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Abstract. Monocular 3D object detection is a challenging task in the
self-driving and computer vision community. As a common practice, most
previous works use manually annotated 3D box labels, where the anno-
tating process is expensive. In this paper, we find that the precisely and
carefully annotated labels may be unnecessary in monocular 3D detec-
tion, which is an interesting and counterintuitive finding. Using rough
labels that are randomly disturbed, the detector can achieve very close
accuracy compared to the one using the ground-truth labels. We delve
into this underlying mechanism and then empirically find that: concern-
ing the label accuracy, the 3D location part in the label is preferred
compared to other parts of labels. Motivated by the conclusions above
and considering the precise LiDAR 3D measurement, we propose a simple
and effective framework, dubbed LiDAR point cloud guided monocular
3D object detection (LPCG). This framework is capable of either re-
ducing the annotation costs or considerably boosting the detection accu-
racy without introducing extra annotation costs. Specifically, It generates
pseudo labels from unlabeled LiDAR point clouds. Thanks to accurate
LiDAR 3D measurements in 3D space, such pseudo labels can replace
manually annotated labels in the training of monocular 3D detectors,
since their 3D location information is precise. LPCG can be applied into
any monocular 3D detector to fully use massive unlabeled data in a self-
driving system. As a result, in KITTI benchmark, we take the first place
on both monocular 3D and BEV (bird’s-eye-view) detection with a signif-
icant margin. In Waymo benchmark, our method using 10% labeled data
achieves comparable accuracy to the baseline detector using 100% labeled
data. The codes are released at https://github.com/SPengLiang/LPCG.

Keywords: monocular 3D detection, LiDAR point cloud, self-driving.

1 Introduction

3D object detection plays a critical role in many applications, such as self-driving.
It gives cars the ability to perceive the world in 3D, avoiding collisions with other

https://github.com/SPengLiang/LPCG
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objects on the road. Currently, the LiDAR (Light Detection and Ranging) device
is typically employed to achieve this [31,12,29,46], with the main shortcomings of
the high price and limited working ranges. The single camera, as an alternative,
is widely available and several orders of magnitude cheaper, consequently making
monocular methods [41,1,6,45] popular in both industry and academia.

To the best of our knowledge, most previous monocular-based works [1,6,28,45]
employ the precisely annotated 3D box labels. The annotation process operated
on LiDAR point clouds is time-consuming and costly. In this paper, we empir-
ically find that the perfect manually annotated 3D box labels are not
essential in monocular 3D detection. We disturb the manually annotated la-
bels by randomly shifting their values in a range, while the detector respectively
trained by disturbed labels and perfect labels show very close performance. This
is a counterintuitive finding. To explore the underlying mechanism, we divide a
3D box label into different groups according to its physical nature (including 3D
locations, orientations, and dimensions of objects), and disturb each group of
labels, respectively. We illustrate the experiment in Figure 1. The results indi-
cate that the precise location label plays the most important role and dominates
the performance of monocular 3D detection, and the accuracy of other groups
of labels is not as important as generally considered. The underlying reason lies
in the ill-posed nature of monocular imagery. It brings difficulties in recovering
the 3D location, which is the bottleneck for the performance.

Fig. 1. We disturb the perfect manually annotated labels by randomly shifting the
corresponding values within the percentage range. We can see that: 1) the disturbed
labels (5%) and perfect labels lead to close accuracy; 2) the location dominates the
overall accuracy (10%, 20%, 40%).

Unlike other classical computer vision tasks, manually annotating 3D boxes
from monocular imagery is infeasible. It is because the depth information is lost
during the camera projection process. Actually, the lost depth also is the reason
why 3D location labels are the most important and difficult part for monocular
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3D detection. LiDAR point clouds, which provide the crucial 3D measurements,
are indispensable in the labeling procedure. As a common practice, annotators
annotate 3D boxes on the LiDAR points clouds. On the other hand, concerning
the data collecting process in a self-driving system, a large number of successive
snippets are collected. Generally speaking, to save the high annotation costs,
only some key frames in collected snippets are labeled to train networks, such as
KITTI dataset [8]. Consequently, massive LiDAR point clouds holding valuable
3D information remain unlabeled.

Inspired by the 3D location label requirement and accurate LiDAR 3D mea-
surements in 3D space, we propose a general and intuitive framework to make full
use of LiDAR point clouds, dubbed LPCG (LiDAR point cloud guided monoc-
ular 3D object detection). Specifically, we use unlabeled LiDAR point clouds to
generate pseudo labels, converting unlabeled data to training data for monocular
3D detectors. These pseudo labels are not as accurate as the manually annotated
labels, but they are good enough for the training of monocular 3D detectors due
to accurate LiDAR 3D measurements.

We further present two working modes in LPCG: the high accuracy mode
and the low cost mode, to generate different qualities of pseudo labels accord-
ing to annotation costs. The high accuracy mode requires a small amount of
labeled data to train a LiDAR-based detector, and then the trained detector
can produce high-quality pseudo labels on other unlabeled data. This manner
can largely boost the accuracy of monocular 3D detectors. Additionally, we pro-
pose a heuristic method to produce pseudo labels without requiring any 3D box
annotation. Such pseudo labels are directly obtained from the RoI LiDAR point
clouds, by employing point clustering and minimum bounding box estimation.
We call this manner the low cost mode. Either the high accuracy mode or the
low cost mode in LPCG can be plugged into any monocular 3D detector.

Based on the above two modes, we can fully use LiDAR point clouds, al-
lowing monocular 3D detectors to learn desired objectives on a large training
set meanwhile avoiding architecture modification and removing extra annota-
tion costs. By applying the framework (high accuracy mode), we significantly
increase the 3D and BEV (bird’s-eye-view) AP of prior state-of-the-art methods
[27,1,13,11,45]. In summary, our contributions are two folds as below:

– First, we analyze requirements in terms of the label accuracy towards the
training of monocular 3D detection. Based on this analysis, we introduce a
general framework that can utilize massive unlabeled LiDAR point clouds,
to generate new training data with valuable 3D information for monocular
methods during the training.

– Second, experiments show that the baseline detector employing our method
outperforms recent SOTA methods by a large margin, ranking 1st on KITTI
[8] monocular 3D and BEV detection benchmark at the time of submission
(car, March. 2022). In Waymo [36] benchmark, our method achieves close
accuracy compared to the baseline detector using 100% labeled data while
our method requires only 10% labeled data with 90% unlabeled data.
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2 Related Work

2.1 LiDAR-based 3D Object Detection

The LiDAR device can provide accurate depth measurement of the scene, thus is
employed by most state-of-the-art 3D object detection methods [31,12,32,42,43,29].
These methods can be roughly divided into voxel-based methods and point-based
methods. Voxel-based methods [47] first divide the point cloud into a voxel grid
and then feed grouped points into fully connected layers, constructing unified
feature representations. They then employ 2D CNNs to extract high-level voxel
features to predict 3D boxes. By contrast, point-based methods [30,24] directly
extract features on the raw point cloud via fully connected networks, such as
PointNet [25] and PointNet++ [26]. SOTA 3D detection methods predominantly
employ LiDAR point clouds both in training and inference, while we only use
LiDAR point clouds in the training stage.

2.2 Image-only-based Monocular 3D Object Detection

As a commonly available and cheap sensor, the camera endows 3D object detec-
tion with the potential of being adopted everywhere. Thus monocular 3D object
detection has become a very popular area of research and has developed quickly
in recent years. Monocular works can be categorized into image-only-based meth-
ods [1,13] and depth-map-based methods [40,19,18] according to input represen-
tations. M3D-RPN [1] employs different convolution kernels in row-spaces that
can explore different features in specific depth ranges and improve 3D estimates
with the 2D-3D box consistency. Furthermore, RTM3D [13] predicts perspec-
tive key points and initial guesses of objects’ dimensions/orientations/locations,
where the key points are further utilized to refine the initial guesses by solving a
constrained optimization problem. More recently, many image-only-based works
utilize depth estimation embedding [45], differentiable NMS [11], and geometry
properties [48,15,17], obtaining great success. There is also a related work [44]
that introduces a novel autolabeling strategy of suggesting a differentiable tem-
plate matching model with curriculum learning, using differentiable rendering of
SDFs, while the pipeline is rather complicated.

2.3 Depth-map-based Monocular 3D Object Detection

Although monocular methods are developing quickly, a large performance gap
still exists compared to LiDAR-based methods. Some prior works [40,41] argue
that the improper choice of data representation is one of the main reasons, and
propose to use transformed image-based depth maps. They first project LiDAR
point clouds onto the image plane, to form depth map labels to train a depth
estimator. Pseudo-LiDAR [40] converts the image into a point cloud by using an
estimated depth map and then conducts 3D detection on it. They show promis-
ing results compared to previous image-only-based methods. Inspired by this,
many later methods [41,19,6,18] also utilize off-the-shelf depth estimates to aim
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Fig. 2. Overview framework. We generate 3D box pseudo labels from unlabeled LiDAR
point clouds, aiming to train the monocular 3D detector. Such 3D boxes are predicted
via the well-trained LiDAR 3D detector (high accuracy mode) or obtained directly
from the point cloud without training (low cost mode). “Unsup.” and “Sup.” in the
figure denote unsupervised and supervised, respectively.

3D detection and gain performance improvements. More recently, CaDDN [28]
integrates the dense depth estimation into monocular 3D detection, by using a
predicted categorical depth distribution to project contextual features to the 3D
space. Compared to previous depth-map-based methods, we aim to explore the
potential of using LiDAR point clouds to generate pseudo labels for monocular
3D detectors.

3 LiDAR Guided Monocular 3D Detection

In this section, we detail the proposed framework, namely, LPCG (LiDAR Guided
Monocular 3D Detection). First, as shown in Figure 1, the manually annotated
perfect labels are unnecessary for monocular 3D detection. The accuracy led
by disturbed labels (5%) is comparable to the one led by perfect labels. When
enforcing large disturbances (10% and 20%), we can see that the location domi-
nates the performance (the AP dramatically decreases only when disturbing the
location). It indicates that rough pseudo 3D box labels with precise locations
may replace the perfect annotated 3D box labels.
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We note that LiDAR point clouds can provide valuable 3D location informa-
tion. More specifically, LiDAR point clouds provide accurate depth measurement
within the scene, which is crucial for 3D object detection as precise surround-
ing depths indicate locations of objects. Also, LiDAR point clouds can be easily
captured by the LiDAR device, allowing a large amount of LiDAR point clouds
to be collected offline without manual cost. Based on the analysis above, we use
LiDAR point clouds to generate 3D box pseudo labels. The newly-generated la-
bels can be used to train monocular 3D detectors. This simple and effective way
allows monocular 3D detectors to learn desired objectives meanwhile eliminating
annotation costs on unlabeled data. We show the overall framework in Figure 2,
in which the method is able to work in two modes according to the reliance on
3D box annotations. If we use a small amount of 3D box annotations as prior, we
call it the high accuracy mode since this manner leads to high performances. By
contrast, we call it the low cost mode if we do not use any 3D box annotation.

3.1 High Accuracy Mode

To take advantage of available 3D box annotations, as shown in Figure 2, we
first train a LiDAR-based 3D detector from scratch with LiDAR point clouds
and associated 3D box annotations. The pre-trained LiDAR-based 3D detector
is then utilized to infer 3D boxes on other unlabeled LiDAR point clouds. Such
results are treated as pseudo labels to train monocular 3D detectors. We compare
the pseudo labels with manually annotated perfect labels in Section 5.5. Due to
precise 3D location measurements, pseudo labels predicted from the LiDAR-
based 3D detector are rather accurate and qualified to be used directly in the
training of monocular 3D detectors. We summarize the outline in Algorithm 1.

Algorithm 1: Outline of the high accuracy mode in LPCG. Both la-
beled and unlabeled training data contains RGB images and associated
LiDAR point clouds.

1 Input: Labeled data A : {Adata, Alabel}, unlabeled data B : {Bdata}
2 Output: Well-trained monocular 3D detection model Mmono

3 Mlidar ← Training a supervised LiDAR-based 3D detection model on labeled
data {Adata, Alabel}.

4 {Bpseudo−label} ← Conducting predictions from LiDAR point clouds on
unlabeled data: Mlidar(Bdata)

5 C : {Cdata, Clabel} ← Merging training data:
{Adata ∪Bdata, Alabel ∪Bpseudo−label}

6 Mmono ← Training a supervised monocular-based model on new set
{Cdata, Clabel}.

7 Return Mmono

Interestingly, with different training settings for the LiDAR-based 3D detec-
tor, we empirically find that monocular 3D detectors trained by resulting pseudo
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labels show close performances. It indicates that monocular methods can indeed
be beneficial from the guidance of the LiDAR point clouds and only a small
number of 3D box annotations are sufficient to push the monocular method to
achieve high performance. Thus the manual annotation cost of high accuracy
mode is much lower than the one of the previous manner. Detailed experiments
can be found in Section 5.6. Please note, the observations on label requirements
and 3D locations are the core motivation of LPCG. The premise that LPCG
can work well is that LiDAR points provide rich and precise 3D measurements,
which offer accurate 3D locations.

3.2 Low Cost Mode

In this section, we describe the method of using LiDAR point clouds to elim-
inate the reliance on manual 3D box labels. First, an off-the-shelf 2D instance
segmentation model [9] is adopted to perform segmentation on the RGB image,
obtaining 2D box and mask estimates. These estimates are then used for build-
ing camera frustums in order to select associated LiDAR RoI points for every
object, where those boxes without any LiDAR point inside are ignored. How-
ever, LiDAR points located in the same frustum consist of object points and
mixed background or occluded points. To eliminate irrelevant points, we take
advantage of DBSCAN [7] to divide the RoI point cloud into different groups
according to the density. Points that are close in 3D spatial space will be ag-
gregated into a cluster. We then regard the cluster containing most points as a
target corresponding to the object. Finally, we seek the minimum 3D bounding
box that covers all target points.

To simplify the problem of solving the 3D bounding box, we project points
onto the bird’s-eye-view map, reducing parameters since the height (h) and y co-
ordinate (under camera coordinate system) of the object can be easily obtained.
Therefore, we have:

L = min
Bbev

(Area(Bbev)), subject to p is inside Bbev, where p ∈ LiDARRoI (1)

where Bbev refers to a bird’s-eye-view (BEV) box. We solve this problem by
using the convex hull of object points followed by obtaining the box by using
rotating calipers [37]. Furthermore, the height h can be represented by the max
spatial offset along the y-axis of points, and the center coordinate y is calculated
by averaging y coordinates of points. We use a simple rule of restricting ob-
ject dimensions to remove outliers. The overall training pipeline for monocular
methods is summarized in Algorithm 2.

4 Applications in Real-world Self-driving System

In this section, we describe the application of LPCG to a real-world self-driving
system. First, we illustrate the data collecting strategy in Figure 3. Most self-
driving systems can easily collect massive unlabeled LiDAR point cloud data
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Algorithm 2: Outline of the low cost mode in LPCG. Unlabeled data
contains RGB images and associated LiDAR point clouds.

1 Input: Unlabeled data D : {Ddata−image, Ddata−lidar}, pre-trained
Mask-RCNN model: Mmask

2 Output: Well-trained monocular 3D detection model Mmono

3 Mask2D ← Conducting predictions from RGB images: Mmask(Ddata−image).
4 LiDARRoI ← Selecting and clustering LiDAR point clouds from Ddata−lidar

by Mask2D
5 Dpseudo−label ← Gernerating pseudo labels on RoI LiDAR points LiDARRoI .
6 Mmono ← Training a supervised monocular-based model on new data
{Ddata−image, Dpseudo−label}.

7 Return Mmono

Table 1. Comparisons of different modes in previous works and ours.

Approaches Modality 3D box annotations Unlabeled LiDAR data

Previous
Image-only based Yes No
Depth-map based Yes Yes

Ours
High accuracy mode Yes Yes

Low cost mode No Yes

and synchronized RGB images. This data is organized with many sequences,
where each sequence often refers to a specific scene and contains many successive
frames. Due to the limited time and resources in the real world, only some
sequences are chosen for annotating, to train the network, such as Waymo [36].
Further, to reduce the high annotation costs, only some key frames in the selected
sequences are annotated, such as KITTI [8]. Therefore, there remains massive
unlabeled data in real-world applications.

Considering that LPCG can fully take advantage of the unlabeled data, it
is natural to be employed in a real-world self-driving system. Specifically, the
high accuracy mode only requires a small amount of labeled data. Then we can
generate high-quality training data from remaining unlabeled data for monocu-
lar 3D detectors, to boost the accuracy. In experiments, we quantitatively and
qualitatively show that the generated 3D box pseudo labels are good enough for
monocular 3D detectors. Additionally, the low cost mode does not require any
3D box annotation, still providing accurate 3D box pseudo labels. We compare
LPCG with previous methods in Table 1 in terms of the data requirements.

5 Experiments

5.1 Implementation Details

We use the image-only-based monocular 3D detector M3D-RPN [1], and adopt
PV-RCNN [29] as the LiDAR 3D detector for the high accuracy mode. We
filter out 3D boxes generated from LiDAR point clouds with the confidence of



Lidar Point Cloud Guided Monocular 3D Object Detection 9

Fig. 3. Data collecting strategy in a real-world system. Only some sequences (e.g.,
sequence 1 and 2) are chosen for annotating because of the limited time and resources
in the real world, such as Waymo [36]. Further, concerning the high annotation costs,
only some key frames (e.g., frame t and t′) in the selected sequences are annotated,
such as KITTI [8].

0.7. Experiments on other methods are conducted by the official code that is
publicly available, and all settings keep the same as the original paper. During
the process of using LiDAR point clouds to train monocular 3D detectors, the
learning iteration is scaled according to the number of training data. The high
accuracy mode is employed by default. For the low cost mode, we use Mask-
RCNN [9] pre-trained in the COCO dataset [14], and filter the final 3D bounding
box by the width range of 1.2-1.8 meters and the length range of 3.2-4.2 meters.
We filter out 2D boxes predicted from Mask-RCNN [9] with the confidence of
0.9. More details and ablations are provided in the supplementary material as
the space limitation.

5.2 Dataset and Metrics

Dataset. Following prior works [27,35,1,40,13,18], experiments are conducted
on the popular KITTI 3D object dataset [8], which contains 7, 481 manually an-
notated images for training and 7, 518 images for testing. Due to groundtruths
of the test set are not available, the public training set is further split into two
subsets [3]: training set (3, 712 images) and validation set (3, 769 images). Fol-
lowing the fashion, we report our results both on the validation set and the test
set. And we use the validation set for all ablations. Also, our method and depth-
map-based methods use RGB images and synchronized LiDAR point clouds from
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Table 2. Comparisons on KITTI testing set. We use red to indicate the highest result
and blue for the second-highest result and cyan for the third-highest result. ‡ denotes
the baseline detector we employed, and the improvements are relative to the baseline
detectors. We define the new state of the art. Please note, DD3D[22]? employs both
the large private DDAD15M dataset (containing approximately 15M frames) and the
KITTI depth dataset (containing approximately 26K frames).

Approaches Extra data
APBEV /AP3D| (IoU=0.7)|R40

Easy Moderate Hard

ROI-10D [21] KITTI depth 9.78/4.32 4.91/2.02 3.74/1.46
MonoGRNet [27] None 18.19/5.74 11.17/9.61 8.73/4.25
AM3D [19] KITTI depth 25.03/16.50 17.32/10.74 14.91/9.52
MonoPair [4] None 19.28/13.04 14.83/9.99 12.89/8.65
D4LCN [6] KITTI depth 22.51/16.65 16.02/11.72 12.55/9.51
RTM3D [13] None 19.17/14.41 14.20/10.34 11.99/8.77
PatchNet [18] KITTI depth 22.97/15.68 16.86/11.12 14.97/10.17
Neighbor-Vote [5] KITTI depth 27.39/15.57 18.65/9.90 16.54/8.89
MonoRUn [2] None 27.94/19.65 17.34/12.30 15.24/10.58
MonoRCNN [33] None 25.48/18.36 18.11/12.65 14.10/10.03
Monodle [20] None 24.79/17.23 18.89/12.26 16.00/10.29
CaDDN [28] None 27.94/19.17 18.91/13.41 17.19/11.46
Ground-Aware [15] None 29.81/21.65 17.98/13.25 13.08/9.91
GrooMeD-NMS [11] None 26.19/18.10 18.27/12.32 14.05/9.65
MonoEF [48] None 29.03/21.29 19.70/13.87 17.26/11.71
DDMP-3D [38] KITTI depth 28.08/19.71 17.89/12.78 13.44/9.80
PCT [39] KITTI depth 29.65/21.00 19.03/13.37 15.92/11.31
AutoShape [16] None 30.66/22.47 20.08/14.17 15.95/11.36
GUPNet [17] None 30.29/22.26 21.19/15.02 18.20/13.12

M3D-RPN [1] ‡ None 21.02/14.76 13.67/9.71 10.23/7.42

MonoFlex [45] ‡ None 28.23/19.94 19.75/13.89 16.89/12.07
DD3D [22] ? DDAD15M... 32.35/23.19 23.41/16.87 20.42/14.36

LPCG+M3D-RPN[1]
KITTI depth

30.72/22.73 20.17/14.82 16.76/12.88
Improvements (to baseline) +9.70/+7.97 +6.50/+5.11 +6.53/+5.46

LPCG+MonoFlex[45]
KITTI depth

35.96/25.56 24.81/17.80 21.86/15.38
Improvements (to baseline) +7.73/+5.62 +5.06/+3.91 +4.97/+3.31

KITTI raw scenes. For depth-map-based methods, note that the original depth
training set overlaps KITTI 3D detection validation set. Therefore we exclude
scenes that emerge in KITTI 3D validation set to avoid data leakage [34,23].
LiDAR point clouds in the remaining scenes are used. We call this extra dataset
the KITTI depth dataset. It provides approximately 26K samples to train the
depth estimator (for most depth-map-based methods) or to generate extra train-
ing samples for monocular 3D detectors (LPCG).

Additionally, to further validate the effectiveness of LPCG, we conduct ex-
periments on the Waymo Open Dataset [36], which is a modern large dataset. It
contains 798 training sequences and 202 validation sequences, and we adopt the
same data processing strategy proposed in CaDDN [28]. The sampled training
dataset includes approximately 50K training samples with manual annotations.

Metrics. Each manually annotated object is divided into easy, moderate, and
hard levels according to the occlusion, truncation, and 2D box height [8]. Average
precisions (AP) on the car class for bird’s-eye-view (BEV) and 3D boxes with
0.5/0.7 IoU thresholds are commonly used metrics for monocular 3D detection.
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Many previous methods utilize the AP11 metric, which has an overrated issue
[35], and AP40 [35] is proposed to resolve it. We report AP40 results to make
comprehensive comparisons. For Waymo dataset, we adopt the official mAP and
mAPH metrics.

Table 3. Comparisons with SDFLabel [44]. Note that here we use the same number
of training samples for fair comparisons.

Approaches Data requirements in training
AP3D (IoU=0.7)|R40

Easy Moderate Hard

SDFLabel [44] 2D masks+LiDAR+CAD models 1.23 0.54 -

LPCG (low cost mode) 2D masks+LiDAR 5.36 3.07 2.32

5.3 Results on KITTI

We evaluate LPCG on KITT test set using two base monocular detectors[1,45]
with the high accuracy mode. Table 2 shows quantitative results in test set. Due
to the space limitation, qualitative results are included in the supplementary
material. We can observe that our method increases the current SOTA BEV/3D
AP from 21.19/15.02 to 24.81/17.80 under the moderate setting, which is
rather significant. Even using a monocular detector [1] proposed in 2019, our
method still allows it to achieve new state-of-the-art compared to prior works.
Note that our method still performs better, while DD3D [22] employs both the
large private DDAD15M dataset (containing approximately 15M frames) and
the KITTI depth dataset (containing approximately 20K frames). Also, we boost
the performance on pedestrian and cyclist categories of the original method, and
provide the results in Table 5. Such results prove the effectiveness of LPCG.

For the low cost mode, we note that there are few works exploring this
area, namely, few works have explored monocular 3D detection without any 3D
box annotation. The most related work is SDFLabel [44], which also does not
require 3D box annotation. Thus we compare LPCG with the low cost mode
with SDFLabel [44] in Table 3. Please note, in this experiment we use the same
number of training samples, namely, the 3, 769 samples in KITTI3D training set.
Our method outperforms it by a large margin, and our method is more generally
usable as our pipeline is much simpler than SDFLabel [44].

5.4 Results on Waymo

To further prove the effectiveness of our method, we conduct experiments on the
Waymo open dataset. Concerning its large scale, when enough perfect labels are
available, in this dataset we aim to investigate the performance gap between the
generated pseudo labels and the manual 3D box annotations. More specifically,
we use the baseline detector M3D-RPN [1], training it with pseudo labels and
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Table 4. Comparisons on Waymo. “lab.” and “unlab.” denote labeled and unlabeled.

Difficulty w/ LPCG Data requirements Overall 0−30m 30−50m 50m−∞

under 3D mAP metric

LEVEL 1
(IOU=0.5)

No 10% labeled data 4.14 14.64 1.63 0.04
No 100% labeled data 6.42 19.50 3.04 0.17
Yes 10% lab. + 90% unlab. data 6.23 18.39 3.44 0.19

LEVEL 2
(IOU=0.5)

No 10% labeled data 3.88 14.59 1.58 0.04
No 100% labeled data 6.02 19.43 2.95 0.15
Yes 10% lab. + 90% unlab. data 5.84 18.33 3.34 0.17

under 3D mAPH metric

LEVEL 1
(IOU=0.5)

No 10% labeled data 3.94 14.07 1.51 0.04
No 100% labeled data 6.19 18.88 2.89 0.16
Yes 10% lab. + 90% unlab. data 6.09 18.03 3.33 0.17

LEVEL 2
(IOU=0.5)

No 10% labeled data 3.69 14.02 1.46 0.03
No 100% labeled data 5.80 18.81 2.80 0.14
Yes 10% lab. + 90% unlab. data 5.70 17.97 3.23 0.15

Table 5. Improvements on other categories.

Approaches
Pedestrian, AP3D (IoU=0.5)|R40 Cyclist, AP3D (IoU=0.5)|R40

Easy Moderate Hard Easy Moderate Hard

M3D-RPN [1] 4.75 3.55 2.79 3.10 1.49 1.17
M3D-RPN+LPCG 7.21 5.53 4.46 4.83 2.65 2.62

manual annotations, respectively. We report the results in Table 4. Pseudo labels
on unlabeled data are generated by the high accuracy mode in LPCG. Interest-
ingly, we can see that the detector using 10% labeled data and 90% unlabeled
data achieves comparable accuracy to the one using 100% labeled data (e.g., 6.42
vs. 6.23 and 6.19 vs. 6.09). This result demonstrates the generalization ability of
LPCG, indicating that LPCG can also reduce the annotation costs for the large
scale dataset with slight accuracy degradation.

5.5 Comparisons on Pseudo Labels and Manually Annotated Labels

As expected, pseudo labels are not as accurate as manually annotated labels. It
is interesting to quantitatively evaluate pseudo labels using manually annotated
labels. We report the results in Table 6. TP, FP, FN are calculated by matching
pseudo labels and annotated labels. Regarding matched objects, we average the
relative error (MRE) on each group of 3D box parameters (location, dimension,
and orientation). We can see that pseudo labels from the high accuracy mode
can match most real objects (91.39%), and the mean relative errors are 1%-
6%. Therefore pseudo labels from the high accuracy mode are good enough for
monocular 3D detectors. Actually, experiments in Table 2 and 4 also verify the
effectiveness. On the other hand, for the low cost mode, we can see that many
real objects are missed (11834). We note that missed objects are often truncated,
occluded, or faraway. The attached LiDAR points cannot indicate the full 3D
outline of objects, thus they are hard to recover by geometry-based methods.



Lidar Point Cloud Guided Monocular 3D Object Detection 13

Table 6. Performance of pseudo labels on val set. We evaluate pseudo labels using
manually annotated labels. “MRE” refers to the mean relative error (e.g., the relative
error of location is ErrorLoc

Loc
). “Loc., Dim., Orient.” are the location (x, y, z), dimension

(h,w, l), and orientation (Ry). “TP, FP, FN” are the true positive, false positive, and
false negative, which are calculated by matching pseudo labels and annotated labels.
Please see Section 5.5 for detailed analysis. Note that pseudo labels on val set are just
for the evaluation, and they are not used in the training of monocular 3D detectors.

Pseudo label types TP FP FN Loc. MRE Dim. MRE Orient. MRE

Low cost mode 2551 161 11834 4%/5%/2% 8%/6%/7% 8%
High accuracy mode 13146 3299 1239 4%/4%/1% 4%/4%/6% 4%

Table 7. Ablation for annotation numbers. 3712 is the total annotations in the KITTI
3D training dataset. All results are evaluated on KITTI val set with metric AP |R40 .

Annotations
APBEV /AP3D| (IoU=0.7)R40

Easy Moderate Hard

100 30.19/20.90 21.96/15.37 19.16/13.00
200 30.39/22.55 22.44/16.17 19.60/14.32
500 32.01/23.13 23.31/17.42 20.26/14.95
1000 33.08/25.71 24.89/19.29 21.94/16.75

3712 33.94/26.17 25.20/19.61 22.06/16.80

5.6 Ablation Studies

We conduct the ablation studies on KITTI val set. Because of the space limita-
tion, we provide extra ablation studies in the supplementary material.

Different Monocular Detectors. We plug LPCG into different monocular
3D detectors [27,1,13,11,45], to show its extension ability. Table 8 shows the
results. We can see that LPCG obviously and consistently boosts original per-
formances, e.g., 7.57 → 10.06 for MonoGRNet [27], 10.06 → 19.43 for RTM3D
[13], and 14.32 → 20.46 for GrooMeD-NMS [11] under the moderate setting
(AP3D (IoU=0.7)). Furthermore, we explore the feasibility of using a rather sim-
ple model when large data is available. We perform this experiment on RTM3D
[13] with ResNet18 [10] backbone, which achieves 46.7 FPS on a NVIDIA 1080Ti
GPU. 1 To the best of our knowledge, it is the simplest and fastest model for
monocular 3D detection. With employing LPCG, this simple model obtains very
significant improvements. LPCG endows it (46.7 FPS) with the comparable ac-
curacy to other state-of-the-art models (e.g., GrooMeD-NMS (8.3 FPS)). These
results prove that LPCG is robust to the choice of monocular 3D detectors.

The Number of Annotations. We also investigate the impact of the number
of annotations. We report the results in Table 7. The results indicate that a small
number of annotations in LPCG can also lead to high accuracy for monocular

1 From RTM3D official implementation.

https://github.com/Banconxuan/RTM3D
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Table 8. Extension on different monocular detectors. LPCG can be easily plugged into
other methods. ∗ denotes that the model is re-implemented by us. All the methods are
evaluated on KITTI val set with metric AP |R40 .

Approaches
AP3D (IoU=0.5)|R40 AP3D (IoU=0.7)|R40

Easy Moderate Hard Easy Moderate Hard

MonoGRNet [27] 47.34 32.32 25.54 11.93 7.57 5.74
MonoGRNet+LPCG 53.84 37.24 29.70 16.30 10.06 7.86
Improvements +6.50 +4.92 +4.16 +4.37 +2.49 +2.12

M3D-RPN [1] 48.56 35.94 28.59 14.53 11.07 8.65
M3D-RPN+LPCG 62.92 47.14 42.03 26.17 19.61 16.80
Improvements +14.36 +11.20 +13.44 +11.64 +8.54 +8.15

RTM3D [13] 55.44 39.24 33.82 13.40 10.06 9.07
RTM3D+LPCG 65.44 49.40 43.55 25.23 19.43 16.77
Improvements +10.00 +10.16 +9.73 +11.83 +9.37 +7.70

RTM3D (ResNet18) [13] 47.78 33.75 28.48 10.85 7.51 6.33
RTM3D (ResNet18)+LPCG 62.98 45.86 41.63 22.69 16.78 14.50
Improvements +15.20 +12.11 +13.15 +11.84 +9.27 +8.17

GrooMeD-NMS [11] 55.62 41.07 32.89 19.67 14.32 11.27
GrooMeD-NMS +LPCG 68.27 50.80 45.14 27.79 20.46 17.75
Improvements +12.65 +9.73 +12.25 +8.12 +6.14 +6.48

MonoFlex [45]∗ 56.73 42.97 37.34 20.02 15.19 12.95
MonoFlex +LPCG 69.16 54.27 48.37 31.15 23.42 20.60
Improvements +12.43 +11.30 +11.03 +11.13 +8.23 +7.65

3D detectors. For example, the detector using 1000 annotations performs close
to the full one (24.89/19.29 vs. 25.20/19.61 under the moderate setting).

6 Conclusion

In this paper, we first analyze the label requirements for monocular 3D detection.
Experiments show that disturbed labels and perfect labels can lead to very
close performance for monocular 3D detectors. With further exploration, we
empirically find that the 3D location is the most important part of 3D box labels.
Additionally, a self-driving system can produce massive unlabeled LiDAR point
clouds, which have precise 3D measurements. Therefore, we propose a framework
(LCPG), to generate pseudo 3D box labels on unlabeled LiDAR point clouds,
to enlarge the training set of monocular 3D detectors. Extensive experiments
on various datasets validate the effectiveness of LCPG. Furthermore, the main
limitation of LCPG is more training time due to the increased training samples.
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