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This document provides material supplementing the main manuscript. Sec-
tion A details the processing and augmentation of synthetic data during train-
ing. Section B contains ablation studies w.r.t. cross-representation alignment
with noise perturbation, as well as different model structures for off-the-shelf
detectors. Section C provides more qualitative results with comparisons of the
one-representation method, baseline method of two representations, and the pro-
posed method with cross-representation alignment.

A Training Data Synthesis and Augmentation

We generate paired data on the fly to train the regression network from inter-
mediate representations to human mesh. The overall process can be divided into
sampling, projection and rendering, and augmentation on intermediate represen-
tations. We describe the details below and provide the values of hyper-parameters
in Table S1.

Sampling for mesh synthesis. We sample the pose parameters θ from
MoCap priors of UP-3D [2], 3DPW [3], and Human3.6M [1] training set. We
sample the shape parameters β from independent normal distribution βn ∼
N (µn, σ

2
n)(n = 1, . . . , 10). We forward the pose and shape parameters into the

SMPL model and obtain the vertices of a human mesh. We extract NJ = 17
COCO 3D joints from the vertices.

Projection and rendering. To obtain the intermediate representations
(i.e., 2D joints and IUV map) from the human mesh, we fix the focal length as
intrinsic camera parameters and sample the camera rotation and translation as
extrinsic parameters for perspective projection. With these camera parameters,
we can project the 3D joint to 2D joint representations. Besides, we randomly
perturb the vertices v to generalize a diverse range of human shapes. From
perturbed vertices and sampled camera parameters, we render a 2D IUV map
using the Pytorch3D library [4].

Augmentation of 2D representation. We detect the foreground body
area on the 2D IUV map and crop around the foreground area with a bound-
ing box for consistency between training and testing. We perform zero-padding
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Hyper-parameter Value

S
a
m
p
li
n
g pose θ MoCap priors

shape β mean
[0.2056, 0.3356, -0.3507, 0.3561, 0.4175,
0.0309, 0.3048, 0.2361, 0.2091, 0.3121]

shape β std. [1.25] × 10

R
e
n
d
e
ri
n
g vertex perturbation mean [0, 0, 0] m

vertex perturbation variances [0.01, 0.01, 0] m
camera rotation identity 3 × 3 matrix

camera translation mean [0,0,42] m
camera translation variances [0.05, 0.05, 5] m

focal length [5000, 5000] pixel

A
u
g
m
e
n
ta

ti
o
n

2
D

R
e
p
re
se
n
ta

ti
o
n bbox scale range (1.0, 1.4)

bbox center perturbation mean [0, 0] pixel
bbox center perturbation variances [5, 5] pixel
coarse body part occlusion prob. [0.1] × 6
fine body part occlusion prob. [0.05] × 24

remove associated joints
0.5

of occluded parts prob.
occlusion box dimension mean [48, 48] pixel

occlusion box dimension variances [24, 24] pixel
occlusion box prob. 0.1

2D joints L/R swap prob. 0.1
2D joints perturbation mean [0pixel] × 17

2D joints perturbation variances [8pixel] × 17
remove 2D joints indices [7, 8, 9, 10, 13, 14, 15, 16]
remove 2D joints prob. [0.05] × 8

Table S1. List of hyper-parameters and values for synthetic training data generation
and augmentation.

around the foreground area so that the bounding box is larger than the fore-
ground with a scale of around 1.2. We also perturb the center of the foreground
with a deviation from the center of the bounding box. Based on this bounding
box augmentation strategy, we crop both IUV M map and joints heatmaps J
and then resize them to the target size, i.e., H = 256 and W = 256. To simulate
noise and discrepancy on 2D joints and IUV prediction, we do a series of proba-
bilistic augmentations on each of them. Similar to PartDrop in [5], we randomly
occlude one of the six body parts (head, torso, left/right arm, left/right leg) in
IUV maps with a coarse body part occlusion probability, randomly occlude one
of the 24 body parts in IUV maps with a fine body part occlusion probability,
and randomly occlude the IUV maps with a dynamically-sized rectangle. For
2D joints, we swap the left/right corresponding joints (e.g ., left knee and right
knee) with a probability. Besides, we randomly perturb the 2D joints position
with a deviation and randomly set key joints (i.e., left and right elbow, wrist,
knee, ankle) as invisible with a probability.

B Ablation Study

B.1 Ablations with noise perturbation

To study the efficiency of our proposed cross-representation alignment, we sim-
ulate extremely challenging conditions by adding noise on the inferred 2D joints
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Fig. S1. Comparisons of PMPJPE and PVE when removing 2D joints with increasing
probability on representations of 3DPW test images.

and IUV representations. Table 6 in the paper shows the results when adding
noise on IUV and 2D joints. Figure S1 shows the comparisons with one/two
representations when removing 2D joints with increasing probability. We note
that using both 2D joints and IUV outperforms using 2D joint only, and the
proposed cross-representation alignment can further help to improve the perfor-
mance (lower PVE and PMPJPE) in the absence of 2D joints, demonstrating
stronger robustness to severe noise.

Figure S2 visualizes cases when there is an occlusion in the RGB image, and
the inferred IUV map fails to detect the whole body parts. Taking 2D joints
and IUV representations as input, our method with cross-representation align-
ment (w/ CRA) can better utilize the complementarity of both representations
compared with the baseline (wo/ CRA). We note that although IUV map is
incomplete, the 2D joints prediction provides a sparse representation of the key
points. We fully exploit the complementarity of both 2D joints and IUV map,
which helps to improve the human mesh recovery result in our CRA method.

B.2 Ablations on off-the-shelf detectors

We use off-the-shelf detectors to infer 2D joints and IUV maps from RGB images
for testing. For 2D joints, we use pretrained models of Keypoint-RCNN 3 and
the score threshold as 0.7. For IUV, we use pretrained models of DensePose-
RCNN 4. In Table S2, we compare the results when using different backbones
for 2D joints and IUV inference. It shows that different model structure designs
make little difference on the 2D joints/IUV predictions and the resulting mesh

3 https://github.com/facebookresearch/detectron2/blob/main/MODEL ZOO.md
4 https://github.com/facebookresearch/detectron2/blob/main/projects/DensePose
/doc/DENSEPOSE IUV.md
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2D joints IUV Baseline w/ CRA

Fig. S2. Visualization of 2D joints, IUV map, baseline (wo/ CRA), and method with
CRA when there is an occlusion in RGB images and resulting IUV map. Images are
from the 3DPW test dataset.

Keypoint-RCNN DensePose-RCNN PVE↓ PMPJPE↓

ResNet50 FPN 3x

ResNet50 FPN 117.1 56.1
ResNet101 FPN 117.5 56.2

ResNet50 FPN DL 117.4 56.2
ResNet101 FPN DL 117.4 56.3

ResNet50 FPN 1x
ResNet101 FPN DL

118.5 57.2
ResNet50 FPN 3x 117.4 56.3
ResNet101 FPN 3x 117.2 56.5

Table S2. Comparisons of PVE and PMPJPE (both in mm) when using different
model structures for Keypoint-RCNN and DensePose-RCNN to infer 2D joints and
IUV on 3DPW test images. “FPN” indicates Feature Pyramid Networks, “1x” indicates
training with 12 COCO epochs, “3x” indicates 3x training schedule (37 COCO epochs),
and “DL” indicates DeepLabV3 head. Note no refinement is applied in this table.
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recovery, demonstrating the robustness of our proposed model with respect to
2D joint detection quality. The paper reports numbers with the 2D joints/IUV
inferred with ResNet50 FPN 3x for Keypoint-RCNN and ResNet101 FPN DL
for DensePose-RCNN.

C Qualitative Results

Figure S3 and Figure S4 provide more qualitative results and comparisons of
mesh estimation with IUV only, with baseline method taking IUV and joints 2D
as input, and the proposed method with cross-representation alignment. We can
see that the mesh estimation is more likely to be biased when taking only IUV
as input. When taking both IUV and joints 2D as input, the mesh estimation
results improve. The additional cross-representation alignment scheme can fur-
ther improve the performance with more accurate pose and shape estimation,
as well as better alignment with the foreground on the RGB images.
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Image IUV IUV + J2D (wo/ CRA) IUV + J2D (w/ CRA)

Fig. S3. Visualization of the mesh recovery results when taking only IUV as input,
taking both IUV and 2D joints as input without cross-representation alignment (wo/
CRA), and taking both as input with cross-representation alignment (w/ CRA).
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Image IUV IUV + J2D (wo/ CRA) IUV + J2D (w/ CRA)

Fig. S4. Visualization of the mesh recovery results when taking only IUV as input,
taking both IUV and 2D joints as input without cross-representation alignment (wo/
CRA), and taking both as input with cross-representation alignment (w/ CRA).
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