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Abstract. Deep learning (DL) methods have revolutionized the paradigm
of computer vision tasks and DL-based video compression is becoming
a hot topic. This paper proposes a deep video compression method to
simultaneously encode multiple frames with Frame-Conv3D and differ-
ential modulation. We first adopt Frame-Conv3D instead of traditional
Channel-Conv3D for efficient multi-frame fusion. When generating the
binary representation, the multi-frame differential modulation is utilized
to alleviate the effect of quantization noise. By analyzing the forward
and backward computing flow of the modulator, we identify that this
technique can make full use of past frames’ information to remove the
redundancy between multiple frames, thus achieves better performance.
A dropout scheme combined with the differential modulator is proposed
to enable bit rate optimization within a single model. Experimental re-
sults show that the proposed approach outperforms the H.264 and H.265
codecs in the region of low bit rate. Compared with recent DL-based
methods, our model also achieves competitive performance.

1 Introduction

Since video data have contributed to more than 80% of internet traffic [8], video
is playing an increasingly important role in human life. Therefore, an efficient
video compression system is in highly demand. In the past decades, standard
video compression algorithms require large amounts of hand-crafted modules.
While they have been well engineered and thoroughly tuned for each local mod-
ule, they cannot be end-to-end optimized for emerging video applications such
as object detection, VR applications, video understanding, and so on. Recently,
deep learning (DL) methods achieve great success in various computer vision
tasks. DL-based image and video compression approaches have achieved compa-
rable or even better performance than the traditional codecs [4, 6, 14,21,22,26].
Inspired by recent advance in DL-based image and video compression works, we
propose a fully end-to-end deep video compression model. The keynotes of this
paper are summarized as follows.

Frame 3D convolution for efficient multi-frame fusion. 3D convolution
(Conv3D) has been proved as an efficient module for video processing [7,10,13].
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Traditional Conv3D slides a window along three dimensions: depth, height and
width. Then the partial results are added up along channels. For video tasks, the
depth dimension is commonly along multiple frames and for clarity we denote
this traditional way as Channel-Conv3D. Although Channel-Conv3D can extract
spatial and temporal information of multiple frames at the same time, it needs
deeper network to slide the window through all input frames, thus causes high
computing cost. To resolve this, we introduce Frame-Conv3D which sets the
channel as depth and adds up the partial result along frames. This operation
can learn the temporal features of all input frames within one convolution layer.

Multi-frame differential modulation to alleviate the effect of quan-
tization noise in training. Despite various block structures, most works fol-
low an auto-encoder framework with an extra quantizer after the middle bottle
layer [14, 17, 21, 22, 26]. The quantizer is necessary to achieve the binary repre-
sentation and generate the bit-streams. However, it complicates gradient based
learning since it is inherently non-differentiable. To make the quantizer trainable,
one way is to use soft assignment to approximate quantization [4] and another is
to model it with additive uniform noise [21]. Although these methods can enable
propagating the gradients, the binarization is in pixel-level and the similarity of
frames is not adopted, thus introduce much quantization noise. In this paper,
we propose the multi-frame differential modulation that binarize the residual
between multiple frames. This method can effectively remove the redundant in-
formation between frames and thus minimize the effects of quantization noise
during training.

Bit rate optimization within single model. To enable bit rate optimiza-
tion, we propose a dropout scheme to optimize different bit-rate levels within
a single model. Our approach is dropping some of the binary representations
for transmitting bit. This is an important setting to save computing cost and
transmitting bandwidth when variable video qualities are required.

We compare the proposed model with state-of-art video compression codecs
(H.264, H.265) and recent DL-based methods [14, 26] on two standard datasets
of uncompressed video: UVG [2] and HEVC Standard Test Sequences [19]. Our
video codec outperforms the standard H.264, H.265 and DL-based method [26]
in compression quality measured by peak signal-to-noise ratio (PSNR) and mul-
tiscale structural similarity (MS-SSIM) [24]. It also on par with the deep codecs
of [14].

The rest of this paper is organized as follows. Section 2 reviews the related
works in DL-based image and video compression. Section 3 describes the pro-
posed framework and illustrates the detailed information in implementation.
Section 4 gives the experimental results to show the efficiency of the proposed
method, followed with a conclusion in section 5.
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2 Related Work

2.1 DL-based Image Compression

DL-based image compressing methods have attracted extensive attention in
recent years. Auto-encoders [3–6, 12, 15, 16, 20] and recurrent neural networks
(RNNs) [21, 22] are two popular architectures in image compression. Common
loss functions for optimizing the network are the mean-squared error (MSE)
[4, 5, 20] and MS-SSIM [6, 22]. To improve the subjective visual quality, gen-
erative adversarial networks (GANs) are adopted in [3, 16]. In addition, other
techniques to improve the image compression performance includes generalized
divisive normalization (GDN) [5], multi-scale image decomposition [16], and im-
portance map [12]. These learned approaches provide well guidance for video
compression.

2.2 DL-based Video Compression

Compared with image compression, video needs efficient methods to remove the
inter-picture redundancy. For this, spatio-temporal auto-encoder is an effective
structure, as it extend the convolutional auto-encoder formulation with the abil-
ity to extract features of spatial and temporal information at the same time.
Chen et al. [23] divide video frames into 32×32 blocks and use an anto-encoder
to compress the block. They perform motion estimation and compensation with
traditional methods and the encoded representations are directly quantized and
coded by the Huffman method. This approach is not totally end-to-end and can-
not be competitive with H.264. Wu et al. [26] propose image interpolation and
Conv-LSTM to compress frames iteratively. To reconstruct high-quality video,
the Conv-LSTM based codec has to work for several recurrent loops, which
results in long running times for both encoding and decoding. Lu et al. [14] pro-
pose a real end-to-end deep video coding scheme. They employ an extra motion
compensation network to calculate the optical flow and compensate for motion
between current and previous frames. This scheme achieves better compression
efficiency than H.264, and can be competitive with H.265 when evaluated with
MS-SSIM. However, multiple models have to be trained in [14] for different levels
of bit rate.

2.3 Quantizer for Deep Learning

To generate the bit-stream for image or video compression, a trainable quantizer
is necessary in DL framework. Binarizing feature maps in neural networks has
been studied in several works for network quantization [9] and image compres-
sion [4,21,22]. To propagate gradients through the non-differentiable quantizer,
methods can be divided into two categories: stochastic regularization [9,22] and
soft assignment [4]. The former replaces quantization by adding noise and the
later adopts a soft function to approximate the sign(x). Although these quantiz-
ers can be plugged in the DL framework for backward optimization, the meth-
ods are pixel independent. They binarize each pixel without considering the
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dependency between nearing pixels. As a result, the mentioned quantizer cannot
benefit from frame similarity to compress the features into binary. Instead, this
paper propose a quantizer based on differential modulation, which can effectively
eliminating redundant information of multiple frames for binary compression.

3 Proposed Method

3.1 Overview of the Proposed Method

A video is composed by a sequence of N frames: FN = {f1, f2, ..., fN}, where
each frame fi ∈ RC×H×W has H×W pixels and C channels (for RGB frames, C
is 3). If we stack theseN frames in the second dimension together, the input video
sequence can also be described as a 4D tensor: FN ∈ RC×N×H×W with spatial
and temporal information. Fig. 1 gives a high-level description of the proposed
video compressing framework. We encode and decode multiple frames together to
improve the compressing efficiency. As an auto-encoder, the network structure is
composed by an encoder Eφ, a differential quantizer Q and a decoder Dθ, where

φ and θ are the parameters of neural network. Assuming N frames F̂Nt−1 have
been decoded at last time t − 1, to encode the N frames FNt at current time
t, we first apply a prediction network Pσ on F̂Nt−1 and then encode the residual

rt = FNt − Pσ(F̂Nt−1), where σ is the parameter of the prediction network. The
decoder will reconstruct the residual r̂t as side information. Algorithm flow for
time step t is shown as follows.

Encoder
Ef 

Decoder
Dq

Prediction

Network Ps

Differential

Quantizer Q ˆ N

tF

1
ˆ N

tF −

N

tF N

tFtC
tB

From previous time t-1

tr t̂r

Fig. 1: Proposed end-to-end video compression network composed by the pre-
diction network Pσ, the encoder Eφ, the quantizer with differential modulation,
and the decoder Dθ.

Input: previous decoded N frames F̂Nt−1 ∈ R3×N×H×W and current N
frames FNt ∈ R3×N×H×W to encode.

Step 1: prediction network. Based on previous decoded frames F̂Nt−1, we
use a 3D resnet model Pσ in Fig. 2(d) to predict the current frames F̄Nt =
Pσ(F̂Nt−1). 3D resnet block (ResB3D) in Fig. 2(a) has been proved effective for
many video tasks such as classification and super-resolution [7, 10,13].

Step 2: encoder. Based on the predicted frames F̄Nt , we encode the residual
rt = FNt − F̄Nt . The encoder Eφ is composed by four parts, which is shown in
Fig. 2(b). First, we up-sample the channel number from 3 to 64 by Channel-
Conv3D. Then a stack of ResB3D with max-pooling layers in height and width
are introduced to expand the receptive field and scale down the frame size for
compression. After that, we up-sample the number of frames with ratio U by
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Fig. 2: Network architectures of sub-modules. The yellow modules are built with
Channel-Conv3D and the blue are with Frame-Conv3D. The number after ×
is either the amount of convolution filters or the replica of blocks. (a). The 3D
resnet block (ResB3D). (b). The encoder with a Frame-Conv3D to up-sample
frames. (c). The decoder with a Frame-Conv3D to down-sample frames. (d). The
prediction network using ResB3D.

Frame-Conv3D for latter multi-frame differential modulation. The difference be-
tween Channel-Conv3D and Frame-Conv3D is discussed in section 3.2. Finally,
we down-sample the channel number to 1 with Channel-Conv3D for compres-
sion. Thus the encoded tensor Ct before quantizer can be denoted in Eq. 1, and

it should have a shape Ct ∈ R1×(U∗N)×H/2M×W/2M , where M is the number of
max-pooling with 2 kernel size.

Ct = Eφ(rt) = Eφ(FNt − F̄Nt ) = Eφ(FNt − Pσ(F̂Nt−1)) (1)

Step 3: quantization with multi-frame differential modulation. A
quantizer is necessary to generate the bit-stream Bt ∈ {−1, 1}s(Ct) from float
tensor Ct. Trainable quantizer has been well studied in previous works for model
quantization [9] and image compression [4,21]. However, these works mainly fo-
cus on how to propagate the gradients with this non-differentiable operation, but
fail to make full use of the signal and noise characteristic. Instead, we introduce a
differential quantizer to alleviate the effect of quantization noise. The key here is
to quantize the differential information between up-sampled frames. Details will
be given in section 3.3. After this step, the output bit-stream Bt have the same

shape of Ct, i.e. Bt ∈ R1×(U∗N)×H/2M×W/2M , but each pixel of Bt is quantized
into -1 or 1. To measure the number of bits for compressing, we use bits per
pixel (BPP) to represent the required bits for each pixel in the current frames.
It can be calculated that the maximum BPP is U

4M
in our model.

Step 4: decoder. The decoder Dθ in Fig. 2(c) is nearly the inverse process of
the encoder. First, we up-sample the channel from 1 to 64 with Channel-Conv3D
and down-sample the frames from U ∗N to the original N with Frame-Conv3D.
Then we decode the side information using 3D resnet and scale up the features
to the original size with bilinear interpolation. After that we down-sample the
channel number to 3 to reconstruct the side information r̂t. Finally, the decoded
N frames F̂Nt at time step t can be described as Eq. 2.

F̂Nt = F̄Nt + r̂t = Pσ(F̂Nt−1) + r̂t = Pσ(F̂Nt−1) +Dθ(Bt). (2)

Output: the quantized bit-stream Bt and the reconstructed N frames F̂Nt .
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3.2 Channel-Conv3D and Frame-Conv3D

Conv3D can learn the spatio-temporal features of multiple frames effectively.
Traditional Conv3D sums up the partial results along the input channel dimen-
sion. The output can be denoted in top of Eq. 3, where ∗ is the convolution
operation, and Cout is the number of 3D filters that determines the output
channel. We denote this operation as Channel-Conv3D. The receptive field of
one Channel-Conv3D layer is limited by the small kernel size which is usually
3. Multiple layers can extend the receptive field but introduce high computing
cost. Therefore, we proposed the Frame-Conv3D that sums up the partial results
along the input frame dimension. It is described in bottom of Eq. 3, where Nout
is the number of output frames. It can be noticed that all features of input frames
are fused to the output by summing operation regardless of the kernel size. We
replace some traditional Channel-Conv3D with Frame-Conv3D in encoder and
decoder to further fuse the features of multiple frames. Another potential benefit
is that the number of output frames can be arbitrarily assigned, which is useful
for the mult-frame differential modulation (discussed in section 3.3).

Channel-Conv3D: out(Coutj) = bias(Coutj) +

Cin−1∑
i=0

weight(Coutj) ∗ input

Frame-Conv3D: out(Noutj) = bias(Noutj) +

Nin−1∑
i=0

weight(Noutj) ∗ input

(3)

3.3 Differential Quantizer Q

In order to generate a binary feature maps, previous works adopt a pixel-level
quantizer. They quantize each pixel of the activation without considering the
dependency between frames. Different from any previous methods, we propose
a differential quantizer. It is based on the multi-frame differential modulation
and can effectively eliminate the redundant information for binary compression.
This section first gives the detailed implementation of the differential quantizer
in DL framework, and then explains the effectiveness of this method in theory.

Implementation of differential quantizer in DL framework. The dif-
ferential quantizer is composed by a differential modulator and a trainable quan-
tizer Qb. After we get the up-sampled frames Ct = {ct[1], ct[2], ..., ct[U ∗N ]}, ct ∈
R1×H/2M×W/2M in section 3.1, we first apply differential modulation to each
frame ct and generated the modulated result yt. Then a trainable quantizer is
applied on yt to generate the final binary output bt.

1) Trainable quantizer Qb. We employ the binary technique proposed in
[21] to realize a trainable quantizer Qb for DL framework. We first apply
a tanh activation on the input to normalize it into the range of [-1, 1].
Then the binary function B(x) for x ∈ [−1, 1] is defined as B(x) = x + ε,
B(x) ∈ {−1, 1}, ε has (1 + x)/2 probability to be 1 − x and (1 − x)/2
probability to be −1 − x. The ε is the quantization noise. Therefore, the
full function of the quantizer Qb according to the modulated signal yt is
Qb(yt) = B(tanh(yt)). For the backward pass of gradients, the derivative of
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the expectation is taken [21]. Since E[B(x)] = x, the gradients pass through
B is unchanged. Once the network are trained, B(x) is replaced by the sign
function to get a fixed representation for a particular input.

2) Forward computing of the differential quantizer Q. Based on the
trainable quantizer Qb, the forward computing flow of the differential quan-
tizer Q is presented in Algorithm 1. The input Ct has been up-sampled
with Frame-Conv3D and each ct represents a frame in Ct. Qb is the defined
trainable quantizer, Yt = {yt[1], ..., yt[n]} are the modulated frames before
quantizer and Bt = {bt[1], ..., bt[n]} are the quantized outputs. Line 3 in Al-
gorithm 1 is the definition of the differential modulation. It should be noticed
that the modulation is not simply the difference between ct[i] and ct[i− 1].
The current yt[i] is modulated not only with ct[i], but also the yt[i− 1] and
bt[i − 1] of last frame. We theoretically identify that the modulator can ef-
fectively deal with the quantization noise, which is explained in next part
of this section. Since the computing flow only includes a trainable quantizer
and operations of addition and subtraction, it is compatible with the DL
framework and can be optimized by back propagation algorithm.

Algorithm 1 The forward computing flow of differential quantizer Q

Input: Up-sampled frames Ct = {ct[1], ct[2], ..., ct[n]}
Output: Quantized output Bt = {bt[1], bt[2], ..., bt[n]}
1: Initialization yt[0]⇐ 0, bt[0]⇐ 0
2: for i from 1 to n do
3: yt[i]⇐ yt[i− 1] + ct[i]− bt[i− 1] (Differential Modulator)
4: bt[i]⇐ Qb(yt[i]) (Trainable Quantizer)
5: end for

3) Back propagation of the differential quantizer Q. To see how the
weights update during back propagation with differential modulation, we
calculate the gradients of Algorithm 1. In traditional quantizer, only Qb has
been used, i.e., b′t = B(tanh(ct)), where B(x) is the binarization function
defined above and has derivative 1. The gradients propagated from ct to
b′t is ∂b′t/∂ct = 1 − tanh2(ct), which is pixel independent. For the differen-
tial quantizer Q, we can rewrite the updating function of line 3 and 4 in
Algorithm 1 as

bt[m] = Qb(yt[m]) = Q(ct[m], ct[m− 1], ..., ct[1]) (4)

It can be noticed that bt[m] is updated not only from ct[m], but also all
previous frames. So the gradients of Q should also propagate from latter
frames to previous. The gradients from bt[m] to ct[m− k] can be calculated
as Eq. 5 (detailed proof is given in the supplementary material).

∂bt[m]

∂ct[m− k]
=


1− tanh2(yt[m]), k = 0

(1− tanh2(yt[m]))×
k∏
i=1

tanh2(yt[m− i]), 1 ≤ k ≤ m− 1.
(5)
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The first gradient at k = 0 is consistent with tradition methods that updat-
ing from bt[m] to ct[m]. It’s interesting to analyze the second gradients from
bt[m] to ct[m−k]. According to this equation, the bt[m] propagates gradients

to all previous frames ct[m−k] with weight wk =
∏k
i=1 tanh2(y[m− i]). This

indicates that the network not only optimizes in pixel level, but also makes
use of information in previous frames to remove the redundancy between
frames. Therefore, this method is more likely to encode a binary distribu-
tion with less loss of information for compressing. Since |tanh2(x)| < 1, an
important property of wk is that w0 = 1 > w1 > w2 > ... > wm−1. This
distribution of w is intuitively correct since two frames with long distance
(larger k) should be less relevant and have smaller weight. This analysis also
indicates the importance of tanh activation for network training.

Explanation for the effectiveness of differential quantizer. Based on
the computing flow, we can theoretically analyze the effectiveness of the pro-
posed differential quantizer. Notice that the trainable quantizer Qb in line 4 of
Algorithm 1 can be modeled by Eq. 6, where B(x) is the defined binary function,
yt[i] is the modulated frames before quantization, and e[i] is the additive noise.
To simplify the formula, we adopt a linear approximation to get the last equality
with an equivalent noise e′[i]. We identify that in a well-trained network, yt[i]
often have values in [−1, 1]. Since tanh(yt[i])− yt[i] is close to zero when yt[i] is
in [−1, 1], this approximation is acceptable.

Qb(yt[i]) = B(tanh(yt[i])) = tanh(yt[i]) + e[i]

= yt[i] + (tanh(yt[i])− yt[i] + e[i]) = yt[i] + e′[i]
(6)

Combining Eq. 6 with the updating function of the differential modulator in
Algorithm 1 (line 3), we can subsequently infer the following equation,

bt[i] = ct[i] + e′[i]− e′[i− 1] (7)

Now it’s obviously to see how the differential modulation deal with the quanti-
zation noise from Eq. 7. It differential modulates the quantization noise between
e′[i] and e′[i − 1] to generate the quantized output bt. So the modulator can
effectively alleviate the effect of quantization. More specifically, if we adopt a
U-tap moving average filter on bt to recover rth frame ĉt[r], i.e.,

ĉt[r] =
1

U

r+U∑
i=r+1

bt[i] =
1

U

r+U∑
i=r+1

ct[i] +
1

U
(e′[r + U ]− e′[r]) (8)

The first item of Eq. 8 is the average of input ct, and the second is accumu-
lated noise. The noise comes to zero with large U . U is actually corresponding to
the up-sample ratio by the Frame-Conv3D mentioned in section 3.1. In imple-
mentation, we replace the average filter with trainable convolution to improve
the performance. The analysis shows that combing Frame-Conv3D and differ-
ential quantizer together can effectively reduce the quantization noise. In fact,
this up-sampling and modulation principle is similar to the theory of 1st order
∆Σ modulation [18] in design of analog-to-digital converter (ADC) circuits. Al-
though signal in ∆Σ modulation is usually one-dimensional while the frame is
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3-dimensional in video, the method of frequency-domain analysis in ∆Σ can be
adopted to visually understand the benefit of differential modulation. Fig. 3(a)
shows the computing flow of ∆Σ modulation at current time step n in discrete
time domain, which is similar to our proposed differential quantizer. In frequency
domain, we can compute the signal transfer function (STF) and noise transfer
function (NTF). The power spectral density (PSD) of STF and NTF is plot-
ted in Fig. 3(b). The NTF of the modulator is a high-pass filter function which
shapes noise e from low frequency band to high. Owing to this noise shaping
characteristic, the in-band noise after quantizaion is suppressed and the signal-
to-noise ratio (SNR) is improved greatly by adopting ∆Σ modulation, which is
shown in Fig. 3(c). Although the same theory can be adopted to analyze the
noise effect, we should mention that the frameworks of these two algorithms
are totally different. ∆Σ modulation is a forward flow while the proposed multi-
frame differential modulation needs to back propagate gradients. The techniques
in ∆Σ modulation cannot be simply copied into DL frameworks. For example,
higher order ∆Σ modulation can achieve better performance of noise shaping
in ADC. However, we identify that using higher order differential modulation
cannot achieve improvement, which is discussed in section 4.

1
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Fig. 3: Theory of the 1st order ∆Σ modulation. (a). Computing flow in Z domain.
(b). The power spectral density (PSD) of NTF (red) and STF (black). (c). Noise
shaping of ∆Σ.

3.4 Single Model Supporting Multiple Bit Rate

The rate-distortion optimization is significant for video compression. Inspired
from the forward and backward flows of differential modulation, we propose a
dropout scheme for bit rate optimization. Noticing that the mth quantized frame
b[m] receives information from all previous frames {ct[1], ..., ct[m]}, once some
later frames {ct[k], ct[k+1], ..., ct[m]} are dropped, the former {ct[1], ..., ct[k]} can
still help to update the bt[m]. As a result, we can directly dropout some latter
up-sampled frames to decrease bit cost for rate optimization. From experimental
results in section 4.2 we find that the proposed differential quantizer can still
recover high-quality video frames while traditional methods are failed in case of
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dropping frame bits. Moreover, this scheme is similar to the dropout training
and is compatible with DL framework. Involving this scheme in training can
further improve the network performance at different levels of bit rate.

3.5 Training Strategy

To reduce the distortion between original frames FNt and reconstructed F̂Nt , we
adopt the following loss function:

L = d(FNt , F̂
N
t ) + λd(FNt , F̄

N
t ) (9)

where d(FNt , F̂
N
t ) is the reconstructed distortion and d(FNt , F̄

N
t ) is to control

the distortion of prediction network. We find that the second loss can help to
achieve some improvement in PSNR. In implementation, we use l1 loss to mea-
sure the distortion and set λ as 0.05. Since previous reconstructed frames F̂Nt−1
are required for training,we adopt the same online updating strategy proposed
in [14]. The mini-batch size is set as 8 and the training patch size of input frames
is 128×128. We use the Adam optimizer [11] by setting the initial learning rate
(lr) as 2e-4, β1 as 0.9, and β2 as 0.99. The lr is divided by 2 at every 50k
iterations.

4 Experiments

We train the models with ZuriVID dataset, which is adopted in AIM 2019 chal-
lenge [1] for video extreme super-resolution. The dataset has 50 1080p videos
with a total number of 69604 frames. The UVG dataset [2] and the HEVC Stan-
dard Test Sequences (Class B, Class C, Class D, and Class E) [19] are used to
evaluate our model.

4.1 Network Parameters

To search for suitable parameters of coding frame number N and the down-scale
times M with max-pooling, control experiments are implemented. For fairly
comparison, the BPPs of all models are set the same as 0.25. A subset of UVG
dataset including 224 frames of 7 videos is used for validation during training.
We analyze four cases and the training results are shown in Fig. 4(a). We find
that fewer frame number of 4 can converge faster than 8, and both achieve a
similar performance at last. Down-scaling the feature to 1/4× 1/4 with M = 2
has a better performance than down-scaling to 1/8× 1/8 with M = 3. We also
identify that tanh activation is important for back propagation. Based on the
experiments, we set N as 4 and M as 2 in our final model.

The paper is focused on the proposed differential quantizer in 1st order.
To confirm whether higher order modulation takes effect, we compare 1st and
2nd order differential modulation. The 2nd order modulator utilizes former two
frames to modulate the current, and the detailed implementation is provided in
the supplementary material. The results of evaluated PSNR and MS-SSIM are
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presented in Fig. 4 (b). It shows that introducing higher order modulator takes
little effects, and may even cause a decreasing in metrics. Theoretically, although
2nd order modulator uses extra information at n − 1 and n − 2 to update the
current ct[n] while 1st order only use n− 1, the updating paths of gradients are
similar, i.e., propagating from bt[n] to ct[n] and all previous ct[n−1], ..., ct[1]. So
they should get similar results ultimately with the back propagation algorithm.
However, high order modulation introduces higher computing costs and makes
the rule of updating gradients extremely complex. From this perspective, 1st
order ∆Σ quantizer is superior.

Besides, we also remove the prediction network or the second prediction loss
d(FNt , F̄

N
t ) in Eq. 9 for further comparison. We notice that either removing

the prediction network or loss can substantially decreasing the performance, as
shown in Fig. 4 (b). This suggests that motion estimation and compensation
from previous decoded frames to currents is important for video compression.
The current prediction network is a multi-layer 3D CNN. To improve the per-
formance, more complex motion estimation model can be considered, such as
models with optical flow and block motion vectors.
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Fig. 4: (a). Evaluated PSNR during training with different parameters: frame
number N and down-scale times M . (b). Comparison between models of the 1st
order differential quantizer (proposed), the 2nd order differential quantizer, and
removing the prediction loss.

4.2 Advantages of Differential Quantizer with Visual Results

To illustrate the advantages of differential quantizer in visual, we train 3 models
for ablation study, i.e., up-sampling and down-sampling in encoder and decoder
by:

(A). only using Channel-Conv3D with traditional quantizer Qb;
(B). using Frame-Conv3D with traditional quantizer Qb;
(C). using Frame-Conv3D with differential quantizer Q.
For a better visual comparison, we include more frames as input and set N

as 8 to show the efficient frame fusion of differential modulation. In order to
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better visualize the middle quantized results in case of dropping frames, the pre-
diction network is removed when comparing between model A/B/C. All hyper-
parameters and model blocks are set with no difference for these 3 models except
for the settings of quantizer. Model A replaces all the Frame-Conv3D with ×64
Channel-Conv3D and change the last Conv3D to ×U in Fig. 2(b) to guarantee
the same BPP level with model B and C. We set the number of max-pooling
M as 2 and the up-sampling ratio U as 16 and 4, which results in 1 and 0.25
maximum BPP, respectively. All models are trained for up to 50×103 iterations.

Fig. 5 shows the evaluated PSNR of the subset in training process. It can be
observed that model B with Frame-Conv3D trains better than model A. Model
C with differential quantizer can improve the metric significantly within 50k
training iterations, especially at low BPP, e.g., 0.25. The curves show that the
proposed method can effectively train a network for binary representation, which
has been analyzed in section 3.3.
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BPP: 1

U: 4 

M: 2

BPP: 0.25

Fig. 5: Evaluated PSNR of model A,B, and C during the training phase. (a). One
quarter down-scaled with 1 BPP. (b). One eighth down-scaled with 0.25 BPP.

To identify the effectiveness of differential quantizer in case of dropping bits,
we evaluate the well-trained three models only with former half frames at case
of U = 16. Since U is 16 and N is 8, there are 128 up-sampled frames in total.
We reserve the former 64 frames and set the latter 64 frames to zero, which is
shown in Fig. 6(a). Model A cannot fuse the frame information properly and the
latter recovered frames will be noisy gradually. The average PSNR decreases up
to 10 dB. Model B can reconstruct all frames because of the efficient feature fu-
sion along the frame dimension with Frame-Conv3D. However, the reconstructed
frames still lose much detailed information, resulting in a low video quality ac-
cording to PSNR (around 8 dB loss). For model C with differential quantizer, all
frames are decoded in good quality and the decreasing in PSNR is less than 5dB.
It should be mentioned that all the above models are not particularly optimized
in training phase for the case of dropping bits. It shows that differential modu-
lation can make full use of all past frame information for recovering. Adopting
dropout scheme in training phase can certainly further improve the performance.

The entropy of generated bit streams for each model is also calculated and
compared in Fig. 6(b). When coding with different bit width, model C achieves
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the highest entropy and there is nearly no room for compression, which means
it successfully remove the redundant information between frames and no extra
entropy coding is needed. However, margins of compression still exist for the
cases without differential modulation. When the coding bit width is 16, model
A and B can further achieve nearly 30% compressing gain by entropy coding.

Ct[1]-Ct[64] (reserved) Ct[65]-Ct[128] (dropped)

Model A: 24.94 dB PSNR in avg.

Model B: 26.37 dB PSNR in avg.

Model C: 29.40 dB PSNR in avg.
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Fig. 6: Experimental comparison between Model A, B, and C. (a). Reconstructed
frames of three models in case of dropping bits. (b). Entropy of bit-streams
generated by three models.

4.3 Comparison to Previous Works

We train the final model in two steps. First, a model based on differential quan-
tizer is obtained by 100k training iterations without dropout scheme. Then the
pre-trained model is re-trained combined with dropout scheme for bit rate opti-
mization. Although we can drop arbitrary number of frames, in implementation
we only define 3 fixed patterns that drop {50%, 75%, 87.5%} frames of all to
speed up training. As a result, the trained single model can encode videos into
{0.5, 0.25, 0.125} BPPs respectively. We compare our method with H.264, H.265
and two DL-based methods of [14,26] in terms of PSNR and MS-SSIM metrics.
We follow the setting in [14] and use the FFmpeg tool with very fast mode to
generate the compressed frames of H.264 and H.265.

We find that our model achieves high performance on UVG and HEVC Class
D and Class E dataset, which is shown in Fig. 7. Compared with H.264 and
H.265 codecs on the three dataset, the model shows superiority especially in low
BPP region. It also outperforms the DL-based method of [26] and is competitive
with [14] on UVG dataset. It should be noticed that our method jointly trains
a single model to support different BPP levels, while the work by Lu et al. [14]
needs to train multiple models for each BPP level.

However, our model shows some weaknesses on HEVC Class B and Class
C dataset (results are provided in supplementary materials) because of the
fast moving objects (BasketballDrill, BasketballDrive, RaceHorses, etc) in such
videos. It can be improved by adopting optical flow or motion vectors in the
prediction network. Despite this, we pay more attentions to the efficient train-
ing method for the quantizer and achieve high performance on vast majority of
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videos. Other techniques for the motion estimation can be easily plugged into
this framework to further improve the performance, which is our future work.
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Fig. 7: Comparison between our model and H.264 [25], H.265 [19], the DL-based
video method in [26] and [14]. The data for DL-based codecs are from paper
report, and the H.264 and H.265 results are from FFmpeg tool.

5 Conclusions

This paper proposes an end-to-end model for deep video compression. We intro-
duce the Frame-Conv3D and multi-frame differential modulation in codecs to
reconstruct high-quality video. Different from traditional quantizer with pixel-
level binarization, the proposed method of differential modulation can quantize
the difference and propagate gradients between frames to remove the redundant
information as much as possible. We identify the differential quantizer can al-
leviate the effect of quantization noise by theoretical analysis and experimental
results. Inspired from the gradient propagating path of differential quantizer, we
propose a dropout scheme to optimize bit rate within single model. Experimen-
tal results show that the proposed model outperforms standard H.264 and H.265
in low BPP region and is competitive with the recent deep codecs. Based on the
proposed model, other techniques of optical flow or motion vector estimation
can be easily plugged into this framework to further improve the performance.
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