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In this supplementary material, we present more implementation details
(Section A), quantitative evaluations (Section B) and qualitative evaluations
(Section C), which are not included in the main paper due to its limited space.

A Implementation Details

PyTorch [14] is used to implement our FastMETRO. We employ ResNet-50 [4]
or HRNet-W64 [15] as our CNN backbone, where each backbone is initialized
with ImageNet [2] pre-trained weights. For the initialization of our transformer,
we use Xavier Initialization [3]. Given an input image of size 224× 224× 3, our
CNN backbone produces the image features XI ∈ RH×W×C , where H = W = 7
and C = 2048. The hidden dimension size of the camera token is D = 512, which
is also same for each joint token tJi and vertex token tVj . Following [8, 9], the
number of joint tokens is K = 14 and that of vertex tokens is N = 431. The
number of vertices in the fine mesh output V̂′

3D is M = 6890, which is same with
that of SMPL [10]. The number of heads in multi-head attention modules is 8.
We employ two linear layers with a ReLU activation function for the MLPs in our
transformer layers. Regarding the 3D coordinates regressor or camera predictor,
we use a linear layer. To retain spatial information for the flattened image features
XF , we use fixed sine positional encodings as in [1]. Note that the pre-computed
matrix for mesh upsampling and the adjacency matrix for attention masking are
sparse matrices in our implementation; only about 25K elements are non-zeros
in the upsampling matrix and about 3K elements are non-zeros in the adjacency
matrix. We leverage these sparse matrices for memory-efficient implementation.

We use AdamW optimizer [11] with the learning rate of 10−4, weight decay
of 10−4, β1 = 0.9 and β2 = 0.999. For stable training of our transformer, we
apply gradient clipping and set the maximal gradient norm value to 0.3. The loss
coefficients are λV

3D = λJ
2D = 100 and λJ

3D = 1000. We train our FastMETRO
with a batch size of 16 for 60 epochs, which takes about 4 days on 4 NVIDIA
V100 GPUs (16GB RAM). Note that METRO [8] and Mesh Graphormer [9] are
trained with a batch size of 32 for 200 epochs, which takes about 5 days on 8
NVIDIA V100 GPUs (32GB RAM). During training, we apply the standard data
augmentation for this task as in [6, 8, 9, 13].
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Table B1. Ablation study of our FastMETRO on Human3.6M [5]. The effects of
different components are evaluated. The default model is FastMETRO-S-R50.

Human3.6M
Model #Params MPJPE ↓ PA-MPJPE ↓
w/ baseline setting 51.9M 59.0 41.8
w/ learnable positional encodings 32.8M 56.2 39.7
w/ camera token in transformer decoder 32.7M 56.1 39.5
w/ camera prediction using estimated mesh 32.8M 58.0 39.6

FastMETRO–S–R50 32.7M 55.7 39.4

B Quantitative Evaluations

Baseline. To validate the effectiveness of our method, we evaluate a näıve
transformer encoder-decoder architecture. Following encoder-based methods [8,9],
we employ a 3D human mesh for input tokens and learnable layers for mesh
upsampling, and do not perform attention masking. For the construction of joint
and vertex tokens, we linearly project the 3D coordinates of joints and vertices in
the human mesh. To simplify this model, we do not progressively reduce hidden
dimension sizes in the transformer. This baseline shows lower regression accuracy
as shown in the first row of Table B1, although it demands much more parameters.
This demonstrates that our FastMETRO effectively improves the accuracy and
reduces the number of parameters required in the architecture.
Positional Encodings. Following [1], we employ fixed sine positional encodings
for retaining spatial information in our transformer. When we use learnable
embeddings as positional encodings, we obtain similar results but this demands
more parameters as shown in the second row of Table B1.
Weak-Perspective Camera Parameters. We estimate these parameters using
a camera token in our transformer encoder. On the other hand, GraphCMR [7]
estimates the camera parameters from the vertex features obtained by graph
convolutional layers, and encoder-based transformers [8, 9] predict the camera
parameters from the 3D coordinates of mesh vertices estimated by transformer
layers. As shown in the third and fourth rows of Table B1, we also evaluate
our FastMETRO using different methods to predict the camera parameters.
When we employ a camera token in our transformer decoder, we obtain similar
results. When we predict the camera parameters using the 3D mesh estimated
by transformer layers, the regression accuracy drops.

C Qualitative Evaluations

Comparison with Encoder-Based Transformers. Figure C1 shows the
qualitative comparison of transformer encoders [8, 9] with our method. As shown
in Figure C1, FastMETRO-L-H64 achieves competitive results, although our
model requires only about 25% of the parameters in the transformer architecture
compared with the encoder-based transformers. Note that FastMETRO captures
more detailed body pose especially for knees and ankles.
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Fig. C1. Comparison with encoder-based transformers [8, 9] and FastMETRO-L-H64
on 3DPW [12]. Our model achieves competitive results using much fewer parameters,
and shows more favorable body pose especially for knees and ankles.

SMPL Parameters from Estimated Mesh. Following [7,13], we can optionally
regress SMPL [10] parameters from the output mesh estimated by our model. To
be specific, we first regress the 3D coordinates of human mesh vertices via our
model, then predict SMPL pose and shape coefficients via a SMPL parameter
regressor which takes the estimated 3D mesh vertices as input. Following [7, 13],
we employ fully connected layers with skip connections as the SMPL parameter
regressor. In this way, we can reconstruct 3D human mesh using the predicted
SMPL parameters. Figure C2 shows the visualization of the estimation results
obtained by our FastMETRO and the SMPL parameter regressor.
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Fig. C2. Qualitative results of FastMETRO-L-H64 on Human3.6M [5] and 3DPW [12].
We can optionally learn to regress SMPL [10] parameters from the 3D coordinates of
mesh vertices estimated by our FastMETRO.
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