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1 Evaluating deviation measures

In Section 5.1 of the main paper we reported the performance of five candidate
deviation measures (Fig. 2 in the paper) on the PanoContext-fR training dataset,
including modeling of the likelihood distributions. Tables 1 and 1 below shows
performance on both the YorkUrbanDB and PanoContex-fR training sets, with
and without probabilistic modeling.

Results are consistent for the two datasets: Deviation measure b yields the
lowest errors for both focal length and camera rotation. We found that for each
of the deviation measures, errors were far lower if the measures were modeled
probabilistically, rather than just minimizing the sum of log deviations. Tables
1 and 2 show the performance of each deviation measure, with and without
probabilistic modeling, on the York Urban DB and PanoContex-fR datasets,
respectively.

Table 1: Evaluation of deviation measures on the YorkUrbanDB training set.
Numbers are mean±standard error.

Deviation measure Frame error (deg) Focal length MAE (%)

Without probabilistic modeling

a 24.1± 1.52 40.9±0.93

b 3.19 ± 0.29 11.5±1.43

c 2.94 ± 0.33 11.4±1.18

d 6.13 ± 1.13 14.4±1.61

e 4.94 ± 0.99 13.4±1.37

With probabilistic modeling

a 8.13 ± 1.20 19.5±2.39

b (fR) 1.54± 0.16 4.6±0.78

c 1.62 ± 0.17 5.4±1.07

d 2.53 ± 0.59 6.6±1.29

e 2.40 ± 0.70 8.1±1.18

We also noted in this section that deviation measure e based on the angle
of deviation between the interpretation plane normal for a line segment and the
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Table 2: Evaluation of deviation measures on the PanoContext-fR training set.
Numbers are mean±standard error.
Dev. measure Roll MAE (deg) Tilt MAE (deg) Focal length MAE (%)

Without probabilistic modeling

a 5.28±0.053 16.4±0.17 42.9±0.43

b 1.72±0.017 5.91±0.058 36.3± 0.36

c 2.48±0.025 8.94±0.090 44.2±0.44

d 3.88±0.038 9.95±0.097 34.0±0.33

e 1.77±0.017 5.64±0.055 48.7±0.48

With probabilistic modeling

a 4.53±0.045 14.2±0.14 35.6±0.35

b (fR) 0.79±0.008 1.65±0.016 8.8±0.09

c 0.90±0.009 2.26±0.022 14.1±0.14

d 0.81±0.008 1.67±0.015 10.1±0.08

e 0.89±0.009 2.13±0.021 19.5±0.19

plane orthogonal to the vanishing direction (Fig. 2 in paper), yields on average
reasonable estimates of camera rotation but relatively poor estimates of focal
length. We argued there that this failure likely arises due to a degeneracy: As
focal length tends to infinity, interpretation plane normals collapse to a great
circle parallel to the image plane, so that a vanishing point at the principal
point generates a maximal likelihood. This predicts that a system based on this
deviation measure will be biased to estimate higher focal lengths (smaller FOVs).

Fig. 1 confirms this prediction. Note that each peak is biased to smaller FOV
(higher focal length) relative to ground truth, and there is a spike in FOV at
the lower bound of our search region (50 deg), suggesting that, for a significant
number of images, the system is headed for a degenerate solution with infinite
focal length.

2 PanoContext-ufR dataset

We designed the PanoContext-fR dataset to sample five ground truth FOVs in
order to clearly visualize whether algorithms are able to estimate focal length
while simultaneously estimating camera rotation. In order to verify that this
discrete sampling did not somehow distort our results, we have also created a
PanoContext-ufR dataset of 5,295 images that samples rotation parameters as
for PanoContext-fR, but also samples FOV randomly and uniformly over the
continuous interval from 60 to 120 deg.

Fig. 2 shows the distribution of ground truth and estimated parameters for
this new PanoContext-ufR dataset together with those for the York Urban DB
and PanoContext-fR datasets used in the paper. We observe that for all three
datasets, the geometric methods are fairly well-tuned to the ground truth FOVs,
while the deep learning methods are not. Note in particular that while our fR
system adapts to the new distribution of focal lengths in the PanoContext-ufR
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Fig. 1: Distribution of estimated FOVs relative to ground truth for method based
upon deviation measure e, on York UrbanDB and PanoContext-fR test parti-
tions.

Table 3: Performance comparison with SOA on the PanoContext-ufR test set.
Numbers are mean ± standard error.
Methods Roll MAE (deg) Tilt MAE (deg) Focal length MAE (%)

Lee[4] 2.38± 0.04 3.80±0.06 24.7 ±0.37

Simon[7] 1.49±0.02 3.22± 0.05 47.9±0.48

Hold-Geoffroy[3] 1.45±0.01 3.43±0.03 36.1±0.35

CTRL-C[5] S360 1.01±0.01 1.95±0.02 11.2±0.11

CTRL-C [5] GSV 2.17±0.02 8.93± 0.09 26.94±0.26

fR (ours) 0.74±0.02 1.31±0.04 8.2±0.23



4 ECCV-22 submission ID 1737

dataset, the deep learning systems do not, revealing an insensitivity to focal
length. This confirms that results reported in the paper were not a consequence
of the discrete sampling of FOVs in the PanoContext-fR dataset.
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PanoContext-ufR
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Fig. 2: Distribution of ground truth and estimated camera parameters for the
test partition of the PanoContext-ufR dataset.

3 fR design choices

3.1 Principal point

Our fR system estimates focal length and camera rotation but assumes a central
principal point. Since the three vanishing points of a Manhattan world impose
a total of 6 constraints, it is possible in principal to estimate principal point
jointly with focal length and camera rotation. To explore this idea, we created a
new version of our fR system that assumes a central principal point in Stage 1
of our search (Section 3.2 of the paper) but then includes the principal point as
one of the target parameters in the second stage nonlinear search, constraining
it to lie within the central 5% of the image.
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Table 4 compares the performance of this approach with our standard ap-
proach that assumes a central principal point, and an oracle approach that uses
the ground truth principal point. The results are clear: while perfect knowledge
of the principal point does not significantly improve accuracy of focal length
or camera rotation estimates, attempting to jointly estimate the principal point
tends to increase error, presumably because increasing the dimension of the
search space increases the probability that noise will distort the objective func-
tion and also increases the number of local extrema.

Table 4: Here we assess how alternative methods for handling the principal point
affect the accuracy of our fR system on the YorkUrbanDB training set. We
consider a) using the known (ground truth) value of the principal point, b)
assuning a central principal point and c) estimating the principal point jointly
with focal length and rotation. Numbers reported are mean and standard error.

Frame angle Focal length
Principle point error (deg) MAE (%)

Ground truth 1.28± 0.20 4.40±0.94

Central 1.45± 0.14 5.2±1.10

Estimated 1.90± 0.22 6.9±1.37

3.2 Weighting by line segment length

The fR objective function (Eqn. 2 in the main paper) weights the likelihood
of each line segment by its length. Table 5 shows that this results in a slight
improvement in accuracy on the York Urban DB.

Table 5: Here we assess the affect of weighting the log likelihoods of each line
segment by its length in the fR objective function (Eqn. 2 in the main paper).
Numbers reported are mean and standard error of the frame error and mean of
the absolute focal length error.

Frame angle Focal length
Line segment weighting error (deg) MAE (%)

Uniform 1.54± 0.16 5.6±0.95

By length 1.45± 0.14 5.2±1.10
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4 Likelihood models

The fR objective function (Eqn. 2 in the main paper) is based upon a likelihood
measure (Eqn. 1 in the main paper) that measures the likelihood of a deviation
between a hypothesized vanishing point and a segment generated by that van-
ishing point. We evaluated five possible deviation measures a - e. We employed
exponential likelihood models for all measures except d, for which we used the
Gaussian measure employed by Xu et al. [9]. The parameters employed for these
likelihood models are shown in Table 1 of the main paper.

The likeihood models for deviation measures a - c were fit to the YorkUr-
banDB training partition - example fits for horizontal vanishing points are shown
in Fig. 3 below. The model parameters for deviation measures d and e were taken
from Xu et al [9] and Tal & Elder [8], respectively.
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Fig. 3: Maximum likelihood fits of exponential likelihood models for deviation
measures a-c for horizontal vanishing points on the York Urban DB training
partition.

5 Evaluating line segment detectors

Table 4 in the main paper evaluates the performance of our fR system with
three different line segment detectors, on the PanoContext-fR test set. Table
6 below provides the same evaluation on the York Urban DB test set. As for
PanoContext-fR, the MCMLSD detector yields the highest accuracy.

Table 6: Evaluating the choice of line segment detector on the YorkUrbanDB
test set. Numbers are mean ±standard error.

Detector Frame err (deg) Focal len. MAE (%)

MCMLSD [1] 1.54± 0.16 4.6± 0.78

LSD [2] 1.76± 0.29 5.6±1.09

HT-LCNN [6] 1.58± 0.16 5.2±0.99
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6 Effects of domain shift on focal length estimation

Performance of deep learning methods on FOV/focal length estimation might
derive in part from limitations in the range of FOVs in their training datasets.
While we evaluated performance over the range of horizontal FOVs found in
typical consumer cameras (60 - 120 deg), CTRL-C was trained on images ranging
only over 40-80 deg. To assess the impact of this domain shift, we employed our
PanoContext-ufR dataset that samples FOVs uniformly over 60 - 120 deg, and
evaluated CTRL-C and fR systems on the subset of images with FOVs in the
60 - 80 deg range, within the CTRL-C training range. We found that while
focal length error declined slightly for CTRL-C (12.0% for S360 and 18.8% for
GSV), fR was still substantially more accurate (9.4%). Thus domain shift cannot
entirely explain the poorer performance of CTRL-C on focal length estimation.

7 Pan Estimation Results

One advantage of geometric methods over deep learning methods trained on cu-
rated planar projections from panoramic datasets is that the geometric methods
can estimate the full rotation matrix, including the pan angle. Table 7 below
compares pan error for the three geometric systems considered here, evaluated
on the York Urban DB. Our fR system performs substantially better than the
other two geometric systems, reducing average pan error relative to the next
best system (Lee et al. [4]) from 3.91 deg to 2.60 deg, a 34% improvement.

Table 7: Evaluation of pan angle estimation for geometric methods, on the York
Urban DB test partition.

Methods Pan MAE (deg)

Lee[4] 3.91

Simon[7] 12.40

fR (ours) 2.60

8 Distribution of Errors

Fig. 4 shows the distribution of errors for the systems evaluated here, on the
York Urban DB test partition. Note that our fR system has a much lighter
positive tail than competing methods, indicating more robust performance.

9 Predicting Reliability

We employ three global cues to predict camera parameter estimation error: 1)
The minimum number of segments over the three Manhattan directions, 2) En-
tropy over our parameter grid search and 3) mean log likelihood of the final pa-
rameter estimate. To assess each of the cues visually, we compute the log error in
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Fig. 4: Distribution of errors on the York Urban DB test partition.

the camera parameters estimated for each training image in the PanoContext-fR
training set as a function of the cue, using KNN regression to smooth the data,
and using five-fold cross-validation to identify the optimal K (Fig. 5). We can
see from these plots that each of the three cues is predictive of error in focal
length and camera rotation parameters.
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Fig. 5: KNN predictions of parameter error as a function of three cues.

10 Qualitative Results

Figs. 6 and 7 show the YorkUrbanDB and PanoContext-fR test images on
which our fR system generates the three best, three median and three worst fo-
cal length errors. Examination of the worst cases reveal three main failure modes:
1) Interference from salient non-Manhattan segments (e.g., YorkUrbanDB worst
examples 1 and 3). Note that even when we correctly label these segments in the
images as background (yellow), they still influence the estimation of the camera
parameters, since we do not collapse the mixture model to these modes; 2) Lim-
ited or poor quality Manhattan segments in one or more of the 3 Manhattan
directions (e.g., YorkUrbanDB worst example 2, PanoContext-fR worst exam-
ples 2-3; 3) Pan angles near 0 deg, i.e., non-generic views (e.g., YorkUrbanDB
worst example 3, PanoContext-fR worst examples 1-3).
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Lowest focal length error

Frame error: 1.17 deg
Focal length error: 0.02%

Frame error: 0.35 deg
Focal length error: 0.07%

Frame error: 0.23 deg
Focal length error: 0.25%

Median focal length error

Frame error: 0.98 deg
Focal length error: 2.86%

Frame error: 0.89 deg
Focal length error: 2.87%

Frame error: 1.63 deg
Focal length error: 2.87%

Highest focal length error

Frame error: 3.0 deg
Focal length error: 11.4%

Frame error: 7.3 deg
Focal length error: 30.2%

Frame error: 3.1 deg
Focal length error: 30.3%

Fig. 6: YorkUrbanDB test images on which our fR system generates the three
best, three median and three worst focal length errors. Detected MCMLSD line
segments li are coloured according to the maximum likelihood generating pro-
cess mi ∈ M : red for vertical, blue and green for horizontal, and yellow for
background.
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Lowest focal length error

Roll error: 1.39 deg
Tilt error: 0.27 deg
Focal length error: 0%

Roll error: 0.65 deg
Tilt error: 0.56 deg
Focal length error: 0%

Roll error: 0.04 deg
Tilt error: 0.02 deg
Focal length error:0%

Median focal length error

Roll error: 0.04 deg
Tilt error: 0.71 deg
Focal length error: 2.53%

Roll error: 0.42 deg
Tilt error: 0.54 deg
Focal length error: 2.53%

Roll error: 0.8 deg
Tilt error: 0.51 deg
Focal length error: 2.54%

Highest focal length error

Roll error: 1.48 deg
Tilt error: 52.04 deg
Focal length error: 271.4%

Roll error: 3.48 deg
Tilt error: 17.46 deg
Focal length error: 271.4%

Roll error: 1.12 deg
Tilt error: 15.09 deg
Focal length error: 271.4%

Fig. 7: PanoContext-fR test images on which our fR system generates the three
best, three median and three worst focal length errors. Detected MCMLSD line
segments li are coloured according to the maximum likelihood generating pro-
cess mi ∈ M : red for vertical, blue and green for horizontal, and yellow for
background.
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