Manifold Projection for Adversarial Defense on Face Recognition

Jianli Zhou^{1,2}, Chao Liang^{1,2,*}, and Jun Chen^{1,2}

 ¹ National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, China
 ² Key Laboratory of Multimedia and Network Communication Engineering, Hubei Province

A Ablation study

To demonstrate the effectiveness of replacing explicit reconstruction loss with adversarial loss, we train two partial variants of A-VAE for comparison. The first variant adds Euclidean distance loss \mathcal{L}_{rec} while keeping \mathcal{L}_{GAN} . The second variant adds \mathcal{L}_{rec} and removes \mathcal{L}_{GAN} . In particular, we find that it is difficult for the model to synthesize high-resolution images without \mathcal{L}_{GAN} , so we expand the input size to 128×128 . Figure 1 illustrates the synthesis results of these variants. Explicit reconstruction loss makes the model to restore noise. Table 1 shows the verification accuracies.

Fig. 1. The results produced by variations of A-VAE.

LFW (Same identity pairs/Different identities pairs/Average)					
Defense	clean	$FGSM\\\epsilon = 8$			
No Defense	0.992/0.992/0.992	0.190/0.300/0.245			
w \mathcal{L}_{rec}	0.932/0.998/0.964				
$ w \mathcal{L}_{rec} + w/o \mathcal{L}_{GAN} $					
A-VAE	0.927/1.000/0.963	0.637/0.863/0.753			

Table 1. Verification accuracies of variants. (Setting: FGSM, gray-box, LFW, VGG-Face2).

* Corresponding author

B Stability for different resolutions

As shown in Table 2 and Table 3, we evaluate the effectiveness of our method on LFW, at different resolutions. We notice that the performance of our method does not differ much at different resolutions, while others drop severely. Thanks to the mechanism of A-VAE, when the resolution of input is not less than 32×32 , the fidelity of the generated images will not be damaged heavily. However, other methods produce low-resolution images, making perturbations more likely to eliminate useful information. This experiment shows the effectiveness of A-VAE on different quality datasets.

LFW (Same identity pairs/Different identities pairs/Average)					
Defense	clean	FGSM	FGSM	PGD	C&W
		$\epsilon = 4$	$\epsilon = 8$	$\epsilon = 8$	
No Defense	0.990/0.993	0.447/0.410	0.167/0.297	0.000/0.013	0.000/0.027
No Defense	/0.992	/0.428	/0.232	/0.006	/0.013
adversarial FGSM [1]	0.971 /0.997	0.473/0.791	0.140/0.787	0.017/0.203	0.000/0.474
adversariar FGSW [1]	/0.984	/0.632		/0.110	/0.238
feature denoising [5]		0.590/0.740	0.197/0.767	0.060/0.253	0.037/0.603
leature denoising [0]	/0.955		/0.482		/0.320
TVM [2]	0.951/0.990	0.677/0.987	0.267/0.723	0.337/0.747	0.050/0.567
1 V IVI [2]	/0.975	/0.831	/0.495	/0.542	/0.308
Quilting [2]		0.677/0.987			
agamening [2]	/0.935	/0.832	/0.668	/0.742	/0.577
Pixel Deflection [4]	0.967/0.999	0.503/0.827	0.153/0.810		0.000/0.563
Tixel Deficetion [4]	/0.983	/0.665		/0.150	/0.282
ComDefend [3]	0.967/0.999		0.191/0.821		
competend [0]	/0.983	/0.698	/0.506	/0.280	/0.302
A-VAE	0.917/0.997	0.633/0.977		0.487/0.983	
	/0.957	/0.805	/0.703	/0.735	/0.637

Table 2. Verification accuracies of different defense methods at resolution 64.

Table 3. Verification accuracies of different defense methods at resolution 32.

LFW (Same identity pairs/Different identities pairs/Average)					
Defense	clean	FGSM $\epsilon = 4$	FGSM $\epsilon = 8$	$PGD \\ \epsilon = 8$	C&W
N. D. C	0.967/0.997	-			0.000/0.023
No Defense	/0.982	/0.436	/0.327	/0.015	/0.015
adversarial FGSM [1]	0.913/0.997 /0.955		0.067/0.937 /0.502		0.023/0.773 /0.398
C () · · [٣]	/		0.107/0.930		
feature denoising [5]	/0.928	/0.610	/0.518	/0.288	/0.442
TVM [2]	0.837/1.000	/			
	/0.918 0.683/ 1.000	/0.662		/0.568 307/ 0 981	/0.405 0.147/ 0.967
Quilting [2]	/0.842		/0.566		
Pixel Deflection [4]	0.870/1.000			0.017/0.523	
i ikei Deneetion [1]			/0.510		/0.422
ComDefend [3]	/0.910		0.087/0.937 /0.512		0.029/0.8401 /0.435
A-VAE					0.367/0.943
	/0.913	/0.771	/0.653	/0.707	/0.655

LFW (Same identity pairs/Different identities pairs/Average)				
	.1	FGSM	PGD	
	clean	$\epsilon = 8$	$\epsilon = 8$	
	0.906/0.997/0.952	0.619/0.830/0.725	0.682/0.941/0.812	
		0.630/0.861/0.746		
		0.637/0.863/0.753		
$\tau=0.06$	0.937 /0.998/ 0.968	0.623/0.851/0.737	0.680/0.955/0.818	

 Table 4. Hyperparameters selection.

C Hyperparameters selection

We discuss the hyperparameter τ used in inference time that should be determined by experiments. From Table 4, we can find that for clean images, the accuracy increases constantly with the shrink of τ . This shows that the constraint on latent code z inevitably limits the expressiveness of the model. As compensation, when defending against adversarial attacks, it has been shown that projecting images to high probability region enhances robustness of model.

D Network architectures

Table 5, Table 6, and Table 7 show network architectures of the encoder, decoder, and discriminator that we use. $\operatorname{Conv}(c, k \times k, s)$ refers to a convolutional layer with c feature maps, filter size $k \times k$, and stride s. LReLU refers leaky ReLU with leakiness 0.2. The skip connection concatenates activations from layer 1 in the encoder to layer 4 in the decoder. The upsampling and downsampling operations correspond to 2×2 element replication and average pooling, respectively.

 Table 5. Nerual network architecture of the encoder.

Encoder					
Type	Output shape				
$Conv(256, 3 \times 3, 1) + InstanceNorm + LReLU$	$256 \times 32 \times 32$				
$Conv(256, 3 \times 3, 2) + InstanceNorm + LReLU$	$256\times 16\times 16$				
$Conv(512, 3 \times 3, 1) + InstanceNorm + LReLU$	$512 \times 16 \times 16$				
$Conv(512, 3 \times 3, 2) + InstanceNorm + LReLU$	$512 \times 8 \times 8$				
$Conv(1024, 3 \times 3, 1) + LReLU$	$1024 \times 8 \times 8$				
$\operatorname{Conv}(1024, 3 \times 3, 2) + \operatorname{LReLU}$	$1024 \times 4 \times 4$				

E Additional quantitative results on ArcFace

We report results on ArcFace under grey-box and white-box attacks in Table 8 and Table 9.

F Additional qualitative examples

In Figure 2 and Figure 3, we show more stochastic generated results on LFW.

4 J. Zhou et al.

Decoder				
Туре	Output shape			
$Const 512 \times 4 \times 4 + LReLU + AdaIN$	$512 \times 4 \times 4$			
$Conv(512, 3 \times 3, 1) + LReLU + AdaIN$	$512 \times 4 \times 4$			
Upsample	$512 \times 8 \times 8$			
$Conv(512, 3 \times 3, 1) + LReLU + AdaIN$	$512 \times 8 \times 8$			
$Conv(512, 3 \times 3, 1) + LReLU + AdaIN$	$512 \times 8 \times 8$			
Upsample	$512 \times 16 \times 16$			
$Conv(512, 3 \times 3, 1) + LReLU + AdaIN$	$512 \times 16 \times 16$			
$Conv(512, 3 \times 3, 1) + LReLU + AdaIN$	$512 \times 16 \times 16$			
Upsample	$768 \times 32 \times 32$			
$Conv(256, 3 \times 3, 1) + LReLU + AdaIN$				
$Conv(256, 3 \times 3, 1) + LReLU + AdaIN$	$256 \times 32 \times 32$			
Upsample	$256 \times 64 \times 64$			
$Conv(256, 3 \times 3, 1) + LReLU + AdaIN$				
$Conv(256, 3 \times 3, 1) + LReLU + AdaIN$	$256 \times 64 \times 64$			
Upsample	$256 \times 128 \times 128$			
$Conv(256, 3 \times 3, 1) + LReLU + AdaIN$	$128\times 128\times 128$			
$Conv(256, 3 \times 3, 1) + LReLU + AdaIN$	$128\times128\times128$			
Conv $(256, 1 \times 1, 1)$	$3\times 128\times 128$			

Table 6. Nerual network architecture of the decoder.

References

- 1. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
- Guo, C., Rana, M., Cissé, M., van der Maaten, L.: Countering adversarial images using input transformations. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net (2018)
- Jia, X., Wei, X., Cao, X., Foroosh, H.: Comdefend: An efficient image compression model to defend adversarial examples. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp. 6084–6092. Computer Vision Foundation / IEEE (2019)
- Prakash, A., Moran, N., Garber, S., DiLillo, A., Storer, J.: Deflecting adversarial attacks with pixel deflection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 8571–8580 (2018)
- Xie, C., Wu, Y., Maaten, L.v.d., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 501–509 (2019)

Dicriminator				
Туре	Output shape			
$Conv(64, 1 \times 1, 1)$	$64 \times 128 \times 128$			
$Conv(128, 3 \times 3, 1) + InstanceNorm + LReLU$	$128\times 128\times 128$			
$Conv(256, 3 \times 3, 1) + InstanceNorm + LReLU$	$128\times 128\times 128$			
Downsample	$128 \times 64 \times 64$			
$Conv(256, 3 \times 3, 1) + InstanceNorm + LReLU$	$256 \times 64 \times 64$			
$Conv(256, 3 \times 3, 1) + InstanceNorm + LReLU$	$256 \times 64 \times 64$			
Downsample	$256 \times 32 \times 32$			
$Conv(512, 3 \times 3, 1) + InstanceNorm + LReLU$	$512 \times 32 \times 32$			
$Conv(512, 3 \times 3, 1) + InstanceNorm + LReLU$	$512 \times 32 \times 32$			
Downsample	$512 \times 16 \times 16$			
$Conv(512, 3 \times 3, 1) + InstanceNorm + LReLU$	$512 \times 16 \times 16$			
$Conv(512, 3 \times 3, 1) + InstanceNorm + LReLU$	$512 \times 16 \times 16$			
Downsample	$512 \times 8 \times 8$			
$Conv(512, 3 \times 3, 1) + InstanceNorm + LReLU$	$512 \times 8 \times 8$			
$Conv(512, 3 \times 3, 1) + InstanceNorm + LReLU$	$512 \times 8 \times 8$			
Downsample	$512 \times 4 \times 4$			
$Conv(512, 3 \times 3, 1) + LReLU$	$512 \times 4 \times 4$			
$\operatorname{Conv}(512, 4 \times 4, 1) + \operatorname{LReLU}$	$512 \times 1 \times 1$			
Fully-connected	$1 \times 1 \times 1$			

 Table 7. Nerual network architecture of the discriminator.

Table 8. Verification accuracies of different defense methods on the LFW dataset,under FGSM, PGD, C&W grey-box attacks. The target model is ArcFace.

LFW (Same identity pairs/Different identities pairs/Average)					
5.4	clean	FGSM	FGSM	PGD	C&W
Defense	clean	$\epsilon = 4$	$\epsilon = 8$	$\epsilon = 8$	02.00
No Defense	0.994/0.994	0.542/0.437	0.247/0.382	0.000/0.020	0.000/0.031
No Defense	/0.994	/0.489	/0.315	/0.010	/0.015
Adversarial Training [1]	0.980/0.990	0.552/0.829	0.217/0.780	0.031/0.180	0.000/0.502
Adversariai fraining [1]	/0.985	/0.691	/0.499	/0.106	/0.251
D (D) [7]	0.957/0.963	0.682/0.731	0.203/0.740	0.099/0.301	0.037/0.550
Feature Denoising [5]	/0.960	/0.706	/0.472	/0.201	/0.294
TVM [2]	0.992/0.991	0.761/0.732	0.371/0.400	0.287/0.381	0.007/0.050
1 V W [2]	/0.992	/0.747	/0.385	/0.334	/0.029
Quilting [2]	0.984/0.994	0.819/0.903	0.641/0.670	0.690/0.796	0.157/0.051
	/0.989	/0.861	/0.655	/0.743	/0.104
ComDefend [3]	0.987/0.991	0.502/0.691	0.334/0.417	0.051/0.130	0.000/0.021
	/0.989	/0.597	/0.376	/0.091	/0.011
A-VAE	0.941/0.999	0.847/0.963	0.669/0.877	0.714/0.975	0.451/0.793
	/0.970	/0.905	/0.773	/0.845	/0.622

Table 9. Verification accuracies of different defense methods on the LFW dataset,under FGSM, PGD, C&W white-box attacks. The target model is ArcFace.

LFW (Same identity pairs/Different identities pairs/Average)					
Defense	clean	FGSM	FGSM	PGD	
Detende	cicun	$\epsilon = 4$	$\epsilon = 8$	$\epsilon = 8$	
No Defense	0.994/0.994/0.994	0.542/0.437/0.489	0.247/0.382/0.315	0.000/0.020/0.010	
Adversarial Training [1]		0.407/0.743/0.575	0.208/0.651/0.430	0.000/0.008/0.004	
Feature Denoising [5]	0.957/0.963/0.960	0.439/0.500/0.469	0.230/0.452/0.341	0.000/0.037/0.019	
ComDefend [3]	0.987/0.991/0.989		0.281/0.536/0.409	0.189/0.331/0.260	
A-VAE	0.941/0.999/0.970	0.758/0.763/0.761	0.448/0.662/0.555	0.603/0.639/0.621	

Fig. 2. Stochastic generated results on LFW. The input image is in the upper left corner, and the rest are the realizations of latent code.

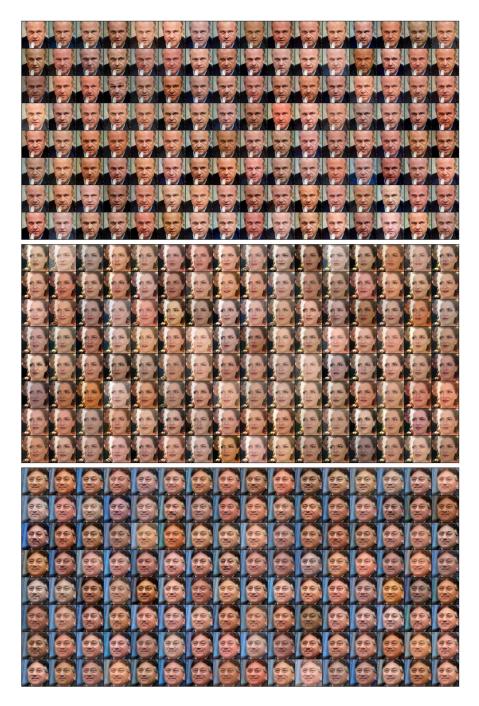


Fig. 3. Stochastic generated results on LFW. The input image is in the upper left corner, and the rest are the realizations of latent code.