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Abstract. Fourier phase retrieval is a classical problem that deals with
the recovery of an image from the amplitude measurements of its Fourier
coefficients. Conventional methods solve this problem via iterative (al-
ternating) minimization by leveraging some prior knowledge about the
structure of the unknown image. The inherent ambiguities about shift
and flip in the Fourier measurements make this problem especially diffi-
cult; and most of the existing methods use several random restarts with
different permutations. In this paper, we assume that a known (learned)
reference is added to the signal before capturing the Fourier amplitude
measurements. Our method is inspired by the principle of adding a ref-
erence signal in holography. To recover the signal, we implement an
iterative phase retrieval method as an unrolled network. Then we use
back propagation to learn the reference that provides us the best recon-
struction for a fixed number of phase retrieval iterations. We performed a
number of simulations on a variety of datasets under different conditions
and found that our proposed method for phase retrieval via unrolled
network and learned reference provides near-perfect recovery at fixed
(small) computational cost. We compared our method with standard
Fourier phase retrieval methods and observed significant performance
enhancement using the learned reference.

1 Introduction

The problem of phase retrieval refers to the challenge of recovering a real- or
complex-valued signal from its amplitude measurements. This problem arises
in diffraction imaging, X-ray crystallography, and ptychography [14,15,21,35,43].
Fourier phase retrieval is a special class of phase retrieval problems aimed at the
recovery of a signal from the amplitude of its Fourier coefficients. Let us assume
that Fourier amplitude measurements are given as

y = |Fx|+ η, (1)

where F denotes the Fourier transform operator, x denotes the unknown signal
or image, and η denotes the measurement noise. Our goal is to recover x given y.

? equal contribution
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Fourier phase retrieval is essential in many applications, especially in optical
coherent imaging. Classical methods for phase retrieval utilize the prior knowledge
about the support and positivity of the signals [14,15]. Subsequent work has
considered the case where the unknown signal is structured and belongs to a low-
dimensional manifold that is known a priori. Examples of such low-dimensional
structures include sparsity [46,27], low-rank [26,12], or neural generative mod-
els [25,28]. Other techniques like Amplitude flow [47] and Wirtinger flow use
alternating minimization [7]. Many of these newer algorithms involve solving
a non-convex problem using iterative, gradient-based methods; therefore, they
need to be carefully initialized. The initialization technique of choice is spectral
initialization, first proposed in the context of phase retrieval in [36], and extended
to the sparse signal case in [46,27].

Fourier phase retrieval problem does not satisfy the assumptions needed for
successful spectral initialization and remains highly sensitive to the initialization
choice. Furthermore, Fourier amplitude measurements have the so-called trivial
ambiguities about possible shifts and flips of the images. Therefore, many Fourier
phase retrieval methods test a number of random initializations with all possible
flips and shifts and select the estimate with the best recovery error [34].

In this paper, we assume that a known (learned) reference is added to the
signal before capturing the Fourier amplitude measurements. The main motivation
for this comes from the empirical observation that knowing a part of the image
can often help resolve the trivial ambiguities [3,18,22]. We extend this concept
and assume that a known reference signal is added to the target signal and
aim to recover the target signal from the Fourier amplitude of the combined
signal. Adding a reference may not feasible in all cases, but our method will
be applicable whenever we can add a reference or split the target signal into
known and unknown parts. We can describe the Fourier amplitude (phaseless)
measurements with a known reference signal u as

y = |F (x+ u)|+ η. (2)

Similar reference-based measurements and phase retrieval problems also arise in
holographic optical coherence imaging [37].

Our goal is to recover the signal x from the amplitude measurements in (2).
To do that, we implement a gradient descent method for phase retrieval. We
present the algorithm as an unrolled network for a general system in Fig. 1. Every
layer of the network implements one step of the gradient descent update. To
minimize the computational complexity of the recovery algorithm, we seek to
minimize the number of iterations (hence the layers in the network). In addition,
we seek to learn the reference u to maximize the accuracy of the recovered signal
for a given number of iterations. The learned u and reconstruction results for
different datasets are summarized in Fig. 2.

1.1 Our Contributions

We present an iterative method to efficiently recover a signal from the Fourier
amplitude measurements using a fixed number of iterations. To achieve this
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Fig. 1: Our proposed approach for learning reference signal by solving phase retrieval
using an unrolled network. Unrolled network has K layers. Each layerk gets amplitude
measurements y, reference u, and estimate xk−1 as inputs, and updates the estimate to
xk. The operations inside layerk are shown in the dashed box on the right, where A
and B are both linear measurement operators, and A∗ is the adjoint operator of A.

goal, we first learn a reference signal that can be added to the phaseless Fourier
measurements to enable the exact solution of the phase retrieval problem. We
demonstrate that the reference learned on a very small training set perform
remarkably well on the test dataset.

Our main contributions can be summarized as follows.

– The proposed method uses a fixed number of gradient descent iterations (i.e.,
fixed computational cost) to solve the Fourier phase retrieval problem.

– We formulate the gradient descent method as an unrolled network that allows
us to learn a robust reference signal for a class of images. We demonstrate
that reference learned on a very small dataset performs remarkably well on
diverse and large test datasets. To the best of our knowledge, this is the first
work on learning a reference for phase retrieval problems.

– We tested our method extensively on different challenging datasets and
demonstrated the superiority of our method.

– We demonstrate the robustness of our approach by testing it with the noisy
measurements using the reference that was trained on noise-free measure-
ments.

2 Related Work

Holography. Digital holography is an interferometric imaging technique that
does not require the use of any imaging lens. Utilizing the theory of diffraction of
light, a hologram can be used to reconstruct three-dimensional (3D) images [39].
With this advantage, holography can be used to perform simultaneous imaging of
multidimensional information, such as 3D structure, dynamics, quantitative phase,
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multiple wavelengths, and polarization state of light [44]. In the computational
imaging community, many attempts have been made in solving holographic phase
retrieval using references, among which [3] has been very successful. Motivated
by the reference design for holographic phase retrieval, we are trying to explore
a way to design references for general phase retrieval.

Phase Retrieval. The phase retrieval problem has drawn considerable at-
tention over the years, as many optical detection devices can only measure
amplitudes of the Fourier transform of the underlying object (signal or image).
Fourier phase retrieval is a particular instance of this problem that arises in
optical coherent imaging, where we seek to recover an image from its Fourier
modulus [14,15,41,35,43,33]. Existing algorithms for solving phase retrieval can be
broadly classified into convex and non-convex approaches [23]. Convex approaches
usually solve a constrained optimization problem after lifting the problem. The
PhaseLift algorithm [8] and its variations [17], [6] belong to this class. On the
other hand, non-convex approaches usually depend on Amplitude flow [46,45]
and Wirtinger flow [7,52,11,5]. If we know some structure of the signal a priori,
it helps in the reconstruction. Sparsity is a very popular signal prior. Some of
the approaches for sparse phase retrieval include [38,32,2,24,36,5,46]. Further-
more, [36,27,23] used minimization (AltMin)-based approach and [10] used total
variation regularization to solve phase retrieval. Recently, various researchers
have explored the idea of replacing the sparsity priors with generative priors for
solving inverse problems. Some of the generative prior-based approaches can be
found in [23,28,20,42].

Data-Driven Approaches for Phase Retrieval. The use of deep learning-
based methods to solve computational imaging problems such as phase retrieval is
becoming popular. Deep learning methods leverage the power of huge amounts of
data and tend to provide superior performance compared to traditional methods
while also run significantly faster with the acceleration of GPU devices. A few
examples demonstrating the benefit of the data-driven approaches include [34]
for robust phase retrieval, [30] for Fourier ptychographic microscopy, and [40] for
holographic image reconstruction.

Unrolled Network for Inverse Problem. Unrolled networks, which are
constructed by unrolled iterations of a generic non-linear reconstruction algorithm,
have also been gaining popularity for solving inverse problems in recent years
[31,13,16,48,19,50,29,4]. Iterative methods usually terminate the iteration when
the condition satisfies theoretical convergence properties, thus rendering the
number of iterations uncertain. An unrolled network has a fixed number of
iterations (and cost) by construction and they produce good results in a small
number of steps while enabling efficient usage of training data.

Reference Design. Fourier phase retrieval faces different trivial ambiguities
because of the structure of Fourier transformation. As a phase shift in the Fourier
domain results in a circular shift in the spatial domain, we will get the same
Fourier amplitude measurements for any circular shift of the original signal. In
recent papers [3,51,18,22], authors tried to use side information with sparsity
prior to mitigate these ambiguities. However, in those studies, the reference and
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target signal are separated by some margin. If the separation between target and
reference is large enough, then the nonlinear PR problem simplifies to a linear
inverse problem [1,3].

In this paper, we consider the reference signal to be additive and overlapping
with the target signal. To the best of our knowledge, there has not been any
study on such unrestricted reference design. While driven by data, our approach
for reference design uses training samples in a very efficient way. The number
of training images required by our network is parsimonious without limiting its
generalizability. The reference learned by our network provides robust recovery
test images with different sizes. Apart from the great flexibility, our unrolled
network uses a well-defined routine in each layer and demonstrates excellent
interpretability as opposed to black-box deep neural networks.

3 Proposed Approach

We use the general formulation for the phase retrieval from amplitude mea-
surements. The formulation can be extended for phase retrieval with squared
amplitude measurement as well. In our setup, we model amplitude measurements
of a target signal x and a reference signal u as y = |Ax+Bu|, where A and B
are linear measurement operators. Our goal is to learn a reference signal that
provides us the best recovery of the target signal. We formulate this overall task
as the following optimization problem:

minimize
x̂(u)

‖x− x̂(u)‖22 s.t. y = |Ax̂(u) +Bu|, (3)

where x̂(u) denotes the solution of the phase retrieval problem for a given reference
u. Our approach to learn u and solve (3) can be divided into two nested steps: (1)
Outer step updates u to minimize the recovery error for phase retrieval and (2)
inner step uses the learned u to recover target images by solving phase retrieval.

To solve the (inner step) of phase retrieval problem, we use an unrolled
network. Figure 1 depicts the structure of our phase retrieval algorithm. In the
unrolled phase retrieval network, we have K blocks to represent K iterations of
the phase retrieval algorithm. We minimize the following loss to solve the phase
retrieval problem:

Lx(x, u) = ‖y − |Ax+Bu|‖22. (4)

Every block of the unrolled phase retrieval network is equivalent to one gradient
descent step for (4). For some value of reference estimate, u, we can represent
the target signal estimate after k + 1th block of the unrolled network as

xk+1 = xk − αk∇xLx(xk, u), (5)

where ∇xLx(xk, u) is the gradient of Lx with respect to x at the given values of
xk, u. As the loss function in (4) is not differentiable, we can redefine it as

Lx(x, u) = ‖y � p− (Ax+Bu)‖22, (6)
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where p = ∠(Axk +Bu) = (Axk +Bu)/|Axk +Bu|. The expression of gradient
can be written as

∇xLx(xk, u) = 2A∗[p� (p∗ � (Axk +Bu)− y)], (7)

where A∗ denotes the adjoint of A. After K blocks, we get the estimate of the
target signal that we denote as x̂(u) = xK .

In the learning phase, we are given a set of training signals, {x1, x2, ..., xN},
which share the same distribution as our target signals. We initialize x0 and
u0 with some initial (feasible) values. First we minimize the following loss with
respect to u:

Lu(u) =

N∑
i=1

‖xi − x̂i‖22 =

N∑
i=1

‖xi − xKi ‖22. (8)

We can rewrite (8) using the gradient recursion in (5) as

Lu(u) =

N∑
i=1

‖xi − x0i +

K−1∑
k=0

αk∇xLx(xki , u)‖22. (9)

We can then use gradient descent to to minimize Lu(u). We can represent the
j + 1th iteration of gradient descent step as

uj+1 = uj − β∇uLu(uj). (10)

The expression for ∇uLu(u) can be written as

∇uLu(u) = 2

N∑
i=1

[
K−1∑
k=0

αkJu(xki , u)

][
xi − x0i +

K−1∑
k=0

αk∇xLx(xki , u)

]
, (11)

where Ju(xki , u) = ∇u∇xLx(xki , u) is a Jacobian matrix with rows and columns
of the same size as u and x, respectively. The measurement vector y = |Ax+Bu|
is a function of u during training. Since we model x̂(u) as an unrolled network, we
can think of the gradient step as a backpropagation step. To compute ∇uLu(u),
we backpropagate through the entire unrolled network. At the end of J th outer
iteration, we will get our learned reference û = uJ .

Once we have learned a reference, û, we can use it to capture (phaseless)
amplitude measurements as y = |Ax∗ + Bû| for target signal x∗. To solve the
phase retrieval problem, we perform one forward pass through the unrolled
network. Pseudocodes for training and testing are provided in Algorithms 1,2.

In our Fourier phase retrieval experiments A = B = F , where F is the
Fourier transform operation. To implement similar method for squared amplitude
measurements, we can simply replace p = ∠(Axk +Buj) with p = Axk +Buj .
In all our experiments, we initialized x0 as a zero vector whenever û 6= 0. We
can also add additional constraints on the reference while minimizing the loss
function in (9). In our experiments, we used target signals with intensity values
in the range [0, 1]; therefore, we restricted the range of entries in u to [0, 1] as
well. We discuss other constraints in the experiment section.
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Algorithm 1 Learning Reference Signal

Input: Training signals {x1, x2, ..., xN}, measurement operators, A and B.
Initialize {x01, x02, ..., x0N}, u0

for j = 0, 1, ..., J − 1 do
for i = 1, 2, ..., N do

yi = |Ax∗i +Buj |
for k = 0, 1, ...,K − 1 do

Lx(xki , u
j) = ‖yi − |Axki +Buj |‖22

xk+1
i ← xki − αk∇xLx(xki , u

j)
end for

end for
Lu(uj) =

∑N
i=1 ‖x

∗
i − x0i +

∑K
k=1 αk∇xLx(xk−1

i , uj)‖22
uj+1 ← uj − β∇uLu(uj)

end for
Output: Optimal reference, û = uJ

Algorithm 2 Solving Phase Retrieval via Unrolled Network

Input: Measurements y, learned reference û, measurement operators, A and B.
Initialize x0

for k = 0, 1, ...,K − 1 do
Lx(xk, û) = ‖y − |Axk +Bû|‖22
xk+1 ← xk − αk∇xLx(xk, û)

end for
Output: Estimation of target signal x̂ = xK

4 Experiments

Datasets. We have used MNIST digits, EMNIST letters, Fashion MNIST,
CIFAR10, SVHN, CelebA datasets, and different well-known standard images for
our experiments. We convert all images to grayscale and resize 28× 28 images
to 32 × 32. Although there are tens of thousands training images in MNIST,
EMNIST letters, Fashion MNIST, CIFAR10, and SVHN dataset, we have used
only a few (e.g., 32) of them in training. We have shown that the references
learned on the small number of training images perform remarkably well on the
entire test dataset. MNIST, Fashion MNIST, and CIFAR10 test datasets contain
10000 test images each; EMNIST letters dataset contains 24800 test images;
SVHN test dataset contains 26032 test images. We used 1032 images from CelebA
and center-cropped and resized all of them to 200× 200. We selected 32 images
for training and the rest for testing.

We present the results for these different datasets using references learned
from 32 images from the same dataset in Fig. 2. We present results for six
standard images of size 512× 512 from [34] using a resized reference learned from
CelebA dataset in Fig. 3.

Measurements. We simulated amplitude measurements of the 2D Fourier
transform. We performed 4 times oversampling in the spatial domain for both
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Fig. 2: Reconstruction results using learned references. Each block (a)-(f) shows results
for a different dataset: (left) learned reference with a colorbar; (middle) sample original
images and reconstruction with PSNR on top; (right) histogram of PSNR over the
entire test dataset (vertical dashed line represents the mean PSNR).

reference and target signal. Unless otherwise mentioned, we consider our mea-
surements to be noise-free. We also report results for noisy measurements.

4.1 Configurations of Reference (u)

The reference signal u, which we are trying to learn, has a number of hyper-
parameters that inherently affect the performance of the phase retrieval process.
We considered several constraints on u, including the support, size, range, position,
and sparsity.

We tested reference signals with both complex and real values and found that
u has comparable results in the two domains. Since it is easy to physically create
amplitude or phase-only reference signals, we constrain u to be in the real domain;
thus, u ∈ Rm×n and m, n represent height and width, respectively. The height
and width of u determine the overlapping area between the target signal and the
reference. We found that u with larger size tends to have better performance,
especially when the value of u is constrained to a small range. The intensity values
of u play a major role in its performance. If we constrain the value of u to be
within a certain range: u[i, j] ∈ [umin, umax], for all i, j, we observed that bigger
range of u yields better performance. This is because when u is unconstrained
then we can construct a u with a large norm. Consider the noiseless setting with
quadratic measurements |F (x+ u)|2 = |Fx|2 + |Fu|2 + 2Re(Fx� Fu), the last
term is the real value of the element-wise product of target and reference Fourier
transforms. We can remove |Fu|2 because it is known. If u is large compared to
x, then we can also ignore the quadratic term |Fx|2 and recover x in a single
iteration if all entries of Fu are nonzero. To avoid this situation and make the
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Fig. 3: Phase retrieval results using learned and random references. First Row: Original
512 × 512 test images. Second Row: Reconstruction using random references with
uniform distribution between [0, 1] best result out of 100 trials. Third Row:
Reconstruction using the reference learned on CelebA dataset and resized from 200×200
to 512× 512. (PSNR shown on top of images.)

Table 1: PSNR for different training sizes

Train/Test MNIST EMNIST F. MNIST SVHN CIFAR10

Training size=32 66.54 58.72 57.81 57.51 41.60
Training size=128 76.25 64.16 55.86 59.50 44.34
Training size=512 79.14 62.34 52.01 59.78 48.90

problem stable in the presence of noise, we restricted the values in the reference
u to be in [0,1] range.

4.2 Setup of Training Samples and Sample Size

We observed that we can learn the reference signal from a small number of
training images. In Table 1, we report test results for different reference signals
learned on first N images from MNIST training dataset for N = 32, 128, 512.
We kept the signal and reference strength (i.e., the range of the signal) equal
for this experiment. We observe that increasing the training size improves test
performance. However, we can get reasonable reconstruction performance on
large test datasets (10k+ images) with reference learned using only 32 images.



10 R. Hyder, Z. Cai, M. Asif
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(a) MNIST
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(b) CIFAR10

Fig. 4: Test results on shifted/flipped/rotated images using the reference learned on
upright and centered (canonical) training images. (PSNR shown on top of images.)

4.3 Generalization of Reference on Different Classes

We are interested in evaluating the generalization of our learned reference. (i.e.,
how the reference performs when trained on one dataset and tested on another).
In the comparison study, we took the reference u trained on each dataset and
then tested them on the remaining 4 datasets. The value range of the reference
is between [0, 1], the number of steps in the unrolled network is K = 50. We
observed that when the datasets share great similarity (e.g., MNIST and EMNIST
are both sparse digits or letters), the reference signal tends to work well on both
datasets. Even when the datasets differ greatly in their distributions, the reference
trained on one dataset provides good results on other datasets (with only a few
dB of PSNR decrease in performance).

We also tested our method on shifted and rotated versions of test images.
Results in Fig. 4 demonstrate that even though the reference was trained on
upright and centered images, we can perfectly recover shifted and rotated images.

Our key insight about this generalization phenomenon is that the main
challenge in Fourier phase retrieval methods is initialization and ambiguities
that arise because of symmetries. We are able to solve these issues using a
learned reference because of the following reasons: (1) A reference gives us a good
initialization for the phase retrieval iterations. (2) The presence of a reference
breaks the symmetries that arise in Fourier amplitude measurements. Moreover,
we are not learning to solve the phase retrieval problem in an end-to-end manner
or learn a signal-dependent denoiser to solve the inverse problem [34,40]. We are
learning reference signals to primarily help a predefined phase retrieval algorithm
to recover the true signal from the phaseless measurements. Thus, the references
learned on one class of images provide good results on other images, see Table 2.
This study shows that the reference learned using our network has the ability
to generalize to new datasets, thus making our method suitable for real-life
applications where new test cases keep emerging.

4.4 Noise Response

To test the robustness of our method in the presence of noise, we added Gaussian
and Poisson noise at different levels to the measurements. Poisson noise or shot
noise is the most common in the practical systems. We model the Poisson noise
following the same approach as in [34]. We simulate the measurements as

y(i) = |z(i)|+ η(i) for all i = 1, 2, . . . ,m, (12)
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Table 2: PSNR with references trained and tested on different datasets

Train/Test MNIST EMNIST F. MNIST SVHN CIFAR10

MNIST 66.54 55.12 40.87 41.87 31.72
EMNIST 72.84 58.72 52.18 55.42 48.16
F. MNIST 40.87 55.67 57.81 50.70 42.85
SVHN 41.87 46.76 49.60 57.51 51.54
CIFAR10 31.72 38.93 36.40 40.36 41.60
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Fig. 5: Reconstruction quality of the test images vs noise level of the measurements for
different datasets. We learned the reference using noise-free measurements.

where η(i) ∼ N (0, σ2) for Gaussian noise and η(i) ∼ N (0, λ|z(i)|) for Poisson
noise with z = Ax+Bu. We varied σ, λ to generate noise at different signal-to-noise
ratios. Poisson noise affects the larger measurements with higher strength than the
smaller measurements. As the sensors can measure only positive measurements,
we kept the measurements positive by applying ReLU function after noise addition.
We can observe the effect of noise in Fig. 5. Even though we did not add noise
during training, we get reasonable reconstruction and performance degrades
gracefully with increased noise.

4.5 Random Reference versus Learned Reference

To demonstrate the advantage of the learned reference signal, we compared the
performance of learned reference and random reference on some standard images.
The results are shown in Fig. 3. The learned reference is trained using 32 images
from CelebA dataset which we resized to 200 × 200. The test images used in
Fig. 3 are 512 × 512, so we resized the learned reference from 200 × 200 to
512×512. For random reference, we selected the entries of the reference uniformly
at random from [0, 1]. We selected the best result out of 100 trials for every test
image with random reference. We can observe from the results that our learned
reference significantly outperforms the random reference even though the test
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Table 3: Comparison with existing phase retrieval methods

Methods MNIST EMNIST F. MNIST SVHN CIFAR10

HIO 9.04 8.42 9.65 19.87 14.70
Amplitude Flow 9.99 9.79 11.90 20.25 15.04
Kaczmarz 11.81 11.47 13.44 19.48 15.01
Flat Reference 18.21 17.24 16.56 20.89 15.81
Random Reference 36.87 28.41 27.27 36.45 25.57
Learned Reference (Ours) 66.54 58.72 57.81 57.51 41.60

image distribution is distinct from the training data. The number of steps of the
unrolled network is K = 50.

4.6 Comparison with Existing Phase Retrieval Methods

We have shown comparison with other approaches in Table 3. We selected
Kaczmarz [49] and Amplitude flow [11] for comparison using PhasePack package
[9]. We also show Hybrid Input Output (HIO), which is similar to our phase
retrieval routine without any reference. We observe that our approach with
learned reference can outperform all other approaches on all the datasets. All the
traditional phase retrieval methods suffer from the trivial circular shift, rotation,
and flip ambiguities, thus produce significantly worse reconstruction than our
method does. Our method uses a reference signal to simplify the initialization
and removes the shift/reflect ambiguities. To mathematically explain this fact, a
shifted or flipped version of x would not give us the same Fourier measurements
as |F (x+ u)| if u is chosen appropriately as we do with the learning procedure.
As we showed in Fig. 5, our method can perfectly recover the shifted and flipped
versions of the images using the reference that was trained with upright and
centered images.

4.7 Effects of Number of Layers (K)

We tested our unrolled network with different numbers of layers (i.e., K) at
training and test time. The results are summarized in Fig. 6. We first used the
same values of K for training and testing. We observed that as K increases, the
reconstruction quality (measured in PSNR) improves. Then we fixed K = 1 or
K = 10 at training, but used different values of K at testing. We observed that
if we increase K at the test time, PSNR improves up to a certain level and then
it plateaus. The PSNR achieved with reference trained with K = 10 is better
than what the referenced trained with K = 1 provided. These results provide
us a trade-off between the reconstruction speed and quality. As we increase K,
the reconstruction quality improves but the reconstruction requires more steps
(computations and time).
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(b) Training K=1
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(c) Training K=50

Fig. 6: Reconstruction PSNR vs the number of blocks (K) in the unrolled network at
training and testing. (a) K is same for training and testing (shaded region shows ±0.25
times std of PSNR). (b) K = 1 and (c) K = 10, but tested using different K.

Finally, we learned a reference using K = 1 and tested it on different images
with K = 1. To our surprise, our method was able to produce reasonable
quality reconstruction with this extreme setting. We present some single-step
reconstructions of each data set in Fig. 7.

4.8 Localizing the Reference

We also evaluated the effect of localizing the reference to a small region. For
example, the reference is constrained to be within a small block in the corner or
the center of the target signal. We restricted u to be an 8× 8 block and placed
it in different positions. We found that corner positions provide better results
as shown in Fig. 8. As we bring the reference support closer to the center, the
quality of reconstruction deteriorates. This observation is related to the method
in [3,18,1], where if the known reference signal is separated from the target signal,
then the phase retrieval problem can be solved as a linear inverse problem.

Note that signal recovery from Fourier phase retrieval is equivalent to signal
recovery from its autocorrelation. We can write the autocorrelation of target plus
reference signals as (x+ u) ? (x+ u) = x ? x+ u ? u+ x ? u+ u ? x. The first term
is a quadratic function of x, the second term is known, and the last two terms
are linear functions of x. If the supports for x and u are sufficiently separated,
then we can separate the last two linear terms from the first two quadratic terms
and recover x by solving a linear problem. However, if x and u have a significant
overlap, then we need to solve a nonlinear inverse problem as we do in this paper.

5 Conclusion

We presented a framework for learning a reference signal to solve the Fourier
phase retrieval problem. The reference signal is learned using a small number
of training images using an unrolled network as a solver for the phase retrieval
problem. Once learned, the reference signal serves as a prior which significantly
improves the efficiency of the signal reconstruction in the phase retrieval process.
The learned reference generalizes to a broad class of datasets with different
distribution compared to the training samples. We demonstrated the robustness
and efficiency of our method through extensive experiments.
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(a) (b)18.20 18.29 16.77 16.42 15.70 18.09 12.03 14.69 15.75 15.64 13.66 13.44

(c) (d)14.09 15.30 15.31 17.48 16.07 14.02 19.11 11.73 10.91 13.07 14.62 15.65

(e) (f)
17.66 14.32 14.25 15.90 15.68 17.37 13.85 12.93 14.67 12.63 14.48 18.38

Fig. 7: Single step reconstruction with reference in range [0, 1]. Each of the 6 sets
(a)-(f) has the the ground truth in the first row. Second row is the reconstruction
(PSNR shown on top of images.)
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Fig. 8: Performance of our method if the reference is an 8× 8 block placed at different
positions. Fixing the minimum value at 0, we increased the maximum value of the
reference we learn. We observe that the small reference placed in the corners performs
better than the ones placed in the center.
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