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Abstract. Existing panoramic depth estimation methods based on con-
volutional neural networks (CNNs) focus on removing panoramic distor-
tions, failing to perceive panoramic structures efficiently due to the fixed
receptive field in CNNs. This paper proposes the panorama transformer
(named PanoFormer) to estimate the depth in panorama images, with
tangent patches from spherical domain, learnable token flows, and pano-
rama specific metrics. In particular, we divide patches on the spherical
tangent domain into tokens to reduce the negative effect of panoramic
distortions. Since the geometric structures are essential for depth estima-
tion, a self-attention module is redesigned with an additional learnable
token flow. In addition, considering the characteristic of the spherical
domain, we present two panorama-specific metrics to comprehensively
evaluate the panoramic depth estimation models’ performance. Exten-
sive experiments demonstrate that our approach significantly outper-
forms the state-of-the-art (SOTA) methods. Furthermore, the proposed
method can be effectively extended to solve semantic panorama segmen-
tation, a similar pixel2pixel task.

1 Introduction

Depth information is important for computer systems to understand the real 3D
world. Monocular depth estimation has attracted researchers’ [6,7,8,15,40,39]
attention with its convenience and low cost, especially for panoramic depth es-
timation [41,43,34], where the depth of the whole scene can be obtained from a
single 360° image.

Since estimating depth from a single image is an ill-posed and inherently
ambiguous problem, current solutions almost use powerful CNNs to extract ex-
plicitly or implicitly prior geometric to realize it [3,5]. However, when applied
to panoramic tasks, these SOTA depth estimation solutions for perspective im-
agery [21] show a dramatic degradation because the 360° field-of-view (FoV)

https://github.com/zhijieshen-bjtu/PanoFormer
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Fig. 1. We present PanoFomer to establish panoramic perception capability. The
tangent-patch is proposed to remove panoramic distortions, and the token flows force
the token positions to fit the structure of the sofa better. More details refer to Sec. 3

from panorama brings geometric distortions that challenge the structure per-
ception. Specifically, distortions in panoramas (usually represented in equirect-
angular projection—ERP) increase from the center to both sides along the lat-
itude direction, severely deforming objects’ shapes. Due to the fixed receptive
field, CNNs are inferior for dealing with distortions and perceiving geometric
structures in panoramas [5]. To deal with the distortions in panoramas, some
researchers [17,28,29,34] adopt the projection-fusion strategy. But this strat-
egy needs to cover the domain gap between different projections, and the ex-
tra cross-projection fusion module increases computational burdens. Other re-
searchers [9,10,13,30,44,30,37,38,16,19,22] employ various distortion-aware con-
volution filters to make CNN-based depth estimation solutions adapt to 360°
images. However, the fixed sampling positions still limit their performance. Pin-
tore et al. [26] focuses on the full geometric context of an indoor scene, proposing
SliceNet but losing detailed information when reconstructing the depth map. We
note that all the existing methods cannot perceive the distorted geometric struc-
tures with the fixed receptive field.

To address the above limitations, we propose the first panorama Transformer
(PanoFormer) to enable the network’s panoramic perception capability by re-
moving distortions and perceiving geometric structures simultaneously (shown in
Fig. 1). To make the Transformer suitable for panoramic dense prediction tasks
(e.g., depth estimation and semantic segmentation), we redesign its structure.
First, we propose a dense patches dividing method and handcrafted tokens to
catch detailed features. Then, we design a relative position embedding method
to reduce the negative effect of distortions, which utilizes a central token to
locate the eight most relevant tokens to form a tangent patch (it differs from
directly dividing patches on the ERP domain in traditional vision Transform-
ers). To achieve this goal, we propose an efficient spherical token locating model
(STLM) to guide the ‘non-distortion’ token sampling process on the ERP do-
main directly by building the Transformations among the three domains (shown
in Fig. 3). Subsequently, we design a Panoramic Structure-guided Transformer
(PST) block to replace the traditional block in a hierarchical architecture. Specif-
ically, we redesign the self-attention module with additional learnable weight to
push token flow, so as to flexibly capture various objects’ structures. This mod-
ule encourages the PanoFormer to further perceive geometric structures effec-
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tively. In this way, we establish our network’s perception capability to achieve
panoramic depth estimation. Moreover, the proposed PST block can be applied
to other learning frameworks as well.

Furthermore, current evaluation metrics for depth estimation are suitable
for perspective imagery. However, these metrics did not consider distortions
and the seamless boundary property in panoramas. To comprehensively eval-
uate the depth estimation for panoramic images, we design a Pole Root Mean
Square Error (P-RMSE) and Left-Right Consistency Error (LRCE) to measure
the accuracy on polar regions and depth consistency around the boundaries,
respectively.

Extensive experiments demonstrate that our solution significantly outper-
forms SOTA algorithms in panoramic depth estimation. Besides, our solution
achieves the best performance when applied to semantic segmentation, which is
also a pixel2pixel panoramic task. The contributions of this paper are summa-
rized as follows:

– We present PanoFormer , the first panorama Transformer, to establish
the panoramic perception capability by reducing distortions and perceiving
geometric structures for the panoramic depth estimation task.

– We propose a PST block that divides patches on the spherical tangent do-
main and reshapes the self-attention module with the learnable token flow.
Moreover, the proposed block can be applied in other learning frameworks.

– Considering the difference between Panorama and normal images, we de-
sign two new panorama-specific metrics to evaluate the panoramic depth
estimation.

– Experiments demonstrate that our method significantly outperforms the cur-
rent state-of-the-art approaches on all metrics. The excellent panorama se-
mantic segmentation results also prove the extension ability of our model.

2 Related Work

2.1 Panoramic Depth Estimation

There are two main fusion methods to reduce distortions while estimating depth
on ERP maps. One is the equirectangular-cube fusion method represented by
Bifuse [34], and the other is the dual-cube fusion approach described by Shen [28].
Specifically, Bifuse [34] propose a two-branch method of fusing equirectangular
projection and cube projection, which improves the tolerance of the model to
distortions. Moreover, UniFuse [17] also uses a dual projection fusion scheme only
at the encoding stage to reduce computation cost. Noting that the single-cube
projection method produces significant discontinuities at the cube boundary,
Shen et al [28] proposed a dual-cube approach based on a 45° rotation to reduce
distortions. This class of methods can attenuate the negative effect of distortions,
but they need to repeatedly change the projection for fusion, increasing the
model’s complexity.
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Fig. 2. Our PanoFormer takes a monocular RGB panoramic image as the input and
outputs the high-quality depth map

To apply depth estimation models of normal images to panoramas, Tateno
et al. [33] obtained exciting results by designing distortion-aware convolution fil-
ters to expand the perceptual field. Zioulis et al. [45] demonstrated that monoc-
ular depth estimation models trained on conventional 2D images produce low-
quality results, highlighting the necessity of learning directly on the 360° domain.
Jin et al. [18] demonstrated the effectiveness of geometric prior for panoramic
depth estimation. Chen et al. [5] used strip pooling and deformable convolution
to design a new encoding structure for accommodating different degrees of dis-
tortions. Moreover, Pintore et al. [26] proposed SliceNet, a network similar to
HorizonNet [31], which uses a bidirectional Long Short-Term Memory (LSTM)
to model long-range dependencies. However, the slicing method ignores the lat-
itudinal distortion property and thus cannot accurately predict the depth near
the poles. Besides, [2,11] proved that on large-scale datasets, Transformer-based
depth estimation for normal images are superior to CNN.

2.2 Vision Transformer

Unlike CNN-based networks, the Transformer has the nature to model long-
range dependencies by global self-attention [27]. Inspired by ViT [11], researchers
have designed many efficient networks that have the advantages of both CNNs
and Transformers. To enhance local features extraction, convolutional layers are
added into muti-head self-attention (CvT [36]) and feed-forward network (FFN)
(CeiT [42], LocalViT [23]) is replaced by locally-enhanced feed-forward network
(LeFF) (Uformer [35]). Besides, CvT [36] demonstrates that the padding oper-
ation in CNNs implicitly encodes position, and CeiT [42] proposes the image-
to-tokens embedding method. Inspired by SwinT [24], Uformer [35] proposes a
shifted windows-based multi-head attention mechanism to improve the efficiency
of the model. But all these solutions are developed based on normal FoV images,
which cannot be applied to panoramic images directly. Based on these previous
works, we further explore suitable Transformer structure for panoramic images
and adapt it to the dense prediction task.
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3 PanoFomer

3.1 Architecture Overview

Our primary motivation is to make the Transformer suitable for pixel-level omni-
directional vision tasks by redesigning the standard components in conventional
Transformers. Specifically, we propose a pixel-level patch division strategy, a rel-
ative position embedding method, and a panoramic self-attention mechanism.
The proposed pixel-level patch division strategy is to enhance local features and
improve the ability of Transformers to capture detailed features. For position
embedding, we renounce the conventional absolute position embedding method
and get the position of other related tokens on the same patch by the central
token (described in 3.3). This method not only eliminates distortions, but also
provides position embedding. Furthermore, we establish a learnable flow in the
panorama self-attention module to perceive panoramic structures that are es-
sential for depth estimation.

As shown in Fig. 2, the PanoFomer is a hierarchical structure with five major
parts: input stem, output stem, encoder, decoder and bottleneck. For the input
stem, a 3×3 convolution layer is adopted with size H×W to form the features
with dimension C. Then the features are fed into the encoder. There are four
hierarchical stages in encoder and decoder, and each of them contains a posi-
tion embedding, two PST blocks (sharing the same settings), and a convolution
layer. Specifically, a 4×4 convolution layer is adopted for increasing dimension
and down-sampling in the encoder, while a 2×2 transposed convolution layer
is used in the decoder for decreasing dimension and up-sampling. Finally, the
output features from the decoder share the same resolution and dimension as
the features from the input stem. Furthermore, the output stem, implemented
by a 3×3 convolution, is employed to recover the depth map from features. More
specifically, the number of heads is sequentially set as [Encoder:1, 2, 4, 8; Bot-
tleneck: 16; Decoder: 16, 8, 4, 2]. As for all padding operations in convolution
layers, we utilize circular padding for both horizontal sides of the features.

3.2 Transformer-customized Spherical Token

In vision Transformers, the input image is first divided into patches of the same
size. For example, ViT [11] divides the input image into patches with size of
16×16 to reduce the computational burden. Then, these patches are embedded
as tokens in a learning-based way via a linear layer. However, this strategy loses
much detailed information, which is a fatal drawback for dense prediction tasks,
such as depth estimation. To overcome this issue, we propose a pixel-level patches
dividing method.

First, the input features are divided into pixel-level patches, which means
each sampling position in the features corresponds to a patch centered on it.
Such a dense division strategy allows the network to learn more detailed fea-
tures, which is beneficial for dense prediction tasks. Furthermore, we make each
patch consist of 9 features at different positions (one central position and eight
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Fig. 3. Spherical Token Locating Model (STLM): locate related tokens on ERP do-
main. 1: tangential domain of unit sphere to spherical domain; 2: spherical domain to
ERP domain

surrounding positions, illustrated in Fig. 3 left) to balance the computational
burden. Unlike standard Transformers that embed patches as tokens by a linear
layer, our tokens are handcrafted. We define the features at the central position
as the central token and those from the other 8 surrounding positions as the
related tokens. The central token can determine the position of related tokens
by looking up the eight most relevant tokens among the features. To remove dis-
tortion and embed position information for the handcrafted tokens, we propose
a distortion-based relative position embedding method in Sec. 3.3.

3.3 Relative Position Embedding

Inspired by the cube projection, we note that the spherical tangent projection
can effectively remove the distortion (see Supplementary Materials for proof).
Therefore, we propose STLM to initialize the position of related tokens. Unlike
the conventional Transformers (e.g., ViT [11]), which directly adds absolute po-
sition encoding to the features, we “embed” the position information via the
central token. Firstly, the central token is projected from the ERP domain to
the spherical domain; then, we use the central token to look up the position
of eight nearest neighbors on the tangent plane; finally, these positions are all
projected back to the ERP domain (the three steps are represented by yellow
arrows in Fig. 3). We call patches formed in this way as tangent patches. To
facilitate locating the related tokens in the ERP domain, we further establish
the relationship among the three domains (illustrated in Fig. 3).
Tangent domain to spherical domain: Let the unit sphere be S2, and
S(0, 0) = (θ0, ϕ0) ∈ S2 is the spherical coordinate origin. ∀S(x, y) = (θ, ϕ) ∈ S2,
we can obtain other 8 points (related tokens) around it (current token) on the
spherical domain.

S(±1, 0) =(θ ±∆θ, ϕ)

S(0,±1) =(θ, ϕ±∆ϕ)

S(±1,±1) =(θ ±∆θ, ϕ±∆ϕ)

(1)

where (θ, ϕ) denotes the unit spherical coordinates, and θ ∈ (−π, π), ϕ ∈
(−π

2 ,
π
2 ); ∆θ,∆ϕ is the sampling step size.
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Fig. 4. The proposed PST Block can remove the negative effect of distortions and
perceive geometric structures

By the geocentric projection [25], we can calculate the local coordinates
(T (x, y))of the sampling point in tangent domain [9] (the current token in tan-
gent domain is represented as T (0, 0) = T (θ, ϕ) = (0, 0)):

T (θ ±∆θ, ϕ) =(± tan∆ϕ, 0)

T (θ, ϕ±∆ϕ) =(0, ϕ± tan∆θ)

T (θ ±∆θ, ϕ±∆ϕ) =(± tan∆ϕ,± sec∆ϕ tan∆θ)

(2)

By applying the inverse projection described in [9], we can get the position of
all tokens of a tangent patch in the spherical domain.
Spherical domain to ERP domain: Furthermore, by utilizing the projection
equation [28], we can get the position of each tangent patch in the ERP domain.
This whole process is named Spherical Token Locating Model (STLM).

3.4 Panorama Self-Attention with Token Flow

Based on the traditional vision Transformer block, we replace the original atten-
tion mechanism with panorama self-attention. To further enhance local features
interaction, we replace FFN with LeFF [42] for our pixel-level depth estimation
task. Specifically, as illustrated in Fig. 4, when the features f ∈ RC×H×W with a
height of H and a width of W are fed into PST block, they are flattened and re-
shaped as f ′ ∈ RN×C , where N = H×W . Then a fully connected layer is applied
to obtain query Q ∈ RN×d and value V ∈ RN×d, where d = C/M , and M is the
head number. The Q and V will pass through three parallel branches for com-
puting attention score (A ∈ RN×9), token flows (∆s ∈ RN×18), and re-sampling
features. In the top branch, a full connection layer is adopted to get attention
weights WA ∈ RN×9 from Q, and then softmax is employed to calculate the at-
tention score A. In the middle branch, another fully connection layer is used to
learn a token flow ∆s and it is further reshaped to ∆s′ ∈ Rd×H×W×9×2, sharing
the same dimension with ŝ (the initialed position from the STLM). Moreover,
∆s′ and ŝ are added together to calculate the final token positions. In the bot-
tom branch, the value V is reshaped to V ′ ∈ RC×H×W and are sampled to form
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Fig. 5. Visualization of the token flows from the first PST block, which suggest the
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the divided patches (described in 3.2) by looking up the related tokens in the
final token positions. Afterward, the PSA can be represented as follows:

PSA(f, ŝ) =
∑M

m=1 Wm∗[∑H×W
q=1

∑9
k=1 Amqk ·W ′

mf (ŝmqk +∆smqk)
]
,

(3)

where ŝ = STLM(f), and STLM(·) denotes the spherical token locating
model; m indexes the head of self-attention, M is the whole heads, q index the
current point (token), k indexes the tokens in a tangent patch, ∆smqk is the
learned flow of each token, Amqk represents the attention weight of each token,
and Wm and W ′

m are normal learnable weights of each head.
From the above process, we can see that the final positions of the tokens are

determined by two steps: position initialization from STLM and additional learn-
able flow. Actually, the initialized position realizes the division of the tangent
patch (described in 3.3) and removes the panoramic distortion. Furthermore,
the learnable flow exhibits a panoramic geometry by adjusting the spatial dis-
tribution of tokens. To verify the effectiveness of the token flow, we visualize all
tokens from the first PST block in Fig. 5. It can be observed that this additional
flow provides the network with clear scene geometric information, which helps
the network to estimate the panorama depth with the structure as a clue.

3.5 Objective Function

For better supervision, we combine reverse Huber [14] (or Berhu [21]) loss and
gradient loss [28] to design our objective function as commonly used in previous
works [26,28]. In our objective function, the Berhu loss βδ can be written as:

βδ(g, p) =

{
|g − p| for |g − p| ≤ δ
|(g−p)2|+δ2

2δ otherwise
(4)

where g, p denote the ground truth and predicted values, respectively.
Similar to SliceNet [26], we apply gradient loss to Berhu loss. To obtain

depth edges, we use two convolution kernels to obtain gradients in horizontal
and vertical directions, respectively. They are represented as Kh and Kv, where
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Kh = [-1 0 1, -2 0 2, -1 0 1], and Kv = (Kh)
T . Denote the gradient function as

G, the horizontal gradient Ih and vertical gradient Iv of the input image I can
be expressed as Ih = G(Kh, I) and Iv = G(Kv, I), respectively. In this paper, δ
= 0.2 and the final objective function can be written as

ℓfinal = β0.2(g, p) + β0.2(G(Kh, g), G(Kh, p)) + β0.2(G(Kv, g), G(Kv, p)), (5)

4 Panorama-specific Metrics

Rethinking the spherical domain, we note that two significant properties cannot
be neglected: the spherical domain is continuous and seamless everywhere; the
distortion in the spherical domain is equal everywhere. For the first issue, we
propose LRCE to measure the depth consistency of left-right boundaries. For the
second issue, since distortions on ERP maps vary in longitude, RMSE cannot
visually reflect the model’s ability to adapt to distortions. Therefore, we provide
P-RMSE to focus on the regions with massive distortions to verify the model’s
panoramic perception capability.

RMSE

(top)

GT Pred

RMSE

(bottom)

Fig. 6. P–RMSE: calculate the RMSE of the polar regions

Pole Root Mean Square Error. Cube projection is a special spherical tangent
projection format that projects the sphere onto the cube’s six faces. The top and
bottom faces correspond to the polar regions of the spherical domain, so we select
the two parts to design P-RMSE (illustrated in Fig. 6). Define the function of
converting ERP to Cube as E2C(·), the converted polar regions of the ERP
image E can be expressed as Select(E2C(E), T, B), where T,B represent the
top and bottom parts, respectively. The error Ce between the ground truth GT
and the predicted depth map P at the polar regions can be expressed as

Ce = Select(E2C(GT ), T, B)− Select(E2C(P ), T, B) (6)

The final P-RMSE can be written as

P-RMSE =

√√√√ 1

NCe

NCe∑
i=1

|Ci
e| (7)

where NCe
is the number of values in Ce.
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Left-Right Consistency Error. We can evaluate the depth consistency of the
left-right boundaries by calculating the horizontal gradient between the both
sides of the depth map. Define that the horizontal gradient GH

E of the image E
can be written as GH

E = Ecol
first−Ecol

last, where E
col
first/ E

col
last represent the values in

the first/last columns of the image E. But consider an extreme case where if the
edge of an object in the scene happens to be on the edge of the depth map, then
there is ambiguity in reflecting continuity only by GH

E . We cannot tell whether
this discontinuity is real or caused by the model. Therefore, we add ground
truth to our design. The horizontal gradient of ground truth and the predicted
depth map are denoted as GH

GT and GH
P (where GH

GT = GT col
first −GT col

last, G
H
P =

P col
first − P col

last), respectively. The final expression can be as follows:

LRCE =
1

Nerror

Nerror∑
i=1

|errori| (8)

where error = GH
GT −GH

P and Nerror is the number of values in error.

5 Experiments

In the experimental part, we compare the state-of-the-art approaches on four
popular datasets and validate the effectiveness of our model.

5.1 Datasets and Implementations

Four datasets are used for our experimental validation, they are Stanford2D3D [1],
Matterport3D [4], PanoSUNCG [29] and 3D60 [45].

Stanford2D3D and Matterport3D are two real-world datasets. They were
rendered from a common viewpoint. Previous work used a dataset that was ren-
dered only on the equator and its surroundings, ignoring the area near the poles,
which undermined the integrity of the panorama. We strictly follow the previ-
ous works and employ the official datasets (Notice that the Stanford2D3D and
Matterport3D that are contained in 3D60 have a problem that the light in the
scenarios will leak the depth information). PanoSUNCG is a virtual panoramic
dataset. And 3D60 is an updated version of 360D (360D is no longer available
now). It consists of data from the above three datasets. There is a gap be-
tween the distributions of these three datasets, which makes the dataset more
responsive to the model’s generalizability. Note that we divide the dataset as the
previous work and eliminate the samples that failed to render [5,34].

In the implementation, we conduct our experiments on two GTX 3090 GPUs,
and the batch size is set to 4. We choose Adam [20] as the optimizer and keep
the default settings. The initialized learning rate is 1 × 10−4. The number of
parameters of our model is 20.37 M.
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Table 1. Quantitative comparisons on Matterport3D, Stanford2D3D, PanoSUNCG
and 3D60 Datasets.

Classic metrics
Dataset Method δ1 ↑ δ2 ↑ δ3 ↑ RMSE↓ MRE↓ MAE↓

Higher the better Lower the better

FCRN [21] 0.7703 0.9174 0.9617 0.6704 0.2409 0.4008
OmniDepth [45] 0.6830 0.8794 0.9429 0.7643 0.2901 0.4838

Matterport3D Bifuse [34] 0.8452 0.9319 0.9632 0.6295 0.2408 0.3470
UniFuse [17] 0.8897 0.9623 0.9831 0.4941 – 0.2814
SliceNet [26] 0.8716 0.9483 0.9716 – 0.1764 0.3296

Ours 0.9184 0.9804 0.9916 0.3635 0.0571 0.1013

FCRN [21] 0.7230 0.9207 0.9731 0.5774 0.1837 0.3428
OmniDepth [45] 0.6877 0.8891 0.9578 0.6152 0.1996 0.3743

Stanford2D3D Bifuse [34] 0.8660 0.9580 0.9860 0.4142 0.1209 0.2343
UniFuse [17] 0.8711 0.9664 0.9882 0.3691 – 0.2082
SliceNet [26] 0.9031 0.9723 0.9894 – 0.0744 0.1048

Ours 0.9394 0.9838 0.9941 0.3083 0.0405 0.0619

Classic metrics New metrics
Dataset Method δ1 ↑ δ2 ↑ δ3 ↑ RMSE↓ P-RMSE↓ LRCE↓

FCRN [21] 0.9532 0.9905 0.9966 0.2833 0.1094 0.1119
OmniDepth [45] 0.9092 0.9702 0.9851 0.3171 0.0929 0.0913

PanoSUNCG Bifuse [34] 0.9590 0.9838 0.9907 0.2596 0.0967 0.0735
UniFuse [17] 0.9655 0.9846 0.9912 0.2802 0.0826 0.0884

Ours 0.9780 0.9961 0.9987 0.1503 0.0537 0.0442

FCRN [21] 0.9532 0.9905 0.9966 0.2833 0.1681 0.2100
OmniDepth [45] 0.9092 0.9702 0.9851 0.3171 0.1373 0.1941

Bifuse [34] 0.9699 0.9927 0.9969 0.2440 0.1229 0.1357
3D60 UniFuse [17] 0.9835 0.9965 0.9987 0.1968 0.0829 0.1021

DAMO [5] 0.9865 0.9966 0.9987 0.1769 – –
SliceNet [26] 0.9788 0.9952 0.9969 – 0.1746 0.1600

Ours 0.9876 0.9975 0.9991 0.1492 0.0501 0.0898

5.2 Comparison Results

We selected the metrics used in previous work and the two proposed metrics
for the quantitative comparison, including RMSE, δ(1.25, 1.252, 1.253) and
panorama-specific metrics, LRCE and P-RMSE (We cannot calculate the pro-
posed new metrics due to limitation of the two real-world datasets). RMSE
reflects the overall variability. δ exhibits the difference between ground truth
and the predicted depth.
Quantitative Analysis. Table 1 shows the quantitative comparison results
with the current SOTA monocular panoramic depth estimation solutions on the
four popular datasets. As shown in the table, our model achieves the first place
in all metrics. In particular, the RMSE metric of our model achieves a 16% im-
provement on Stanford2D3D, 26% on Matterport3D. Even on the virtual dataset
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Fig. 7. Qualitative results on Matterport3D, Stanford2D3D, PanoSUNCG, and 3D60.
More results can be found in Supplementary Materials
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Fig. 8. Visualization of the new metrics’ comparison between our method and Uni-
fuse [17]. (a) We stitch the ERP results to observe the depth consistency. (b) We
project the areas with massive distortions to cube face to compare the models’ perfor-
mance

PanoSUNCG, there is a 42% improvement on RMSE. But there is just a 16%
improvement on 3D60 dataset with RMSE. The improvement is not particularly
significant compared to the other three datasets because 3D60 dataset is more
extensive, the difference between the models is not obvious. The improvement
on δ performance further demonstrates that our model can obtain more accurate
prediction results. On the new metric P-RMSE, we achieved an average gain of
about 40% on the other two virtual datasets. It indicates that our model is more
resilient to the distortion in panoramas. In addition, on LRCE, our model out-
performs 40% on PanoSUNCG and 12% on 3D60, showing that our model can
better constrain the depth consistency of the left-right boundaries in panoramas,
because our network fully considers the seamless property of the sphere.

Qualitative Analysis. Fig. 7 shows the qualitative comparison with the current
SOTA approaches. From the figures, we can observe that SliceNet is relatively ac-
curate in predicting regions without distortion. However, the model performance
degrades dramatically in regions with distortions or large object deformations.



PanoFormer 13

Although SliceNet can efficiently focus on the global panoramic structures, the
depth reconstruction process cannot accurately recover the details, which affects
the model’s performance. UniFuse can deal with deformation effectively, but it
still suffers from incorrect estimating and tends to lose detailed information.
From Fig. 8, we can observe that our results are very competitive at boundary
and pole areas.

Table 2. Ablation study. We trained on Stanford2D3D for 70 epochs. a is the baseline
structure developed with CNNs

Index Transformer STLM Token Flow RMSE P-RMSE LRCE

a % % % 0.6704 0.2258 0.2733

b ! % % 0.4349 0.2068 0.2155

c ! ! % 0.3739 0.1825 0.1916

d ! ! ! 0.3366 0.1793 0.1784

5.3 Ablation study

With the same conditions, we validated the key components of our model by
ablation study on Stanford2D3D (real-world dataset, small-scale, challenging).
As illustrated in Table 2, a presents the baseline structure that we use convolu-
tional layers to replace PST blocks; Our network with the traditional attention
mechanism is expressed with b; c indicates our attention module without token
flow; Our entire network is shown as d.

Transformer vs. CNN. From Table 2, we can observe that the Transformer
gains 35% improvements over CNNs in terms of RMSE. Furthermore, qualitative
results in b are more precise than the CNNs. Essentially, CNNs are a special
kind of self-attention. Since the convolutional kernel is fixed, it requires various
components or structures or even deeper networks to help the model learn the
data patterns. On the other hand, the attention in Transformer is more flexible,
and it is relatively easier to learn the patterns.

Effectiveness of Tangent-patches for Transformer. To illustrate the ef-
fectiveness of the tangent-patch dividing method, we compared an alternative
attention structure that currently performs SOTA in vision Transformers. From
Table 2, our network with tangent-patches (c) outperforms the attention mech-
anism (b) with 21% on RMSE, 10% on P-RMSE and 12% on LRCE. It proves
that tangent-patch can help networks deal with panoramic distortions.

Effectiveness of Token Flow. Since the geometric structures are essential
for depth estimation, we add the additional token flows to perceive geometric
structures. The results in Table 2 show that our model with the token flow can
make P-RMSE more competitive. In Fig. 9, we can observe that the token flow
allows the model to estimate the depth details more accurately.



14 Shen et al.

RGB

GT

a b

c d

Fig. 9. Qualitative comparison of ablation study. a, b, c, d are the same as Table 2

5.4 Extensibility

We also validate the extensibility of our model by the panoramic segmentation
that is also a pixel2pixel task. We did not change any structure of our network
and strictly followed the experimental protocol in [32]. As listed in Table 3, the
experimental results show that our model outperforms the current SOTA ap-
proaches. Due to page limitations, more qualitative comparisons and the results
with a high resolution can be found in the supplementary material.

Table 3. Quantitative comparison for semantic segmentation on Stanford2D3D. Re-
sults are averaged over the official 3 folds [32]

Dataset Method mIoU↑ mAcc↑
TangentImg [12] 41.8 54.9

Stanford2D3D HoHoNet [32] 43.3 53.9
Ours 48.9 64.5

6 Conclusion

In this paper, we propose the first panorama Transformer (PanoFormer) for in-
door panoramic depth estimation. Unlike current approaches, we remove the
negative effect of distortions and further model geometric structures by using
learnable token flow to establish the network’s panoramic perceptions. Con-
cretely, we design a PST block, which can be effectively extended to other learn-
ing frameworks. To comprehensively measure the performance of the panoramic
depth estimation models, we propose two panorama-specific metrics based on
the priors of equirectangular images. Experiments demonstrate that our algo-
rithm significantly outperforms current SOTA methods on depth estimation and
other pixel2pixel panoramic tasks, such as semantic segmentation.
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8. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical cnns. In: International
Conference on Learning Representations (2018)

9. Coors, B., Condurache, A.P., Geiger, A.: Spherenet: Learning spherical represen-
tations for detection and classification in omnidirectional images. In: Proceedings
of the European conference on computer vision (ECCV). pp. 518–533 (2018)

10. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolu-
tional networks. In: Proceedings of the IEEE international conference on computer
vision. pp. 764–773 (2017)

11. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

12. Eder, M., Shvets, M., Lim, J., Frahm, J.M.: Tangent images for mitigating spherical
distortion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 12426–12434 (2020)

13. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using
a multi-scale deep network. Advances in neural information processing systems 27
(2014)

14. Esmaeili, A., Marvasti, F.: A novel approach to quantized matrix completion using
huber loss measure. IEEE Signal Processing Letters 26(2), 337–341 (2019)

15. Esteves, C., Allen-Blanchette, C., Makadia, A., Daniilidis, K.: Learning so (3)
equivariant representations with spherical cnns. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 52–68 (2018)

16. Jiang, C., Huang, J., Kashinath, K., Marcus, P., Niessner, M., et al.: Spherical
cnns on unstructured grids. arXiv preprint arXiv:1901.02039 (2019)

17. Jiang, H., Sheng, Z., Zhu, S., Dong, Z., Huang, R.: Unifuse: Unidirectional fusion
for 360 panorama depth estimation. IEEE Robotics and Automation Letters 6(2),
1519–1526 (2021)



16 Shen et al.

18. Jin, L., Xu, Y., Zheng, J., Zhang, J., Tang, R., Xu, S., Yu, J., Gao, S.: Geomet-
ric structure based and regularized depth estimation from 360 indoor imagery.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 889–898 (2020)

19. Khasanova, R., Frossard, P.: Geometry aware convolutional filters for omnidirec-
tional images representation. In: International Conference on Machine Learning.
pp. 3351–3359. PMLR (2019)

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

21. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth
prediction with fully convolutional residual networks. In: 2016 Fourth international
conference on 3D vision (3DV). pp. 239–248. IEEE (2016)

22. Lee, Y., Jeong, J., Yun, J., Cho, W., Yoon, K.J.: Spherephd: Applying cnns on
a spherical polyhedron representation of 360deg images. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9181–
9189 (2019)

23. Li, Y., Zhang, K., Cao, J., Timofte, R., Van Gool, L.: Localvit: Bringing locality
to vision transformers. arXiv preprint arXiv:2104.05707 (2021)

24. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022
(2021)

25. Pearson, I.F.: Map Projections: Theory and Applications (1990)

26. Pintore, G., Agus, M., Almansa, E., Schneider, J., Gobbetti, E.: Slicenet: deep
dense depth estimation from a single indoor panorama using a slice-based repre-
sentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 11536–11545 (2021)

27. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 12179–12188 (2021)

28. Shen, Z., Lin, C., Nie, L., Liao, K., Zhao, Y.: Distortion-tolerant monocular depth
estimation on omnidirectional images using dual-cubemap. In: 2021 IEEE Inter-
national Conference on Multimedia and Expo (ICME). pp. 1–6. IEEE (2021)

29. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene
completion from a single depth image. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 1746–1754 (2017)

30. Su, Y.C., Grauman, K.: Kernel transformer networks for compact spherical con-
volution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 9442–9451 (2019)

31. Sun, C., Hsiao, C.W., Sun, M., Chen, H.T.: Horizonnet: Learning room layout
with 1d representation and pano stretch data augmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1047–
1056 (2019)

32. Sun, C., Sun, M., Chen, H.T.: Hohonet: 360 indoor holistic understanding with
latent horizontal features. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 2573–2582 (2021)

33. Tateno, K., Navab, N., Tombari, F.: Distortion-aware convolutional filters for dense
prediction in panoramic images. In: Proceedings of the European Conference on
Computer Vision (ECCV). pp. 707–722 (2018)



PanoFormer 17

34. Wang, F.E., Yeh, Y.H., Sun, M., Chiu, W.C., Tsai, Y.H.: Bifuse: Monocular 360
depth estimation via bi-projection fusion. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 462–471 (2020)

35. Wang, Z., Cun, X., Bao, J., Liu, J.: Uformer: A general u-shaped transformer for
image restoration. arXiv preprint arXiv:2106.03106 (2021)

36. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: CVT: In-
troducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 22–31 (2021)

37. Xiong, B., Grauman, K.: Snap angle prediction for 360 panoramas. In: Proceedings
of the European Conference on Computer Vision (ECCV). pp. 3–18 (2018)

38. Xu, Y., Zhang, Z., Gao, S.: Spherical dnns and their applications in 360° images and
videos. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

39. Yan, Z., Li, X., Wang, K., Zhang, Z., Li, J., Yang, J.: Multi-modal
masked pre-training for monocular panoramic depth completion. arXiv preprint
arXiv:2203.09855 (2022)

40. Yan, Z., Wang, K., Li, X., Zhang, Z., Xu, B., Li, J., Yang, J.: Rignet: Repeti-
tive image guided network for depth completion. arXiv preprint arXiv:2107.13802
(2021)

41. Yu-Chuan, S., Kristen, G.: Flat2sphere: Learning spherical convolution for fast
features from 360 imagery. In: Proceedings of International Conference on Neural
Information Processing Systems (NIPS) (2017)

42. Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.: Incorporating convolution
designs into visual transformers. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 579–588 (2021)

43. Yun, I., Lee, H.J., Rhee, C.E.: Improving 360 monocular depth estimation via
non-local dense prediction transformer and joint supervised and self-supervised
learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36,
pp. 3224–3233 (2022)

44. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: De-
formable transformers for end-to-end object detection. In: International Conference
on Learning Representations (2020)

45. Zioulis, N., Karakottas, A., Zarpalas, D., Daras, P.: Omnidepth: Dense depth esti-
mation for indoors spherical panoramas. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV). pp. 448–465 (2018)


	PanoFormer: Panorama Transformer for Indoor 360° Depth Estimation

