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Abstract. For better photography, most recent commercial cameras
including smartphones have either adopted large-aperture lens to col-
lect more light or used a burst mode to take multiple images within
short times. These interesting features lead us to examine depth from
focus/defocus. In this work, we present a convolutional neural network-
based depth estimation from single focal stacks. Our method differs
from relevant state-of-the-art works with three unique features. First,
our method allows depth maps to be inferred in an end-to-end manner
even with image alignment. Second, we propose a sharp region detection
module to reduce blur ambiguities in subtle focus changes and weakly
texture-less regions. Third, we design an effective downsampling mod-
ule to ease flows of focal information in feature extractions. In addition,
for the generalization of the proposed network, we develop a simulator
to realistically reproduce the features of commercial cameras, such as
changes in field of view, focal length and principal points. By effectively
incorporating these three unique features, our network achieves the top
rank in the DDFF 12-Scene benchmark on most metrics. We also demon-
strate the effectiveness of the proposed method on various quantitative
evaluations and real-world images taken from various off-the-shelf cam-
eras compared with state-of-the-art methods. Our source code is publicly
available at https://github.com/wcy199705/DfFintheWild.

Keywords: depth from focus, image alignment, sharp region detection
and simulated focal stack dataset.

1 Introduction

As commercial demand for high-quality photographic applications increases, im-
ages have been increasingly utilized in scene depth computation. Most commer-
cial cameras, including smartphone and DSLR cameras have two interesting
configurations: large-aperture lens and a dual-pixel (DP) sensor. Both are rea-
sonable choices to collect more light and to quickly sweep the focus through
multiple depths. Because of this, images appear to have a shallow depth of field
(DoF) and are formed as focal stacks with corresponding meta-data such as focal
length and principal points. One method to accomplish this is to use single dual-
pixel (DP) images which have left and right sub-images with narrow baselines
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Fig. 1. Results of our true end-to-end DfF framework with comparisons to state-of-
the-art methods.

and limited DoFs. A straightforward way is to find correspondences between
the left and right sub-images [36,7,41]. Despite an abundance of research, such
methods are heavily dependent on the accurate retrieval of correspondences due
to the inherent characteristics of DP images. Pixel disparities between the two
sub-images result in blurred regions, and the amount of spatial shifts is pro-
portional to the degree of blurrings. Another group of approaches solves this
problem using different angles. The out-of-focus regions make it possible to use
depth-from-defocus (DfD) techniques to estimate scene depths [2,24,40]. Since
there is a strong physical relationship between scene depths and the amount
of defocus blurs, the DfD methods account for it in data-driven manners by
learning to directly regress depth values. However, there is a potential limitation
to these works [2,24,40]. A classic issue, an aperture effect, makes an analysis
of defocus blur in a local window difficult. In addition, some of them recover
deblurred images from input, but image deblurring also belongs to a class of
ill-posed inverse problems for which the uniqueness of the solution cannot be
established [19].

These shortcomings motivate us to examine depth from focus (DfF) as an
alternative. DfF takes in a focal stack to a depth map during focus sweeping,
which is available in most off-the-shelf cameras, and determines the focus in
the input focal stack. In particular, the inherent operations of convolutional
neural networks (CNNs), convolution and maxpooling, are suitable for measuring
the values obtained from derivatives of the image/feature map based on the
assumption that focused images contain sharper edges [12,21,37]. Nevertheless,
there is still room for improvements with respect to model generalization, due
to the domain gap between public datasets and real-world focal stack images,
and an alignment issue that we will discuss.

In this work, we achieve a high-quality and well-generalized depth prediction
from single focal stacks. Our contributions are threefold (see Fig.1): First, we
compensate the change in image appearance due to magnification during the fo-
cus change, and the slight translations from principal point changes. Compared
to most CNN-based DfD/DfF works [12,21,37] which either assume that input se-
quential images are perfectly aligned or use hand-crafted feature-based alignment
techniques, we design a learnable context-based image alignment, which works
well in defocusing blurred images. Second, the proposed sharp region detection
(SRD) module addresses blur ambiguities resulting from subtle defocus changes
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in weakly-textured regions. SRD consists of convolution layers and a residual
block, and allows the extraction of more powerful feature representations for im-
age sharpness. Third, we also propose an efficient downsampling (EFD) module
for the DfF framework. The proposed EFD combines output feature maps from
upper scales using a stride convolution and a 3D convolution with maxpooling
and incorporates them to both keep the feature representation of the original
input and to ease the flow of informative features for focused regions. To opti-
mize and generalize our network, we develop a high performance simulator to
produce photo-realistic focal stack images with corresponding meta-data such as
camera intrinsic parameters.

With this depth from focus network, we achieve state-of-the-art results over
various public datasets as well as the top rank in the DDFF benchmark [12].
Ablation studies indicate that each of these technical contributions appreciably
improves depth prediction accuracy.

2 Related Work

The mainstream approaches for depth prediction such as monocular depth esti-
mation [6,8,9], stereo matching [3,32] and multiview stereo [10,16] use all-in-focus
images. As mentioned above, they overlook the functional properties of off-the-
shelf cameras and are out-of-scope for this work. In this section, we review depth
from defocus blur images, which are closely related to our work.
Depth from Defocus. Some unsupervised monocular depth estimation [33,11]
approaches utilize a defocus blur cue as a supervisory signal. A work in [33]
proposes differentiable aperture rendering functions to train a depth prediction
network which generates defocused images from input all-in-focus images. The
network is trained by minimizing distances between ground truth defocused im-
ages and output defocused images based on an estimated depth map. Inspired
by [33], a work in [11] introduces a fast differentiable aperture rendering layer
from hypothesis of defocus blur. In spite of depth-guided defocus blur, both
these works need all-in-focus images as input during an inference time. Anwar et
al. [2] formulate a reblur loss based on circular blur kernels to regularize depth
estimation, and design a CNN architecture to minimize input blurry images and
reblurred images from output deblurring images as well. Zhang and Sun [40] pro-
pose a regularization term to impose a consistency between depth and defocus
maps from single out-of-focus images.
Depth from DP images.

Starting with the use of traditional stereo matching, CNN-based approaches
have been adopted for depth from DP images [36]. A work in [7] introduces that
an affine ambiguity exists between a scene depth and its disparity from DP data,
and then alleviates it using both novel 3D assisted loss and folded loss. In [41],
a dual-camera with DP sensors is proposed to take advantage of both stereo
matching and depth from DP images. In [27], unsupervised depth estimation by
modeling a point spread function of DP cameras. The work in [24] proposes an
end-to-end CNN for depth from single DP images using both defocus blur and
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Fig. 2. An overview of the proposed network.

correspondence cues. In addition, they provide a simulator that makes a synthetic
DP dataset from all-in-focus images and the corresponding depth map. In [39],
single DP images are represented via multi-plane images [35] with a calibrated
point spread function for a certain DP camera model. The representation is used
for both unsupervised defocus map and all-in-focus image generation.

Depth from Focus. DfF accounts for changes in blur sizes in the focal stack
and determines scene depths according to regions adjacent to the focus [26,19,21].
In particular, conventional DfF methods infer depth values from a focal stack by
comparing the sharpness of a local window at each pixel [17,28,34]. The research
in [12] introduces a CNN-based DfF by leveraging focal stack datasets made with
light field and RGB-D cameras. In [21], domain invariant defocus blur is used for
dealing with the domain gap. The defocus blur is supervised to train data-driven
models for DfF as an intermediate step, and is then utilized for permutation-
invariant networks to achieve a better generalization from synthetic datasets to
real photos. In addition, the work uses a recurrent auto-encoder to handle scene
movements which occur during focal sweeps1. In [37], a CNN learns to make an
intermediate attention map which is shared to predict scene depth prediction
and all-in-focus images reconstruction from focal stack images.

3 Methodology

Our network is composed of two major components: One is an image alignment
model for sequential defocused images. It is a prerequisite that we should first
address the non-alignment issue on images captured with smartphones whose
focus is relayed to focus motors adjusting locations of camera lenses. Another
component is a focused feature representation, which encodes the depth informa-
tion of scenes. To be sensitive to subtle focus changes, it requires two consecutive
feature maps of the corresponding modules from our sharp region detector (SRD)
and an effective downsampling module for defocused images (EFD). The overall
procedure is depicted in Fig.2.

1 Unfortunately, both the source codes for training/test and its pre-trained weight are
not available in public.
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3.1 A Network for Defocus Image Alignment

Since camera field of views (FoVs) vary according to the focus distance, a zoom-
like effect is induced during a focal sweep [13], called focal breathing. Because
of the focal breathing, an image sharpness cannot be accurately measured on
the same pixel coordinates across focal slices. As a result, traditional DfF meth-
ods perform feature-based defocus image alignment to compensate this, prior
to depth computations. However, recent CNN-based approaches disregard the
focal breathing because either all public synthetic datasets for DfF/DfD, whose
scale is enough to generalize CNNs well, provide well-aligned focal stacks, or
are generated by single RGB-D images. Because of this gap between real-world
imagery and easy to use datasets, their generality is limited. Therefore, as a first
step to implementing a comprehensive, all-in-one solution to DfF, we introduce
a defocus image alignment network.
Field of view. Scene FoVs are calculated by work distances, focus distances,
and the focal length of cameras in Eq.(1). Since the work distances are fixed
during a focal sweep, relative values of FoVs (Relative FoVs) are the same as the
inverse distance between sensor and lens. We thus perform an initial alignment
of a focal stack using these relative FoVs as follows:

FoVn = W × A

sn
(1)

Relative FoVn =
FoVn

FoVmin
=

smin

sn
(sn =

Fn × f

Fn − f
),

where sn is the distance between the lens and the sensor in an n-th focal slice. A
is the sensor size, and W is the working distance. f and Fn are the focal length
of the lens and a focus distance, respectively. min denotes an index of a focal
slice whose FoV is the smallest among focal slices. In this paper, we call this
focal slice with the min index as the target focal slice. We note that the values
are available by accessing the metadata information in cameras without any user
calibration.

Nevertheless, the alignment step is not perfectly appropriate for focal stack
images due to hardware limitations, as described in [13]. Most smartphone cam-
eras control their focus distances by spring-installed voice coil motors (VCMs).
The VCMs adjust the positions of the camera lens by applying voltages to a
nearby electromagnet which induces spring movements. Since the elasticity of
the spring can be changed by temperature and usage, there will be an error be-
tween real focus distances and values in the metadata. In addition, the principal
point of cameras also changes during a focal sweep because the camera lens is
not perfectly parallel to the image sensor, due to some manufacturing imperfec-
tions. Therefore, we propose an alignment network to adjust this mis-alignment
and a useful simulator to ensure realistic focal stack acquisition.
Alignment network. As shown in Fig.3, our alignment network has 3-level
encoder-decoder structures, similar to the previous optical flow network [15].
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Fig. 3. An illustration of our alignment network. Given initially-aligned images with
camera metadata, this network produces an aligned focal stack. In the flow estimation,
we use three basis functions to model radial, horizontal and vertical motions of VCMs.

The encoder extracts multi-scale features, and multi-scale optical flow volumes
are constructed by concatenating the features of a reference and a target focal
slice. The decoder refines the multi-scale optical flow volumes in a coarse-to-fine
manner using feature warping (F-warp). However, we cannot directly use the
existing optical flow framework for alignment because defocus blur breaks the
brightness constancy assumption [34].

To address this issue, we constrain the flow using three basis vectors with
corresponding coefficients (α, β, γ) for each scene motion. To compute the co-
efficients instead of the direct estimation of the flow field, we add an adaptive
average pooling layer to each layer of the decoder. The first basis vector ac-
counts for an image crop which reduces errors in the FoVs. We elaborate the
image crop as a flow that spreads out from the center. The remaining two vec-
tors represent x− and y−axis translations, which compensate for errors in the
principal point of the cameras. These parametric constraints of flow induce the
network to train geometric features which are not damaged by defocus blur. We
optimize this alignment network using a robust loss function Lalign, proposed
in [20], as follows:

Lalign =

N∑
n=0

ρ(In(Γ +D(Γ ))− Imin(Γ )), (2)

where ρ(·) = (| · |+ ε)q. q and ε are set to 0.4 and 0.01, respectively. In is a focal
slice of a reference image, and Imin is the target focal slice. D(Γ ) is an output
flow of the alignment network at a pixel position, Γ .

We note that the first basis might be insufficient to describe the zooming
effects with spatially-varying motions. However, our design for the image crop
shows consistently promising results for the alignment, thanks to the combina-
tion of the three basis functions that compensate for a variety of motions in
real-world.
Simulator. Because public datasets do not describe changes in FoVs or hard-
ware limitations in off-the-shelf cameras, we propose a useful simulator to render
realistic sequential defocus images for training our alignment network. Here, the
most important part is to determine the error ranges of the intrinsic camera pa-
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misalignment error occurs due to inaccurate intrinsic parameters. Our simulator pro-
duces misaligned focal stack images because of the hardware limitations for autofocus.

rameters, such as principal points and focal distances. We estimate them as the
following process in Fig.4: (1) We capture circle patterns on a flat surface using
various smartphone models by changing focus distances. (2) We initially align
focal stacks with the recorded focus distances. (3) After the initial alignment,
we decompose the residual motions of the captured circles using 3 basis vectors,
image crop and x− and y−axis translations. (4) We statistically calculate the
error ranges of the principal points and focus distances from the three parame-
ters of the basis vectors. Given metadata of cameras used, our simulator renders
focal stacks induced from blur scales based on the focus distance and the error
ranges of the basis vector.

3.2 Focal Stack-oriented Feature Extraction

For high-quality depth prediction, we consider three requirements that must be
imposed on our network. First, to robustly measure focus in the feature space, it
is effective to place a gap space in the convolution operations, as proved in [17]. In
addition, even though feature downsampling such as a convolution with strides
and pooling layers is necessary to reduce the computations in low-level computer
vision tasks like stereo matching [22], such downsampling operations can make a
defocused image and its feature map sharper. This fails to accurately determine
the focus within the DfF framework. Lastly, feature representations for DfF need
to identify subtle distinctions in blur magnitudes between input images.
Initial feature extraction. In an initial feature extraction step, we utilize a
dilated convolution to extract focus features. After the dilated convolution, we
extract feature pyramids to refine the focal volumes in the refinement step. Given
an input focal stack S ∈ RH∗W∗N∗3 where H, W and N denote the height, width
and the number of focal slices respectively, we extract three pyramidal feature
volumes whose size is H/2L ×W/2L ×N × C ∗ 2L where L ∈ {0, 1, 2} and C is
the number of channels in the focal volume. This pyramidal feature extraction
consists of three structures in which SRD and EFD are iteratively performed,
as described in Fig.5. Each pyramidal feature volume is then used as the input
to the next EFD module. The last one is utilized as an input of the multi-scale
feature aggregation step in Sec.3.3.
Sharp Region Detector. The initial feature of each focal slice is needed to
communicate with other neighboring focal slices, to measure the focus of the
pixel of interest. A work in [21] extracts focus features using a global pooling
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Our EFD preserves informative defocus feature representation during downsampling.

layer as a communication tool across a stack dimension. However, we observe
that the global pooling layer causes a loss of important information due to its
inherent limitation that all values across focal slices become single values.

Using our SRD module consisting of both a 2D convolution and a 3D con-
volution, we overcome the limitation. In Fig.5 (left), we extract features using a
2D ResNet block and add an attention score which is computed from them by
3D convolutions and a ReLU activation. The 3D convolution enables the detec-
tion of subtle defocus variations in weakly texture-less regions by communicating
the features with neighbor focal slices. With this module, our network encodes
more informative features for the regions than previous works [21,37]. EFfective
Downsampling. Unlike stereo matching networks that use convolutions with
strides for downsampling features [3,32], the stride of a convolution causes a loss
in spatial information because most of the focused regions may not be selected.
As a solution to this issue, one previous DfF work [21] uses a combination of
maxpooling and average pooling with the feature extraction step.

Inspired by [21], we propose a EFD module leveraging a well-known fact that
a feature has higher activation in a focused region than weakly textured regions
in Fig.5 (right). The EFD module employs a 2D max-pooling as a downsampling
operation and applies a 3D convolution to its output. Through our EFD module,
our network can both take representative values of focused regions in a local
window and communicate the focal feature with neighbor focal slices.

3.3 Aggregation and Refinement

Our network produces a final depth map after multi-scale feature aggregation
and refinement steps.
Multi-scale feature aggregation. The receptive field of our feature extrac-
tion module might be too small to learn non-local features. Therefore, we propose
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a multi-scale feature aggregation module using one hour-glass module to expand
the receptive field, which is similar to the stereo matching network in [32]. At
an initial step, we use three different sizes of kernels (2×2, 4×4, 8×8) in the av-
erage pooling layer. Unlike [32], the reason for using average pooling is to avoid
a memory consumption issue because DfF requires more input images. We then
apply a ResBlock on each output of average pooling in order to extract multi-
scale features. These features are embedded into the encoder and aggregated by
the decoder of the hour-glass module. The aggregated feature volume is utilized
as an input in the refinement step.
Refinement and Regression. The refinement module has three hour-glass
modules with skip-connections like [3]. Here, we add transposed convolutions to
resize the output of each hourglass whose size is the same as each level of a pyra-
midal feature volume from the feature extraction module. We construct an input
focal volume of each hourglass by concatenating pyramidal feature volumes of
the feature extraction module with the output focal volume of the previous hour-
glass. As each hourglass handles increasingly higher resolutions with pyramidal
feature volumes, the focal volumes are refined in a coarse to fine manner. To
obtain a depth map from the output focal volumes, we multiply a focus distance
value and the probability of each focus distance leading to maximal sharpness.
The probability is computed by applying a normalized soft-plus in the output
focal volumes in a manner similar to [37]. The whole depth prediction network
is optimized using a weighted loss function Ldepth from scratch as follows:

Ldepth =

4∑
i=1

wi ∗ ||Di −Dgt||2 (3)

where || · ||2 means a l2 loss and Dgt indicates a ground truth depth map. i ∈
{1, 2, 3, 4}means the scale level of the hour-glass module. In our implementation,
we set wi to 0.3, 0.5, 0.7 and 1.0, respectively.
Implementation details. We train our network using the following strategy:
(1) We first train the alignment network in Sec.3.1 during 100 epochs using the
alignment loss in Eq.(2). (2) We freeze the alignment network and merge it with
the depth prediction network. (3) We train the merged network during 1500
epochs with the depth loss in Eq.(3). (4) In an inference step, we can estimate
the depth map from the misaligned focal stack in an end-to-end manner. We
note that our network is able to use an arbitrary number of images as input,
like the previous CNN-based DfF/DfD [21,37]. The number of parameters of
our alignment network and feature extraction module is 0.195M and 0.067M,
respectively. And, the multi-scale feature aggregation module and the refinement
module have 2.883M and 1.067M learnable parameters, respectively. That’s, the
total parameters of our network is 4.212M. We implement our network using
a public PyTorch framework [25], and optimize it using Adam optimizer [18]
(β1 = 0.9, β2 = 0.99) with a learning rate 10−3. Our model is trained on a single
NVIDIA RTX 2080Ti GPU with 4 mini-batches, which usually takes three days.
For data augmentation, we apply random spatial transforms (rotation, flipping
and cropping) and color jittering (brightness, contrast and gamma correction).
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Table 1. Quantitative evaluation on DDFF 12-Scene [12]. We directly refer to the
results from [37]. Since the result of DefocusNet [21] is not uploaded in the official
benchmark, we only bring the MAE value from [21]. bold: Best, Underline: Second
best. Unit: pixel.

Method MAE ↓ RMSE log ↓ AbsRel ↓ SqRel ↓ Bump ↓ δ = 1.25 ↑ δ = 1.252 ↑ δ = 1.253 ↑
Lytro 2.1e−3 0.31 0.26 0.01 1.0 55.65 82.00 93.09
VDFF [23] 7.3e−3 1.39 0.62 0.05 0.8 8.42 19.95 32.68
PSP-LF [42] 2.7e−3 0.45 0.46 0.03 0.5 39.70 65.56 82.46
PSPNet [42] 9.4e−4 0.29 0.27 0.01 0.6 62.66 85.90 94.42
DFLF [12] 4.8e−3 0.59 0.72 0.07 0.7 28.64 53.55 71.61
DDFF [12] 9.7e−4 0.32 0.29 0.01 0.6 61.95 85.14 92.98
DefocusNet [21] 9.1e−4 - - - - - - -
AiFDepthNet [37] 8.6e−4 0.29 0.25 0.01 0.6 68.33 87.40 93.96
Ours 5.6e−4 0.21 0.17 0.01 0.6 77.96 93.72 97.94

4 Evaluation

We compare the proposed network with state-of-the-art methods related to DfD,
DfF and depth from light field images. We also conduct extensive ablation studies
to demonstrate the effectiveness of each component of the proposed network. For
quantitative evaluation, we use standard metrics as follows: mean absolute error
(MAE), mean squared error (MSE), absolute relative error (AbsRel), square
relative error (SqRel), root mean square error (RMSE), log root-mean-squared
error (RMSE log), bumpiness (Bump), inference time (Secs) and accuracy metric
δi = 1.25i for i ∈ {1, 2, 3}. Following [37], we exclude pixels whose depth ranges
are out of focus distance at test time.

4.1 Comparisons to State-of-the-art Methods

We validate the robustness of the proposed network by showing experimental re-
sults on various public datasets: DDFF 12-Scene [12], DefocusNet Dataset [21],
4D Light Field Dataset [14], Smartphone [13] as well as focal stack images gen-
erated from our simulator. The datasets provide pre-aligned defocused images.
We use the training split of each dataset to build our depth estimation network
in both Sec.3.2 and Sec.3.3 from scratch, and validate it on the test split.
DDFF 12-Scene [12]. DDFF 12-Scene dataset provides focal stack images
and its ground truth depth maps captured by a light-field camera and a RGB-
D sensor, respectively. The images have shallow DoFs and show texture-less
regions. Our method shows the better performance than those of recent published
works in Tab.1 and achieves the top rank in almost evaluation metrics of the
benchmark site2.
DefocusNet Dataset [21]. This dataset is rendered in a virtual space and
generated using Blender Cycles renderer [4]. Focal stack images consist of only
five defocused images whose focus distances are randomly sampled in an inverse
depth space. The quantitative results are shown in Tab.2. As shown in Fig.6,
our method successfully reconstructs the smooth surface and the sharp depth
discontinuity rather than previous methods.

2 https://competitions.codalab.org/competitions/17807#results

https://competitions.codalab.org/competitions/17807#results
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Table 2. Quantitative evaluation on DefocusNet dataset [21] (unit: meter), 4D Light
Field dataset [14] (unit: pixel) and Smartphone dataset [13] (unit: meter). For Defo-
cusNet dataset and 4D Light Field dataset, we directly refer to the results from [37].
For Smartphone dataset [13], we multiply confidence scores on metrics (’MAE’ and
’MSE’) which are respectively denoted as ’MAE*’ and ’MSE*’. bold: Best.

DefocusNet Dataset [21] 4D Light Field [14] Smartphone [13]
Method MAE ↓ MSE ↓ AbsRel ↓ MSE ↓ RMSE ↓ Bump ↓ MAE* ↓ MSE* ↓ Secs ↓
DefocusNet [21] 0.0637 0.0175 0.1386 0.0593 0.2355 2.69 0.1650 0.0800 0.1598
AiFDepthNet [37] 0.0549 0.0127 0.1115 0.0472 0.2014 1.58 0.1568 0.0764 0.1387
Ours 0.0403 0.0087 0.0809 0.0230 0.1288 1.29 0.1394 0.0723 0.1269

RGB Grund Truth AiFDepthNet Ours RGB Ground Truth AiFDepthNet Ours

Fig. 6. Examples of depth prediction from AiFDepthNet and ours on DefocusNet
dataset.

RGB Ground Truth VDFF OursDDFF DefocusNet AiFDepthNetPSPNet

Fig. 7. Qualitative comparison on 4D Light Field dataset.

4D Light Field Dataset [14]. This synthetic dataset has 10 focal slices with
shallow DoFs for each focal stack. The number of focal stacks in training and test
split is 20 and 4, respectively. For fair comparison on this dataset, we follow the
evaluation protocol in the relevant work [37]. In qualitative comparisons Fig.7,
our SRD and EFD enable to capture sharp object boundaries like the box and
fine details like lines hanging from the ceiling. In quantitative evaluation of Tab.2
the MSE and RMSE are half of them from the comparison methods [1,38].
Smartphone [13]. This dataset shows real-world scenes captured from Pixel 3
smartphones. Unlike previous datasets, ground truth depth maps are obtained by
multiview stereo [30,31] and its depth holes are not considered in the evaluation.
As expected, our network achieves the promising performance over the state-of-
the-art methods, whose results are reported in Tab.2 and Fig.8. We note that our
method consistently yields the best quality depth maps from focal stack images
regardless of dataset, thanks to our powerful defocused feature representations
using both SRD and EFD.
Generalization across different datasets. Like [37], we demonstrate the
generality of the proposed network. For this, we train our network on Flyingth-
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RGB Ground Truth DefocusNet AiFDepthNet Ours RGB Ground Truth DefocusNet AiFDepthNet Ours

Fig. 8. Qualitative results on Smartphone dataset.

Table 3. Quantitative result across different datasets for generalization of the state-
of-the-art methods and ours. We train our depth prediction model on FlyingThings3D
and test them on Middlebury stereo (unit: pixel) and DefocusNet dataset (unit: meter).
For fair comparison, we directly refer the results of the works [37,21] from [37].

Method Train Dataset Test Dataset MAE ↓ MSE ↓ RMSE ↓ AbsRel ↓ SqRel ↓
DefocusNet [21] 7.408 157.440 9.079 0.231 4.245
AiFDepthNet [37] FlyingThings3d Middlebury 3.825 58.570 5.936 0.165 3.039
Ours 1.645 9.178 2.930 0.068 0.376

DefocusNet [21] 0.320 0.148 0.372 1.383 0.700
AiFDepthNet [37] FlyingThings3d DefocusNet 0.183 0.080 0.261 0.725 0.404
Ours 0.163 0.076 0.259 0.590 0.360

RGB Ground Truth DefocusNet AiFDepthNet Ours

Fig. 9. Qualitative results on Middlebury dataset.

ings3D [22] which is a large-scale synthetic dataset, and test it on two datasets
including Middlebury Stereo [29] and DefocusNet dataset [21]. As shown in Tab.3
and Fig.9, our network still shows impressive results on both datasets.

4.2 Ablation studies

We carry out extensive ablation studies to demonstrate the effectiveness of each
module of the proposed network.
Alignment network. We first evaluate our alignment network. To do this,
we render focal stacks using our simulator which generates defocused images
based on a camera metadata. We test our alignment network in consideration of
four cases: 1) without any warping, 2) with only initial FoVs in (1), 3) a clas-
sical homography method [5], 4) our alignment network with initial FoVs. The
quantitative results are reported in Tab.4, whose example is displayed in Fig.10.
The results demonstrate that our alignment network achieves much faster and
competable performance with the classic homography-based method.
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RGB & GT depth w/ initial FoVsw/o warping Homography Ours

Fig. 10. Ablation study on our alignment network. The first and second row refer
a target and reference focal slice whose FoVs have the smallest and the biggest val-
ues, respectively. The third row shows depth estimation results in accordance to the
alignment methods.

Table 4. Ablation study for alignment network. Unit: meter

Module MAE ↓ MSE ↓ RMSE log ↓ AbsRel ↓ SqRel ↓ δ = 1.25 ↑ δ = 1.252 ↑ δ = 1.253 ↑ Secs ↓ GPU

w/o alignment 0.0247 0.0014 0.0915 0.0067 0.0034 0.9707 0.9970 0.9995 0.0107 2080Ti
w/ initial FoVs 0.0165 0.0009 0.0636 0.0400 0.0019 0.9867 0.9976 0.9994 0.0358 2080Ti
Homography-based 0.0151 0.0007 0.0570 0.0369 0.0015 0.9907 0.9986 0.9997 0.8708 R3600

Ours 0.0151 0.0007 0.0578 0.0365 0.0016 0.9898 0.9984 0.9996 0.0923 2080Ti

SRD and EFD. We compare our modules with other feature extraction
modules depicted in Fig.11. We conduct this ablation study on DefocusNet
dataset [21] because it has more diverse DoF values than other datasets. The
quantitative result is reported in Tab.5.

When we replace our SRD module with either 3D ResNet block or 2D ResNet
block only, there are performance drops, even with more learnable parameters for
the 3D ResNet block. We also compare our EFD module with four replaceable
modules: max-pooling+3D Conv, average pooling+3D Conv, Stride convolution
and 3D pooling layer. As expected, our EFD module achieves the best perfor-
mance because it allows better gradient flows preserving defocus property.
Number of focal slices. Like previous DfF networks [37,21], our network
can handle an arbitrary number of focal slices by the virtue of 3D convolutions.
Following the relevant work [37], we train our network from three different ways,
whose result is reported in Fig.12: The ’5’ means a model trained using five focal
slices; The ’Same’ denotes that the number of focal slices in training and test
phase is same; The ’Random’ is a model trained using an arbitrary number of
focal slices.

The ’5’ case performs poorly when the different number of focal slices is used
in the test phase, and the ’Same’ case shows promising performances. Neverthe-
less, the ’Random’ case consistently achieves good performances regardless of
the number of focal slices

5 Conclusion

In this paper, we have presented a novel and true end-to-end DfF architecture.
To do this, we first propose a trainable alignment network for sequential de-
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Fig. 11. Candidate modules of our SRD and EFD. (a) 2D ResNet block, (b) 3D ResNet
block, (c) Max pooling + 3D Conv, (d) Average pooling + 3D Conv, (e) Strided Conv
and (f) 3D pooling layer.

Table 5. Ablation studies for SRD and EFD. Unit: meter

Module MAE ↓ MSE ↓ RMSE log ↓ AbsRel ↓ SqRel ↓ δ = 1.25 ↑ δ = 1.252 ↑ δ = 1.253 ↑
SRD → 2D ResNet block 0.0421 0.0095 0.1614 0.0842 0.0142 0.9082 0.9722 0.9873
SRD → 3D ResNet block 0.0409 0.0088 0.1576 0.0818 0.0128 0.9123 0.9725 0.9891

EFD → Maxpooling + 3D Conv 0.0421 0.0094 0.1622 0.0845 0.0143 0.9125 0.9712 0.9849
EFD → Avgpooling + 3D Conv 0.0422 0.0097 0.1628 0.0830 0.0141 0.9126 0.9718 0.9860
EFD → Strided Conv 0.0419 0.0091 0.1630 0.0842 0.0135 0.9144 0.9725 0.9867
EFD → 3D Poolying Layer 0.0414 0.0089 0.1594 0.0843 0.0132 0.9088 0.9747 0.9886

Ours 0.0403 0.0087 0.1534 0.0809 0.0130 0.9137 0.9761 0.9900

0

0.1

0.2

2 3 4 5

M
S

E

Random 5 Same

(a)  (b) Focal Slice (d) Random 2 (e) Random 3 (f) Random 4 (g) Random 5 (c) Ground Truth

Fig. 12. (a) The performance change according to the number of focal slices in training
and test phase. (b) One of focal slices and (c) its ground truth depth map. (d) to (g)
output depth maps on the random number of input focal slices in training phase.

focused images. We then introduce a novel feature extraction and an efficient
downsampling module for robust DfF tasks. The proposed network achieves the
best performance in the public DfF/DfD benchmark and various evaluations.
Limitation. There are still rooms for improvements. A more sophisticated
model for flow fields in the alignment network would enhance depth prediction
results. More parameters can be useful for extreme rotations. Another direction
is to make depth prediction better by employing focal slice selection like defocus
channel attention in the aggregation process.
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