8: L← 1, R← Set′.size
9: while L < R do

10: Mid = ⌊L+R
2
⌋

11: Difmax ← Cluster(Set′,Mid)
12: if Difmax > ϵcl then
13: R←Mid
14: Update ColorMap
15: else
16: L←Mid
17: end if
18: end while
19: end if
20: end for
21: return ColorMap

4 Experiments

In this section, the proposed method is compared with some unsupervised state-
of-the-art superpixel segmentation methods, including two representative clustering-
based algorithms (SLIC [1] and LSC [20]), a graph-based algorithm (LRW [13])
and an algorithm based on energy optimization (SEEDS [2]) on BSDS5005

dataset. Furthermore, we also compared our method with two latest deep learn-
ing based superpixel segmentation methods (SEAL [16] and SSN[6]) to show
the great advantage on EV [11], which quantifies the variation of the image
explained by the superpixels. We also show that our algorithm can retain more
details in the visual comparison, and it is consistent with EV score.

4.1 Datasets and Performance metrics

For evaluation of the proposed method, we use the BSDS500 dataset which
containing 500 images with size 321 × 481. Achievable Segmentation Accuracy
(ASA) [9] is the most widely adopted criteria for measuring superpixel segmenta-
tion quality. Moreover, in order to better measure how well the data in the orig-
inal pixels is represented by superpixels we use Explained Variation (EV) [11].
The detailed definitions of these metrics are as follows:

5https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping

12 J. An et al.

Achievable Segmentation Accuracy (ASA): ASA [9] quantifies the achiev-
able accuracy for segmentation using superpixels as pre-processing step. The
performance of subsequent processing is expected to be unaffected. Then ASA
is defined as:

ASA(G,S) =

∑
i maxj |Si ∩Gj |∑

j |Gj |
(3)

ASA computes the highest achievable accuracy by labeling each superpixel with
the label of ground truth segmentation that has the biggest overlap area, i.e.
higher is better.

Explained Variation (EV): EV [11] evaluates the superpixel segmentation
quality independent of annotated ground truth. As image boundaries tend to
exhibit strong change in color and structure, EV assesses boundary adherence
independent of human annotions. EV is defined as:

EV (S) =

∑
Sj

|Sj |(µ(Sj)− µ(I))2∑
xn

(I(xn)− µ(I))2
(4)

where µ(Sj) and µ(I) are the mean color of superpixel Sj and the image I,
respectively. As result, EV quantifies the variation of the image explained by the
superpixels, i.e. higher is better.

4.2 Compare with State-of-the-art

In all comparative experiments in this section, instead of directly controlling the
number of superpixels manually, we use the cluster diameter threshold ϵcl to
control the degree of detail of segmentation since it is difficult for the human eye
to determine the appropriate number of superpixels of an image but the degree
of detail. We obtained the average number of superpixels by adjusting the value
of ϵcl on the BSDS500 dataset, as shown in Table. 1.

Number of superpixels 100 200 300 400 500
ϵcl 30 20 15 8 5

Table 1. The correspondence between ϵcl and the average number of superpixels of
EAM in the experiment on the BSDS500 dataset.

We compare EAM with four unsupervised state-of-the-art superpixel algo-
rithms, including SLIC [1], LSC [20], LRW [13] and SEEDS [2] on the BSDS500
dataset. For all four algorithms, the implementations are based on publicly avail-
able codes. The experiments are performed on the BSDS500 dataset. EAM has
achieved higher ASA than other methods as shown in the leftmost graph of
Fig. 6. It shows that our method can better express the object boundaries.

In order to test the performance of our method in more depth, we also per-
formed comparison experiments with two latest deep learning based methods

Extract and Merge 13

Fig. 6. Comparing state-of-the-art methods for a range of 5 different numbers of su-
perpixels on the BSDS500 datasets, ASA on the left and middle, EV on the right.
The leftmost graph shows the performance comparison of the unsupervised methods
and the middle one shows the deep learning based methods. For each such value, all
methods were initialized, and ended with about the same number of superpixels.

Fig. 7. Visual comparison of superpixel segmentation results, the superpixel boundaries
and mean colors. (a) Origional. (b) SLIC (boundaries). (c) SLIC (mean color). (d)
SEAL (boundaries). (e) SEAL (mean color). (f) EAM (boundaries). (g) EAM (mean
color). The average superpixel numbers in all images is roughly 200. All methods is
initialized and ended with about the same number of superpixels. The images with
mean color show huge advantage of EAM compared to other methods in term of detail
retention, as demonstrated by EV score.

14 J. An et al.

(SEAL [16] and SSN [6]) on 200 images of the BSDS500 dataset (300 images
for training). The results are also presented on Fig. 6. The experimental results
of two kinds of unsupervised state-of-the-art methods (SLIC [1], LSC [20]) are
also added to the line graph, in order to better form the performance comparison
between deep learning based methods and unsupervised methods (including the
proposed EAM).

In terms of ASA, compared with unsupervised methods, deep learning based
methods has obvious advantages. The performance of EAM ranks second, not as
good as the algorithms SSN [6], but EAM is the only one unsupervised methods
that is comparable to the deep learning based methods. Refer to the middle
graph of Fig. 6 for more details.

As the explained variation (EV) metric quantifies the quality of superpixel
segmentation without relying on ground truth, it is more objective for com-
parison experiments with deep learning based methods. In terms of EV, the
proposed method performs the best and shows the huge advantage against the
deep learning based methods (SSN [6] and SEAL [16]) and unsupervised meth-
ods (LSC [20] and SLIC [1]). Refer to the rightmost graph of Fig. 6 for more
details.

Deep learning methods rely too much on the ground truth from training sets
thus they score highly on ASA but not very well on EV. The proposed method
can achieve performance comparable to deep learning based methods without
the need of extensive sample data for model training and has strong universality,
which demonstrates the advantage and effectiveness of this approach.

To make more intuitive, we do visual experiment on the BSDS500 dataset,
as shown in Fig. 7. Consistent with the EV score in Fig. 6, EAM retains much
more details than other methods under the same superpixel numbers.

For time efficiency, EAM has no training overhead and the total complexity
of the method is O(Nlog2N). Compared with most unsupervised methods such
as ERS�[10] O(N2logN) and NC [7] O(N

3
2), EAM has higher computational

efficiency, but with some efficient algorithms such as SLIC [1] O(N), we do need
to strengthen.

5 Conclusion

In this paper, we focus on the regional attribute of image pixels for the first time
in the field of superpixel segmentation. A novel superpixel method called EAM
is proposed to generate finer superpixels. Compared with the direct merging of
independent pixels, the pre-extraction process can obtain useful prior knowledge
(the regional attributes). This allows EAM to smartly divide the detail portion
with more superpixels and not waste on the bulk portion.

Acknowledgments

This work is supported by the NSFC (under Grant 61876130, 61932009).

Extract and Merge 15

References
1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic su-

perpixels compared to state-of-the-art superpixel methods. IEEE Transactions
on Pattern Analysis and Machine Intelligence 34(11), 2274–2282 (Nov 2012).
https://doi.org/10.1109/TPAMI.2012.120

2. den Bergh, M.V., Boix, X., Roig, G., Gool, L.V.: SEEDS: superpix-
els extracted via energy-driven sampling. CoRR abs/1309.3848 (2013),
http://arxiv.org/abs/1309.3848

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (Dec 1959). https://doi.org/10.1007/BF01386390,
https://doi.org/10.1007/BF01386390

4. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image
segmentation. International Journal of Computer Vision 59(2), 167–
181 (Sep 2004). https://doi.org/10.1023/B:VISI.0000022288.19776.77,
https://doi.org/10.1023/B:VISI.0000022288.19776.77

5. Gadde, R., Jampani, V., Kiefel, M., Gehler, P.V.: Superpixel convolu-
tional networks using bilateral inceptions. CoRR abs/1511.06739 (2015),
http://arxiv.org/abs/1511.06739

6. Jampani, V., Sun, D., Liu, M., Yang, M., Kautz, J.: Superpixel sampling networks.
CoRR abs/1807.10174 (2018), http://arxiv.org/abs/1807.10174

7. Jianbo Shi, Malik, J.: Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (Aug 2000).
https://doi.org/10.1109/34.868688

8. Kwak, S., Hong, S., Han, B.: Weakly supervised semantic segmentation using su-
perpixel pooling network. In: AAAI (2017)

9. Liu, M., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate su-
perpixel segmentation. In: CVPR 2011. pp. 2097–2104 (June 2011).
https://doi.org/10.1109/CVPR.2011.5995323

10. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel
segmentation. CVPR 2011 pp. 2097–2104 (2011)

11. Moore, A.P., Prince, S.J.D., Warrell, J., Mohammed, U., Jones, G.: Superpixel
lattices. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1–8 (June 2008). https://doi.org/10.1109/CVPR.2008.4587471

12. Sharma, A., Tuzel, O., Liu, M.Y.: Recursive context propagation network for se-
mantic scene labeling. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D.,
Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27,
pp. 2447–2455. Curran Associates, Inc. (2014), http://papers.nips.cc/paper/5282-
recursive-context-propagation-network-for-semantic-scene-labeling.pdf

13. Shen, J., Du, Y., Wang, W., Li, X.: Lazy random walks for superpixel segmen-
tation. IEEE Transactions on Image Processing 23(4), 1451–1462 (April 2014).
https://doi.org/10.1109/TIP.2014.2302892

14. Shu, G., Dehghan, A., Shah, M.: Improving an object detector and extracting re-
gions using superpixels. In: 2013 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3721–3727 (June 2013). https://doi.org/10.1109/CVPR.2013.477

15. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth
International Conference on Computer Vision (IEEE Cat. No.98CH36271). pp.
839–846 (Jan 1998). https://doi.org/10.1109/ICCV.1998.710815

16. Tu, W.C., Liu, M.Y., Jampani, V., Sun, D., Chien, S.Y., Yang, M.H., Kautz, J.:
Learning superpixels with segmentation-aware affinity loss. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2018)

16 J. An et al.

17. Yan, J., Yu, Y., Zhu, X., Lei, Z., Li, S.Z.: Object detection by labeling superpixels.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 5107–5116 (June 2015). https://doi.org/10.1109/CVPR.2015.7299146

18. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-
based manifold ranking. 2013 IEEE Conference on Computer Vision and Pattern
Recognition pp. 3166–3173 (2013)

19. Yang, F., Lu, H., Yang, M.H.: Robust superpixel tracking. Trans. Img.
Proc. 23(4), 1639–1651 (Apr 2014). https://doi.org/10.1109/TIP.2014.2300823,
https://doi.org/10.1109/TIP.2014.2300823

20. Zhengqin Li, Jiansheng Chen: Superpixel segmentation using lin-
ear spectral clustering. In: 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). pp. 1356–1363 (June 2015).
https://doi.org/10.1109/CVPR.2015.7298741

21. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background
detection. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition.
pp. 2814–2821 (June 2014). https://doi.org/10.1109/CVPR.2014.360

