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Abstract. Image enhancement is an inherently subjective process since
people have diverse preferences for image aesthetics. However, most en-
hancement techniques pay less attention to the personalization issue
despite its importance. In this paper, we propose the first deep learn-
ing approach to personalized image enhancement, which can enhance
new images for a new user, by asking him or her to select about 10∼20
preferred images from a random set of images. First, we represent var-
ious users’ preferences for enhancement as feature vectors in an em-
bedding space, called preference vectors. We construct the embedding
space based on metric learning. Then, we develop the personalized im-
age enhancement network (PieNet) to enhance images adaptively using
each user’s preference vector. Experimental results demonstrate that the
proposed algorithm is capable of achieving personalization successfully,
as well as outperforming conventional general image enhancement algo-
rithms significantly. The source codes and trained models are available
at https://github.com/hukim1124/PieNet.
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1 Introduction

Nowadays, people take photographs casually but are often unsatisfied with them.
Photos may be noisy because of limited camera sensors. Also, photos taken in
uncontrolled environments may suffer from low dynamic ranges or distorted color
tones [25,32]. Thus, image enhancement is required, which post-processes and ed-
its photographs to satisfy user preferences. Professional softwares provide many
tools to support manual image enhancement. However, the results of manual en-
hancement depend on users’ skills and experience. Moreover, the manual process
requires lots of efforts.

Many researches have been carried out to perform image enhancement au-
tomatically. But, image enhancement is a non-trivial problem partly due to the
non-linear relationship between input and output images. Furthermore, it makes
enhancement even more challenging that people have different preferences for

https://github.com/hukim1124/PieNet
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Fig. 1: Illustration of personalization for a new user. A user selects only about
10∼20 preferred images from a random set of images. Then, the proposed algo-
rithm analyzes the user’s preference and enhances a new image according to the
preferred style. Please see the supplemental video for this demonstration.

images; image enhancement is a subjective process. In this regard, the deep-
learning-based enhancement algorithms in [9,19,33,35,42,45] have the common
limitation that they cannot handle various user preferences. In [7,24], personal-
ized image enhancement systems have been developed. However, they are based
on traditional enhancement techniques such as gamma-correction and S-curve.
They may not yield output qualities that are as high as those of professionally
enhanced images by experts.

We propose a deep learning algorithm for personalized image enhancement.
First, we model diverse user preferences for image enhancement as feature vec-
tors, called preference vectors, in an embedding space. More specifically, we per-
form metric learning to learn the embedding space, in which a preference vector
conveys the preferred enhancement style of the corresponding user. Next, we
propose a novel image enhancement network, referred to as PieNet, which em-
ploys the preference vector to achieve personalized enhancement. The proposed
PieNet has an encoder-decoder architecture. The encoder part yields multi-scale
features, representing local and global information for image enhancement. The
decoder part includes personalized up-sample blocks, which employ the prefer-
ence vector to produce personalized results. Experimental results demonstrate
that the proposed algorithm outperforms the conventional deep learning algo-
rithms [9, 14, 19, 35, 42] for general (i.e. non-personalized) image enhancement
on the MIT-Adobe 5K dataset [5]. Moreover, it is shown that the proposed al-
gorithm achieves personalization successfully. In particular, it is shown that the
proposed algorithm achieves the personalization for a new user with the minimal
effort of selecting only a few preferred images, as illustrated in Fig. 1.

This paper has three main contributions:

1. Development of PieNet to tackle the personalization issue in image enhance-
ment, which is the first deep learning approach to the best of our knowledge.
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2. Remarkable general image enhancement performance on MIT-Adobe 5K.
3. Excellent scalability of PieNet to achieve the personalization for a new user

with the minimal effort of selecting only 10∼20 preferred images. Please see
the supplemental video for personalization demos.

2 Related Work

Image enhancement: Early studies on image enhancement focused on improv-
ing image contrast. Histogram equalization [15] and its variants [2,26,29–31,41,
44] modify the histogram of an image to improve its limited dynamic range. Also,
retinex methods [6,12,13,16,20,21,43,47] regard an image as the product of re-
flectance and illumination [28], and alter the illumination to enhance a poorly
lit image. However, these methods may not reconstruct the complex mapping
function between an image and its professionally enhanced version, edited by an
expert.

An alternative approach to image enhancement is the data-driven one to
learn the mapping between input and enhanced images from a large dataset.
Bychkovsky et al. [5] introduced the MIT-Adobe 5K dataset, composed of 5,000
input and expert-retouched image pairs. They used the dataset to estimate map-
ping functions, based on regression schemes for predicting user adjustments.
However, their method still may fail to reconstruct highly non-linear mapping
functions between input and enhanced images.

Recently, motivated by the success of deep learning, several deep neural net-
works have been developed to deal with the non-linear image enhancement.
Yan et al. [45] proposed a deep learning scheme, which uses image descriptors
to predict a color mapping for each pixel. Lore et al. [33] developed a deep au-
toencoder to enhance low-light images. Gharbi et al. [14] proposed deep bilateral
learning for real-time enhancement, which predicts local affine transforms in the
bilateral space. Based on the retinex theory, Wang et al. [42] designed a deep
network to predict an image-to-illumination mapping function instead of a direct
image-to-image function. Also, to achieve unpaired learning for image enhance-
ment, Park et al. [35] introduced the distort-and-recover approach that degraded
high-quality images to generate pseudo paired data. Chen et al. [9] used two-
way generative adversarial networks (GANs) for stable training. Deng et al. [11]
developed an aesthetic-driven image enhancement algorithm. In [19, 46], an ad-
versarial loss is integrated into reinforcement learning to learn to generate a
sequence of enhancement operations. These deep learning algorithms provide
promising performances, but are limited in that they do not consider different
users’ diverse preferences.

Personalization: Joshi et al. [23] proposed a personal photo enhancement al-
gorithm, which uses a person’s favorite photographs as examples to perform
several tasks, including deblurring, super-resolution, and white-balancing. The
proposed algorithm is, however, more related to the Kang et al.’s personaliza-
tion system [24] for image enhancement. Their system asks a user to enhance
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(a) Metric learning (b) Personalized enhancement

Fig. 2: Overview of the proposed system, which has two stages. (a) Metric learn-
ing is performed to discover an embedding space, in which the characteristics of
each user’s preferred images are encoded into the preference vector. (b) PieNet
employs the user’s preference vector to yield personalized enhancement results.

25 representative images by controlling a set of parameters. Given a new image,
it finds the most ‘similar’ representative image. Then, it uses the corresponding
set of parameters to enhance the new image. They adopted a metric learning
scheme to define the ‘similarity’ between images such that it correlates well with
the enhancement parameters. Caicedo et al. [7] extended the Kang et al.’s sys-
tem to consider the enhancement results of other users with similar preferences
based on collaborative filtering.

Compared to [7,24], the proposed algorithm has noticeable differences. First,
while they demand a user to enhance training images by controlling parameters,
the proposed algorithm requires a user to select only a few preferred images from
a set of candidate images. Thus, the proposed algorithm needs much less user
efforts. Second, we consider more complex mappings between input and enhanced
images, by developing the first deep learning algorithm for personalized image
enhancement.

Metric learning: The objective of metric learning is to learn an embedding
space, in which the distance between similar objects is shorter than the distance
between dissimilar ones. In [4,10,17], a contrastive loss was employed to minimize
the distances between objects in the same class, while constraining the distances
between inter-class objects to be larger than a margin. Schroff et al. [37] proposed
a triplet loss to encourage the distance between anchor and positive objects to
be smaller than that between anchor and negative objects. To overcome slow
convergence of the triplet loss, many extensions have been proposed [8, 38–40].

Notice that, whereas the conventional personalized algorithms in [7, 24] use
metric learning to embed images with similar enhancement parameters tightly,
the proposed algorithm performs it to directly embed preferred images of each
user tightly and thus obtain the user’s preference vector in the embedding space.
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Fig. 3: Metric learning for the embedding space of preference vectors.

3 Proposed Algorithm

Fig. 2 shows an overview of the proposed system for personalized image enhance-
ment. First, we do metric learning to determine an embedding space, in which
a user’s preference for enhancing images is represented by a feature vector. We
refer to this feature vector as the preference vector. Second, we develop PieNet
that employs the preference vector to produce personalized enhanced results
adaptively for the specific user.

3.1 Preference vector

Let us consider an embedding space, in which a preference vector represents a
user’s preferred style for enhancement. We learn this embedding space to yield
the preference vectors for multiple users based on metric learning. Each user
provides two sets of preferred (positive) and non-preferred (negative) images.
More specifically, we assume that there are N training images annotated by K
users: {(Ii,yi)}Ni=1, where Ii is the ith image and yi = [yi1, . . . , yiK ]T is its label
vector. The kth element yik in yi is 1 if user k likes Ii, and 0 otherwise.

Fig. 3 illustrates how to determine the embedding space. We feed a pair of
positive and negative images for each user into two identical embedding networks.
Specifically, at each training iteration, we sample a triplet (k, Ip, In), where Ip
and In are positive and negative images for user k, whose labels are yp,k = 1 and
yn,k = 0. Each embedding network produces a 512-dimensional feature vector
from an RGB color image of size 256 × 256. We employ ResNet-18 [18] as the
twin embedding networks and perform L2 normalization to each output feature
vector.

Let fp and fn denote such feature vectors for positive and negative images,
respectively, and fk be the preference vector for user k. Then, we learn the
embedding space, where the preference vector fk is similar to the positive feature
vector but dissimilar from the negative one. To this end, we compute the triplet
loss [37], given by

Ltri(fk, fp, fn) =
[
D(fk, fp)−D(fk, fn) + α

]
+

(1)
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Fig. 4: Architecture of PieNet, composed of an encoder (top part) and a decoder
(bottom part).

where D(·) is the squared Euclidean distance, [·]+ is the rectifier, and α is a
margin to be enforced between positive and negative images.

In the training phase, we initialize each preference vector with random values
and the embedding networks with the pre-trained weights on ImageNet [36].
Then, we compute gradients to minimize the triplet loss,

∂Ltri(fk, fp, fn)

∂fp
= 2(fp − fk) · I(Ltri(fk, fp, fn) > 0), (2)

∂Ltri(fk, fp, fn)

∂fn
= 2(fk − fn) · I(Ltri(fk, fp, fn) > 0), (3)

∂Ltri(fk, fp, fn)

∂fk
= 2(fn − fp) · I(Ltri(fk, fp, fn) > 0), (4)

where I(·) denotes the indicator function. Note that these gradients are back-
propagated to update the preference vector fk and the weight parameters in the
embedding networks simultaneously. In this way, we determine the embedding
space to yield the preference vectors for the K users, by employing the training
images and their label vectors.

3.2 PieNet architecture

Using the preference vectors, we perform personalized image enhancement. Fig. 4
is the architecture of PieNet, which has an encoder and a decoder. The encoder
takes an RGB color image as input. Its spatial resolution is 512× 512. We also
employ ResNet-18 to implement the encoder, which consists of one convolution
layer, eight residual blocks, and one average pooling layer. The encoder extracts
five multi-scale features from the convolution layer, the 2nd, 4th, 6th residual
blocks, and the pooling layer, respectively. The intermediate features from the
convolution layer and the residual blocks preserve detailed local information,
while the global feature, extracted from the pooling layer, contains high-level
information such as global brightness and scene category of the input image.

From the extracted features of the encoder, the decoder reconstructs a delta
image ∆I, which is added to the input image I to enhance its quality. For the
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decoder, we develop the personalized up-sample block (PUB) to consider user
preferences. In Fig. 4, each PUB takes three inputs: 1) the preference vector,
2) the output of the previous block, and 3) the intermediate feature of the
encoder. It makes the first two inputs have the same size as the third one through
convolution and up-sampling, and then concatenates the three data along the
channel dimension. Then, the residual block in the PUB produces the output. By
feeding the preference vector to every PUB, the decoder can satisfy the preferred
style of the specific user. The output of the last PUB is concatenated with the
output of the convolution layer in encoder. Then, the concatenated signal is up-
sampled to be the same size as the input image and fed into the last convolution
layer. The last convolution layer yields the delta image ∆I.

Finally, the enhanced image Ĩ is obtained by adding the delta image ∆I to
the input image I, given by

Ĩ = I +∆I. (5)

Note that we predict the delta image instead of the enhanced image directly. This
is because the down-sampling process in the network may lose image details.
Even though the delta image loses some details, the enhanced image can restore
those details from the input image.

3.3 PieNet training

For user k, suppose that the preference vector fk and an image pair (I, I∗k) are
available. Here, I∗k is the ground-truth enhanced image that user k prefers to
obtain from image I. We train PieNet using the preference vector and the image
pair. Note that PieNet estimates a delta image ∆Ik and produces a personalized
enhanced image Ĩk via (5). We compare the estimated result with the ground-
truth to train PieNet, by employing the loss function

L(I,∆Ik, Ĩk, I
∗
k) = Lc(Ĩk, I

∗
k) + λpLp(Ĩk, I

∗
k) + λtLt(I,∆Ik) (6)

where Lc, Lp, and Lt are color, perceptual, and total variation losses, respec-
tively, and λp and λt are balancing parameters.

The color loss penalizes the mean absolute error between the predicted and
ground-truth enhanced images, given by Lc(Ĩk, I

∗
k) = ‖Ĩk−I∗k‖1. The perceptual

loss [22] encourages the enhanced image and the ground-truth image to have
similar features. Specifically, it is defined as Lp(Ĩk, I

∗
k) = ‖f̃k − f∗k‖1, where f̃k

and f∗k denote the features for the estimated and ground-truth enhanced images,
respectively, extracted from the embedding network in Section 3.1. Notice that
the embedding network attempts to construct the embedding space, where the
features of ground-truth enhanced images are compactly distributed near the
preference vector. Hence, the perceptual loss constrains that the feature of the
enhanced image should be near the preference vector.

Also, we use the total variation loss [1] to enforce the spatial smoothness of
the delta image. To constrain neighboring pixels to exhibit similar delta values,
the total variation loss is defined as

Lt(I,∆Ik) = ‖Wx ⊗∇x(∆Ik)‖1 + ‖Wy ⊗∇y(∆Ik)‖1 (7)
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where ⊗ is the element-wise multiplication, and ∇x and ∇y denote the partial
derivatives in the horizontal and vertical directions. Also,Wx = exp(−|∇xI|) and
Wy = exp(−|∇yI|) are weight maps, which have large values in smooth regions
in the input image. Thus, the total variation loss Lt imposes large penalties when
neighboring pixels in smooth regions are assigned quite different delta values.
On the contrary, near edges or complicated texture in the input image, delta
values may be dissimilar from one another without causing large penalties.

3.4 Personalization for new users

A critical issue in personalized enhancement is ‘scalability,’ which means the
capability of accommodating the preference of a new user with minimal efforts.
A straightforward approach is to repeat the entire training process, i.e. perform-
ing metric learning and training PieNet to consider a new user as well as the
existing users. However, the fine-tuning of the embedding space and PieNet is
a time-consuming process. Therefore, we decide the preference vector for the
new user within the pre-trained embedding space and also use the pre-trained
PieNet to produce personalized results. We consider two schemes to determine
the preference vector for the new user.

The first scheme assumes that a new user provides two sets of positive and
negative images. Then, given the pre-trained embedding space, the gradient in
(4) is back-propagated to update the preference vector, while the other gradients
in (2) and (3) are not back-propagated. Thus, we fix the embedding space while
determining the preference vector. Then, using this preference vector, the pre-
trained PieNet yields personalized enhanced images for the new user.

In the second scheme (which is computationally much simpler and is thus
adopted in the default mode), a new user provides preferred images only. The pre-
trained embedding network encodes these preferred images into feature vectors.
Then, we determine the preference vector, by averaging the feature vectors.
Note that the new user need not provide non-preferred images. Thus, the second
scheme demands less user effort than the first scheme does. Moreover, it is shown
in Section 4 that about 10 preferred images are sufficient for PieNet to yield
desirable personalization results.

4 Experiments

4.1 Evaluation on MIT-Adobe 5K

Dataset and metrics: We assess the proposed algorithm on the MIT-Adobe
5K dataset [5]. It consists of 5,000 input images, each of which was manually
enhanced by five different photographers (A/B/C/D/E). Thus, there are five
sets of 5,000 pairs of input and enhanced images, one set for each photographer.
Among the 5,000 images, we randomly select 500 images to compose the test
set as done in [9, 42], and use the remaining 4,500 images as the training set.
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Table 1: Comparison of the proposed algorithm with the conventional algorithms
on MIT-Adobe 5K. For the ‘single user’ test, we use the photographer C’s re-
touched images as the ground-truth. For the ‘multiple users’ test, we use the
retouched images by the five photographers A/B/C/D/E as the ground-truth.

Single user Multiple users

Method PSNR SSIM mPSNR mSSIM

WB [19] 18.36 0.810 17.83 0.799
D&R [35] 20.97 0.841 18.65 0.834
HDR [14] 23.44 0.882 21.64 0.872
DPE [9] 22.34 0.873 21.09 0.858
DUPE [42] 23.61 0.887 21.74 0.881

Proposed 25.28 0.908 24.28 0.907

For quantitative assessment, we employ PSNR and SSIM, which measure, re-
spectively, color and structural similarity between predicted and ground-truth
enhanced images.

Implementation details: We jointly train the embedding network and the
preference vectors for photographers A/B/C/D/E using the training set in MIT-
Adobe 5K. For instance, when the preference vector for photographer A is
trained, we regard his or her retouched images as the positive set, but the in-
put images and the other photographers’ retouched images as the negative set.
This process is carried out for the other photographers similarly. We minimize
the triplet loss in (1) using the Adam optimizer [27] with a learning rate of
1.0 × 10−4. The training is iterated for 25,000 mini-batches, each of which in-
cludes 64 triplets. For data augmentation, we randomly rotate image pairs by
multiples of 90 degrees. The margin α in (1) is set to 0.2.

To train PieNet, we use all image pairs in the training set, i.e. the five sets of
image pairs for photographers A/B/C/D/E. In other words, we train PieNet for
all five photographers using their preference vectors and image pairs. We also
use the Adam optimizer to minimize the loss function in (6) with a learning rate
of 1.0 × 10−4 for 100,000 mini-batches. The mini-batch size is 8. We randomly
rotate images by multiples of 90 degrees. Also, we randomly perturb the pref-
erence vectors to make PieNet insensitive to small perturbations. Specifically,
we add noise n to the preference vectors, where n is sampled from the hyper-
sphere, ‖n‖2 = 0.1. The parameters λp and λt in (6) are fixed to 0.4 and 0.01,
respectively.

Experimental results: Table 1 compares the proposed algorithm with the
recent state-of-the-art algorithms in [9, 14, 19, 35, 42]. We obtain the results of
the conventional algorithms using the source codes and parameters, provided by
the respective authors. Note that these conventional algorithms are for general
(i.e. non-personalized) image enhancement. Specifically, they attempt to mimic
the retouching of photographer C only. In contrast, the proposed PieNet can
provide enhanced images in five different styles using the preference vectors of
photographers A/B/C/D/E.
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In the ‘single user’ test, we compare the proposed algorithm with the conven-
tional algorithms using the photographer C’s enhanced images as the ground-
truth. For this test, we only use the training images, retouched by C, to train
the proposed algorithm for a fair comparison. WB [19] and D&R [35] provide
poor performance than the other algorithms, since they use unpaired images
for training. The proposed algorithm significantly outperforms the conventional
algorithms [9, 14, 42], which conduct supervised learning directly using pairs of
input and enhanced images. The proposed algorithm provides excellent perfor-
mance due to two main factors. First, we adopt the effective network architec-
ture. Second, combining different losses in (6) further improves the performance.
Especially, we find that the perceptual loss Lp, based on the embedding network
in Section 3.1, leads to a notable PSNR improvement.

The ‘multiple users’ test analyzes the personalization performance. The pro-
posed algorithm can produce differently enhanced results according to the pref-
erence vectors. In this test, it yields personalized enhanced results for photogra-
phers A/B/C/D/E. We compare the personalized results with the correspond-
ing ground-truth to compute PSNR and SSIM for each photographer, and then
compute the average PSNR (mPSNR) and average SSIM (mSSIM) over the five
photographers. In contrast, since the conventional algorithms provide only one
enhanced result for an input image, we use the same enhanced result to compute
PSNR and SSIM for each photographer.

By comparing the ‘single user’ and ‘multiple users’ tests, we see that the
conventional algorithms experience significant degradation in the performance.
This is because the conventional algorithms are designed to mimic the retouching
style of photographer C only. Thus, they provide low PSNR and SSIM scores
when compared with the other photographers’ ground-truth. In contrast, the
proposed algorithm experiences only minor degradation. It is worth pointing out
that the proposed personalization performances in ‘multiple users’ even surpass
the performances of all conventional algorithms in ‘single user,’ whose scores are
computed for C only.

Notice that the proposed algorithm can produce personalized results for all
five photographers without any additional training of PieNet, by changing only
the preference vectors. On the contrary, for the conventional algorithms to pro-
vide reliable results for photographers A/B/D/E, they should retrain their net-
works four more times for the adaptation. The proposed algorithm hence achieves
personalization more efficiently than the conventional algorithms.

Fig. 5 compares the proposed algorithm with HDR, DPE, and DUPE qualita-
tively. In Fig. 5(b)∼(d), these conventional algorithms provide reasonable results.
They are designed to yield similar color tones to the photographer C’s retouched
image in Fig. 5(h). However, image enhancement is subjective, and photogra-
pher B prefers a different output in Fig. 5(f). As shown in Fig. 5(e) and (g),
the proposed algorithm adaptively produces output images in B and C’s styles,
respectively. More experiments are available in the supplementary materials.



Personalized Image Enhancement Network 11

(a) Input (b) HDR [14] (c) DPE [9] (d) DUPE [42]

(e) Proposed B (f) Photographer B (g) Proposed C (h) Photographer C

Fig. 5: Qualitative comparison of enhanced images.

4.2 Personalization

Dataset and metrics: We expand the MIT-Adobe 5K dataset to evaluate the
personalization performances of the proposed algorithm for new users other than
photographers A/B/C/D/E. However, it is an expensive task to collect 5,000
ground-truth images that are manually retouched by each new user. Therefore,
for the expanded dataset, we enhance images using 28 conventional methods
(including photographers A/B/C/D/E in [5] and predefined settings in Adobe
Lightroom), instead of employing people to enhance images manually. These
methods are regarded as users. Then, we divide the expanded dataset into the
training and test sets:

– Training (20 users): 11 presets in Adobe Lightroom, 5 conventional meth-
ods [2, 3, 6, 12,43], Photographers A/B/C/D [5]

– Test (8 users): 4 presets in Adobe Lightroom, 3 conventional methods [13,
16,30], Photographer E [5]

Note that the enhancement methods in the training and test sets do not overlap.
For each method in the training set, there are 4,500 pairs of input and enhanced
images for training the embedding space and PieNet. On the other hand, for each
method in the test set, there are 500 pairs of input and enhanced images, which
are used to assess the personalization performances of the proposed algorithm.
Implementation details: We train the embedding space and PieNet using
the pairs of input and enhanced images in the training set. We use the same
training settings in Section 4.1. In the test phase, we regard the methods in
the test set as new users. Then, we compute the preference vector for each
new user using the two schemes in Section 3.4: 1) triplet loss minimization and
2) feature vector average. For the first scheme, each method regards its enhanced
images as positive or preferred images, while considering enhanced images of the
other methods as negative images. For the second schemes, each method uses its
enhanced images as preferred images.
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(a) mPSNR (b) mSSIM

Fig. 6: Bar plots of the mPSNR and mSSIM scores for the 8 new users in the
expanded MIT-Adobe 5K dataset. In each plot, we repeat ten experiments.

(a) Proposed LDR (b) Proposed WVM (c) Proposed RLM (d) Proposed E

(e) LDR [30] (f) WVM [13] (g) RLM (h) Photographer E

Fig. 7: Qualitative comparison of personalized enhancement results of the pro-
posed algorithm with the ground-truth.

Experimental results: Fig. 6 shows the mPSNR and mSSIM scores for the
8 new users according to the number Npref of preferred images, which are used
to determine preference vectors. For the first scheme ‘triplet loss minimization,’
we use three times as many negative images as preferred images. The preferred
images and negative images are randomly selected 10 times for plotting the bar
graphs. Given sufficiently many preferred images (Npref = 2, 000) to compute
the preference vectors, the first scheme outperforms the second scheme. How-
ever, when there are only a limited number of preferred images, it experiences
severe performance degradation. In contrast, the second scheme provides reliable
personalization performances, even when only 20 preferred images are available.
Therefore, in the following tests, we use the second scheme with Npref = 20.

Fig. 7 shows personalization results. The top row presents personalized en-
hancement results, while the bottom row shows the corresponding ground-truth
generated by the four enhancement methods in the test set. Note that these
four ground-truth images are considerably different from one another. For in-
stance, photographer E in Fig. 7(h) boosts the brightness of the image, while
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Fig. 8: Visualization of the embedding space.

the RedLiftMatte (RLM) preset in Lightroom in Fig. 7(g) renders the floor in
different color tones. Nevertheless, the proposed algorithm successfully reflects
the tendency of each method in Fig. 7(e)∼(h). The supplementary materials
provide more personalization results.

Fig. 8 visualizes the embedding space, in which the feature vectors of ground-
truth images of the 8 test users are depicted as dots in different colors. For each
user, 100 ground-truth images are randomly selected. The t-SNE technique [34]
is employed for this visualization. We see that the feature vectors for the images
are well clustered according to the users, which indicates that the embedding
space is suitable for representing the preferred image styles of users. For the same
reason, in this embedding space, we can easily construct the preference vector
of a new user by averaging the feature vectors of only a few preferred images.

4.3 User study

We conducted a user study with 10 participants to assess the personalization
performance of the proposed algorithm for real people. It was designed as follows.

1. Each participant selected 20 preferred images from various pre-enhanced
images in the test set of the expanded MIT-Adobe 5K dataset.

2. The proposed algorithm generated the preference vector for each participant
using those preferred images.

3. Each participant was presented with six enhanced results of the same pho-
tograph, obtained by the proposed algorithm and the conventional algo-
rithms [9,14,19,35,42], and was asked to vote for the algorithm yielding the
most pleasing result. The photograph was also selected from the test set,
but not used to generate the preference vector. This was repeated for 10
photographs.

For this user study, we pre-trained the proposed algorithm using the training
set of the expanded dataset. All conventional algorithms were trained using the
photographer E’s retouched images, since it was the most often selected by the
participants as their preferred method. Table 2 summarizes the voting results.
The proposed algorithm gets the most votes by providing personalized results
to each participant effectively.
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Table 2: User study results. Nvote is the number of votes that each method gets.

HDR [14] DPE [9] WB [19] D&R [35] DUPE [42] Proposed

Nvote 101 64 17 2 71 245

(a) (b) (c) (d) (e)

Fig. 9: Personalization results for two participants P1 and P2 in the user study:
(a) P1’s preferred images, (b) P2’s preferred images, (c) input image, (d) en-
hanced image for P1, and (e) enhanced image for P2.

Fig. 9 shows personalization results for two participants (P1 and P2) in
the user study. P1 and P2, respectively, selected preferred images in (a) and
(b). These preferred styles are represented by their preference vectors. PieNet
enhances an input image in (c) using the preference vectors. We see that the
enhancement results in (d) and (e) faithfully reflect their preferred styles.

5 Conclusions

We addressed the personalization issue in image enhancement. We trained an
embedding space to obtain preference vectors based on metric learning, and
developed PieNet to produce personalized results using the preference vectors.
Experiments demonstrated that the proposed algorithm significantly outper-
forms the state-of-the-art algorithms on the MIT-Adobe 5K dataset. Also, it
was demonstrated that a new user can obtain reliable results by providing only
10∼20 preferred images to the proposed enhancement system.
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4. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a “Siamese” time delay neural network. In: NIPS (1994) 4

5. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global
tonal adjustment with a database of input/output image pairs. In: CVPR (2011)
2, 3, 8, 11

6. Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., Tao, D.: A joint intrinsic-extrinsic prior
model for retinex. In: ICCV (2017) 3, 11

7. Caicedo, J.C., Kapoor, A., Kang, S.B.: Collaborative personalization of image en-
hancement. In: CVPR (2011) 2, 4

8. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: A deep quadruplet
network for person re-identification. In: CVPR (2017) 4

9. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: Unpaired
learning for image enhancement from photographs with GANs. In: CVPR (2018)
2, 3, 8, 9, 10, 11, 13, 14

10. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: CVPR (2005) 4

11. Deng, Y., Loy, C.C., Tang, X.: Aesthetic-driven image enhancement by adversarial
learning. In: ACM MM (2018) 3

12. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A probabilistic
method for image enhancement with simultaneous illumination and reflectance
estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015) 3, 11

13. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model
for simultaneous reflectance and illumination estimation. In: CVPR (2016) 3, 11,
12

14. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral
learning for real-time image enhancement. ACM Trans. Graphics 36(4), 118 (2017)
2, 3, 9, 10, 11, 13, 14

15. Gonzalez, R.C., Woods, R.E.: Digital Image Processing (4th Edition). Pearson
(2018) 3

16. Guo, X., Li, Y., Ling, H.: Lime: Low-light image enhancement via illumination
map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016) 3, 11

17. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an in-
variant mapping. In: CVPR (2006) 4

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 5

19. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: A white-box photo post-
processing framework. ACM Trans. Graphics 37(2), 26 (2018) 2, 3, 9, 10, 13,
14

20. Jobson, D.J., Rahman, Z.u., Woodell, G.A.: A multiscale retinex for bridging the
gap between color images and the human observation of scenes. IEEE Trans. Image
Process. 6(7), 965–976 (1997) 3



16 H.-U. Kim et al.

21. Jobson, D.J., Rahman, Z.u., Woodell, G.A.: Properties and performance of a cen-
ter/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997) 3

22. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: ECCV (2016) 7

23. Joshi, N., Matusik, W., Adelson, E.H., Kriegman, D.J.: Personal photo enhance-
ment using example images. ACM Trans. Graphics 29(2), 12–1 (2010) 3

24. Kang, S.B., Kapoor, A., Lischinski, D.: Personalization of image enhancement. In:
CVPR (2010) 2, 3, 4

25. Kim, J.H., Jang, W.D., Sim, J.Y., Kim, C.S.: Optimized contrast enhancement
for real-time image and video dehazing. J. Vis. Commun. Image. Represent. 24,
410–425 (Apr 2013) 1

26. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equal-
ization. IEEE Trans. Consum. Electro. 43(1), 1–8 (1997) 3

27. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2014) 9

28. Land, E.H.: The retinex theory of color vision. Scientific American 237(6), 108–129
(1977) 3

29. Lee, C., Kim, J.H., Lee, C., Kim, C.S.: Optimized brightness compensation and
contrast enhancement for transmissive liquid crystal displays. IEEE Trans. Circuits
Syst. Video Technol. 24, 576–590 (Apr 2014) 3

30. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference
representation of 2D histograms. IEEE Trans. Image Process. 22(12), 5372–5384
(2013) 3, 11, 12

31. Lee, C., Lee, C., Lee, Y.Y., Kim, C.S.: Power-constrained contrast enhancement
for emissive displays based on histogram equalization. IEEE Trans. Image Process.
21(1), 80–93 (2011) 3

32. Lim, J., Heo, M., Lee, C., Kim, C.S.: Contrast enhancement of noisy low-light
images based on structure-texture-noise decomposition. J. Vis. Commun. Image.
Represent. 45, 107–121 (May 2017) 1

33. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to nat-
ural low-light image enhancement. Pattern Recognit. 61, 650–662 (2017) 2, 3

34. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine
Learning Research 9, 2579–2605 (Nov 2008) 13

35. Park, J., Lee, J.Y., Yoo, D., Kweon, I.S.: Distort-and-recover: Color enhancement
using deep reinforcement learning. In: CVPR (2018) 2, 3, 9, 10, 13, 14

36. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large
scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)
6

37. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embedding for face
recognition and clustering. In: CVPR (2015) 4, 5

38. Sohn, K.: Improved deep metric learning with multi-class N-pair loss objective. In:
NIPS (2016) 4

39. Song, H.O., Jegelka, S., Rathod, V., Murphy, K.: Deep metric learning via facility
location. In: CVPR (2017) 4

40. Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: CVPR (2016) 4

41. Stark, J.A.: Adaptive image contrast enhancement using generalizations of his-
togram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000) 3



Personalized Image Enhancement Network 17

42. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed
photo enhancement using deep illumination estimation. In: CVPR (2019) 2, 3, 8,
9, 10, 11, 13, 14

43. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algo-
rithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9),
3538–3548 (2013) 3, 11

44. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic
sub-image histogram equalization method. IEEE Trans. Consum. Electro. 45(1),
68–75 (1999) 3

45. Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y.: Automatic photo adjustment using
deep neural networks. ACM Trans. Graphics 35(2), 11 (2016) 2, 3

46. Yu, R., Liu, W., Zhang, Y., Qu, Z., Zhao, D., Zhang, B.: Deepexposure: Learning
to expose photos with asynchronously reinforced adversarial learning. In: NIPS
(2018) 3

47. Yue, H., Yang, J., Sun, X., Wu, F., Hou, C.: Contrast enhancement based on in-
trinsic image decomposition. IEEE Trans. Image Process. 26(8), 3981–3994 (2017)
3


