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A Ablation study

To demonstrate the effectiveness of replacing explicit reconstruction loss with
adversarial loss, we train two partial variants of A-VAE for comparison. The
first variant adds Euclidean distance loss Lrec while keeping LGAN . The second
variant adds Lrec and removes LGAN . In particular, we find that it is difficult
for the model to synthesize high-resolution images without LGAN , so we expand
the input size to 128 × 128. Figure 1 illustrates the synthesis results of these
variants. Explicit reconstruction loss makes the model to restore noise. Table 1
shows the verification accuracies.
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Fig. 1. The results produced by variations of A-VAE.

Table 1. Verification accuracies of variants. (Setting: FGSM, gray-box, LFW, VGG-
Face2).

LFW (Same identity pairs/Different identities pairs/Average)

Defense clean
FGSM
ε = 8

No Defense 0.992/0.992/0.992 0.190/0.300/0.245
w Lrec 0.932/0.998/0.964 0.603/0.850/0.727

w Lrec + w/o LGAN 0.993/0.997/0.995 0.377/0.387/0.382
A-VAE 0.927/1.000/0.963 0.637/0.863/0.753
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B Stability for different resolutions

As shown in Table 2 and Table 3, we evaluate the effectiveness of our method
on LFW, at different resolutions. We notice that the performance of our method
does not differ much at different resolutions, while others drop severely. Thanks
to the mechanism of A-VAE, when the resolution of input is not less than 32×32,
the fidelity of the generated images will not be damaged heavily. However, other
methods produce low-resolution images, making perturbations more likely to
eliminate useful information. This experiment shows the effectiveness of A-VAE
on different quality datasets.

Table 2. Verification accuracies of different defense methods at resolution 64.

LFW (Same identity pairs/Different identities pairs/Average)

Defense clean
FGSM
ε = 4

FGSM
ε = 8

PGD
ε = 8

C&W

No Defense
0.990/0.993

/0.992
0.447/0.410

/0.428
0.167/0.297

/0.232
0.000/0.013

/0.006
0.000/0.027

/0.013

adversarial FGSM [1]
0.971/0.997

/0.984
0.473/0.791

/0.632
0.140/0.787

/0.463
0.017/0.203

/0.110
0.000/0.474

/0.238

feature denoising [5]
0.947/0.963

/0.955
0.590/0.740

/0.665
0.197/0.767

/0.482
0.060/0.253

/0.157
0.037/0.603

/0.320

TVM [2]
0.951/0.990

/0.975
0.677/0.987

/0.831
0.267/0.723

/0.495
0.337/0.747

/0.542
0.050/0.567

/0.308

Quilting [2]
0.870/1.000

/0.935
0.677/0.987

/0.832
0.393/0.943

/0.668
0.511/0.973

/0.742
0.197/0.957

/0.577

Pixel Deflection [4]
0.967/0.999

/0.983
0.503/0.827

/0.665
0.153/0.810

/0.482
0.017/0.283

/0.150
0.000/0.563

/0.282

ComDefend [3]
0.967/0.999

/0.983
0.533/0.863

/0.698
0.191/0.821

/0.506
0.077/0.483

/0.280
0.013/0.590

/0.302

A-VAE
0.917/0.997

/0.957
0.633/0.977

/0.805
0.467/0.940

/0.703
0.487/0.983

/0.735
0.327/0.947

/0.637

Table 3. Verification accuracies of different defense methods at resolution 32.

LFW (Same identity pairs/Different identities pairs/Average)

Defense clean
FGSM
ε = 4

FGSM
ε = 8

PGD
ε = 8

C&W

No Defense
0.967/0.997

/0.982
0.283/0.590

/0.436
0.097/0.557

/0.327
0.000/0.030

/0.015
0.000/0.023

/0.015

adversarial FGSM [1]
0.913/0.997

/0.955
0.247/0.887

/0.567
0.067/0.937

/0.502
0.010/0.483

/0.247
0.023/0.773

/0.398

feature denoising [5]
0.873/0.983

/0.928
0.357/0.863

/0.610
0.107/0.930

/0.518
0.067/0.510

/0.288
0.081/0.803

/0.442

TVM [2]
0.837/1.000

/0.918
0.390/0.933

/0.662
0.123/0.863

/0.493
0.243/0.893

/0.568
0.090/0.720

/0.405

Quilting [2]
0.683/1.000

/0.842
0.363/0.983

/0.673
0.151/0.981

/0.566
307/0.981

/0.644
0.147/0.967

/0.557

Pixel Deflection [4]
0.870/1.000

/0.935
0.247/0.903

/0.575
0.067/0.953

/0.510
0.017/0.523

/0.270
0.027/0.817

/0.422

ComDefend [3]
0.820/1.000

/0.910
0.263/0.937

/0.600
0.087/0.937

/0.512
0.060/0.743

/0.402
0.029/0.8401

/0.435

A-VAE
0.830/0.997

/0.913
0.562/0.980

/0.771
0.343/0.963

/0.653
0.453/0.960

/0.707
0.367/0.943

/0.655



Manifold Projection for Adversarial Defense on Face Recognition 3

Table 4. Hyperparameters selection.

LFW (Same identity pairs/Different identities pairs/Average)

clean
FGSM
ε = 8

PGD
ε = 8

τ = 0.01 0.906/0.997/0.952 0.619/0.830/0.725 0.682/0.941/0.812
τ = 0.02 0.913/0.997/0.955 0.630/0.861/0.746 0.679/0.960/0.820
τ = 0.03 0.927/1.000/0.963 0.637/0.863/0.753 0.697/0.960/0.828
τ = 0.06 0.937/0.998/0.968 0.623/0.851/0.737 0.680/0.955/0.818

C Hyperparameters selection

We discuss the hyperparameter τ used in inference time that should be deter-
mined by experiments. From Table 4, we can find that for clean images, the
accuracy increases constantly with the shrink of τ . This shows that the con-
straint on latent code z inevitably limits the expressiveness of the model. As
compensation, when defending against adversarial attacks, it has been shown
that projecting images to high probability region enhances robustness of model.

D Network architectures

Table 5, Table 6, and Table 7 show network architectures of the encoder, decoder,
and discriminator that we use. Conv(c, k × k, s) refers to a convolutional layer
with c feature maps, filter size k×k, and stride s. LReLU refers leaky ReLU with
leakiness 0.2. The skip connection concatenates activations from layer 1 in the
encoder to layer 4 in the decoder. The upsampling and downsampling operations
correspond to 2× 2 element replication and average pooling, respectively.

Table 5. Nerual network architecture of the encoder.

Encoder
Type Output shape

Conv(256, 3× 3, 1) + InstanceNorm + LReLU 256× 32× 32
Conv(256, 3× 3, 2) + InstanceNorm + LReLU 256× 16× 16
Conv(512, 3× 3, 1) + InstanceNorm + LReLU 512× 16× 16
Conv(512, 3× 3, 2) + InstanceNorm + LReLU 512× 8× 8

Conv(1024, 3× 3, 1) + LReLU 1024× 8× 8
Conv(1024, 3× 3, 2) + LReLU 1024× 4× 4

E Additional quantitative results on ArcFace

We report results on ArcFace under grey-box and white-box attacks in Table 8
and Table 9.

F Additional qualitative examples

In Figure 2 and Figure 3, we show more stochastic generated results on LFW.
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Table 6. Nerual network architecture of the decoder.

Decoder
Type Output shape

Const 512× 4× 4 + LReLU + AdaIN 512× 4× 4
Conv(512, 3× 3, 1) + LReLU + AdaIN 512× 4× 4

Upsample 512× 8× 8
Conv(512, 3× 3, 1) + LReLU + AdaIN 512× 8× 8
Conv(512, 3× 3, 1) + LReLU + AdaIN 512× 8× 8

Upsample 512× 16× 16
Conv(512, 3× 3, 1) + LReLU + AdaIN 512× 16× 16
Conv(512, 3× 3, 1) + LReLU + AdaIN 512× 16× 16

Upsample 768× 32× 32
Conv(256, 3× 3, 1) + LReLU + AdaIN 256× 32× 32
Conv(256, 3× 3, 1) + LReLU + AdaIN 256× 32× 32

Upsample 256× 64× 64
Conv(256, 3× 3, 1) + LReLU + AdaIN 256× 64× 64
Conv(256, 3× 3, 1) + LReLU + AdaIN 256× 64× 64

Upsample 256× 128× 128
Conv(256, 3× 3, 1) + LReLU + AdaIN 128× 128× 128
Conv(256, 3× 3, 1) + LReLU + AdaIN 128× 128× 128

Conv(256, 1× 1, 1) 3× 128× 128
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Table 7. Nerual network architecture of the discriminator.

Dicriminator
Type Output shape

Conv(64, 1× 1, 1) 64× 128× 128
Conv(128, 3× 3, 1) + InstanceNorm + LReLU 128× 128× 128
Conv(256, 3× 3, 1) + InstanceNorm + LReLU 128× 128× 128

Downsample 128× 64× 64
Conv(256, 3× 3, 1) + InstanceNorm + LReLU 256× 64× 64
Conv(256, 3× 3, 1) + InstanceNorm + LReLU 256× 64× 64

Downsample 256× 32× 32
Conv(512, 3× 3, 1) + InstanceNorm + LReLU 512× 32× 32
Conv(512, 3× 3, 1) + InstanceNorm + LReLU 512× 32× 32

Downsample 512× 16× 16
Conv(512, 3× 3, 1) + InstanceNorm + LReLU 512× 16× 16
Conv(512, 3× 3, 1) + InstanceNorm + LReLU 512× 16× 16

Downsample 512× 8× 8
Conv(512, 3× 3, 1) + InstanceNorm + LReLU 512× 8× 8
Conv(512, 3× 3, 1) + InstanceNorm + LReLU 512× 8× 8

Downsample 512× 4× 4
Conv(512, 3× 3, 1) + LReLU 512× 4× 4
Conv(512, 4× 4, 1) + LReLU 512× 1× 1

Fully-connected 1× 1× 1

Table 8. Verification accuracies of different defense methods on the LFW dataset,
under FGSM, PGD, C&W grey-box attacks. The target model is ArcFace.

LFW (Same identity pairs/Different identities pairs/Average)

Defense clean
FGSM
ε = 4

FGSM
ε = 8

PGD
ε = 8

C&W

No Defense
0.994/0.994

/0.994
0.542/0.437

/0.489
0.247/0.382

/0.315
0.000/0.020

/0.010
0.000/0.031

/0.015

Adversarial Training [1]
0.980/0.990

/0.985
0.552/0.829

/0.691
0.217/0.780

/0.499
0.031/0.180

/0.106
0.000/0.502

/0.251

Feature Denoising [5]
0.957/0.963

/0.960
0.682/0.731

/0.706
0.203/0.740

/0.472
0.099/0.301

/0.201
0.037/0.550

/0.294

TVM [2]
0.992/0.991

/0.992
0.761/0.732

/0.747
0.371/0.400

/0.385
0.287/0.381

/0.334
0.007/0.050

/0.029

Quilting [2]
0.984/0.994

/0.989
0.819/0.903

/0.861
0.641/0.670

/0.655
0.690/0.796

/0.743
0.157/0.051

/0.104

ComDefend [3]
0.987/0.991

/0.989
0.502/0.691

/0.597
0.334/0.417

/0.376
0.051/0.130

/0.091
0.000/0.021

/0.011

A-VAE
0.941/0.999

/0.970
0.847/0.963

/0.905
0.669/0.877

/0.773
0.714/0.975

/0.845
0.451/0.793

/0.622

Table 9. Verification accuracies of different defense methods on the LFW dataset,
under FGSM, PGD, C&W white-box attacks. The target model is ArcFace.

LFW (Same identity pairs/Different identities pairs/Average)

Defense clean
FGSM
ε = 4

FGSM
ε = 8

PGD
ε = 8

No Defense 0.994/0.994/0.994 0.542/0.437/0.489 0.247/0.382/0.315 0.000/0.020/0.010

Adversarial Training [1] 0.980/0.990/0.985 0.407/0.743/0.575 0.208/0.651/0.430 0.000/0.008/0.004
Feature Denoising [5] 0.957/0.963/0.960 0.439/0.500/0.469 0.230/0.452/0.341 0.000/0.037/0.019

ComDefend [3] 0.987/0.991/0.989 0.501/0.624/0.563 0.281/0.536/0.409 0.189/0.331/0.260

A-VAE 0.941/0.999/0.970 0.758/0.763/0.761 0.448/0.662/0.555 0.603/0.639/0.621
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Fig. 2. Stochastic generated results on LFW. The input image is in the upper left
corner, and the rest are the realizations of latent code.
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Fig. 3. Stochastic generated results on LFW. The input image is in the upper left
corner, and the rest are the realizations of latent code.


