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Abstract. Transformer encoder architectures have recently achieved
state-of-the-art results on monocular 3D human mesh reconstruction,
but they require a substantial number of parameters and expensive
computations. Due to the large memory overhead and slow inference speed,
it is difficult to deploy such models for practical use. In this paper, we
propose a novel transformer encoder-decoder architecture for 3D human
mesh reconstruction from a single image, called FastMETRO . We identify
the performance bottleneck in the encoder-based transformers is caused
by the token design which introduces high complexity interactions among
input tokens. We disentangle the interactions via an encoder-decoder
architecture, which allows our model to demand much fewer parameters
and shorter inference time. In addition, we impose the prior knowledge of
human body’s morphological relationship via attention masking and mesh
upsampling operations, which leads to faster convergence with higher
accuracy. Our FastMETRO improves the Pareto-front of accuracy and
efficiency, and clearly outperforms image-based methods on Human3.6M
and 3DPW. Furthermore, we validate its generalizability on FreiHAND.

1 Introduction

3D human pose and shape estimation models aim to estimate 3D coordinates
of human body joints and mesh vertices. These models can be deployed in a wide
range of applications that require human behavior understanding, e.g ., human
motion analysis and human-computer interaction. To utilize such models for
practical use, monocular methods [2, 8, 15, 16, 20–22,24, 25, 34, 36, 40, 44] estimate
the 3D joints and vertices without using 3D scanners or stereo cameras. This task
is essentially challenging due to complex human body articulation, and becomes
more difficult by occlusions and depth ambiguity in monocular settings.

To deal with such challenges, state-of-the-art methods [24,25] exploit non-local
relations among human body joints and mesh vertices via transformer encoder
architectures. This leads to impressive improvements in accuracy by consuming
a substantial number of parameters and expensive computations as trade-offs;
efficiency is less taken into account, although it is crucial in practice.
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Fig. 1. Comparison with encoder-based transformers [24, 25] and our models on
Human3.6M [14]. Our FastMETRO substantially improves the Pareto-front of accuracy
and efficiency. † indicates training for 60 epochs, and ∗ denotes training for 200 epochs.

In this paper, we propose FastMETRO which employs a novel transformer
encoder-decoder architecture for 3D human pose and shape estimation from an
input image. Compared with the transformer encoders [24,25], FastMETRO is
more practical because it achieves competitive results with much fewer parameters
and faster inference speed, as shown in Figure 1. Our architecture is motivated
by the observation that the encoder-based methods overlook the importance of
the token design which is a key-factor in accuracy and efficiency.

The encoder-based transformers [24, 25] share similar transformer encoder
architectures. They take K joint and N vertex tokens as input for the estimation
of 3D human body joints and mesh vertices, where K and N denote the number
of joints and vertices in a 3D human mesh, respectively. Each token is constructed
by the concatenation of a global image feature vector x ∈ RC and 3D coordinates
of a joint or vertex in the human mesh. This results in the input tokens of
dimension R(K+N)×(C+3) which are fed as input to the transformer encoders.1

This token design introduces the same sources of the performance bottleneck:
1) spatial information is lost in the global image feature x, and 2) the same
image feature x is used in an overly-duplicated way. The former is caused by
the average pooling operation to obtain the global image feature x. The latter
leads to considerable inefficiency, since expensive computations are required to
process mostly duplicated information, where distinctively informative signals are
only in 0.15% of the input tokens.2 Furthermore, the computational complexity
of each transformer layer is quadratic as O(L2C + LC2), where L ≥ K + N .
Once either L or C is dominantly larger, it results in unfavorable efficiency. Both
methods [24,25] are such undesirable cases.

1For simplicity, we discuss the input tokens mainly based on METRO [24]. Mesh
Graphormer [25] has subtle differences, but the essence of the bottleneck is shared.

23-dimensional coordinates out of (C + 3)-dimensional input tokens, where C = 2048.
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Fig. 2. Overall architecture of FastMETRO. Our model estimates 3D coordinates of
human body joints and mesh vertices from a single image. We extract image features
via a CNN backbone, which are fed as input to our transformer encoder. In addition to
image features produced by the encoder, our transformer decoder takes learnable joint
and vertex tokens as input. To effectively learn non-local joint-vertex relations and local
vertex-vertex relations, we mask self-attentions of non-adjacent vertices according to
the topology of human triangle mesh. Following [24,25], we progressively reduce the
hidden dimension sizes via linear projections in our transformer.

In contrast, our FastMETRO does not concatenate an image feature vector
for the construction of input tokens. As illustrated in Figure 2, we disentangle
the image encoding part and mesh estimation part via an encoder-decoder
architecture. Our joint and vertex tokens focus on certain image regions through
cross-attention modules in the transformer decoder. In this way, the proposed
method efficiently estimates the 3D coordinates of human body joints and mesh
vertices from a 2D image. To effectively capture non-local joint-vertex relations
and local vertex-vertex relations, we mask self-attentions of non-adjacent vertices
according to the topology of human triangle mesh. To avoid the redundancy
caused by the spatial locality of human mesh vertices, we perform coarse-to-fine
mesh upsampling as in [22,24,25]. By leveraging the prior knowledge of human
body’s morphological relationship, we substantially reduce optimization difficulty.
This leads to faster convergence with higher accuracy.

We present the proposed method with model-size variants by changing the
number of transformer layers: FastMETRO-S, FastMETRO-M, FastMETRO-L.
Compared with the encoder-based transformers [24, 25], FastMETRO-S requires
only about 9% of the parameters in the transformer architecture, but shows
competitive results with much faster inference speed. In addition, the large
variant (FastMETRO-L) achieves the state of the art on the Human3.6M [14]
and 3DPW [32] datasets among image-based methods, which also demands
fewer parameters and shorter inference time compared with the encoder-based
methods. We demonstrate the effectiveness of the proposed method by conducting
extensive experiments, and validate its generalizability by showing 3D hand mesh
reconstruction results on the FreiHAND [47] dataset.
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Our contributions are summarized as follows:

• We propose FastMETRO which employs a novel transformer encoder-decoder
architecture for 3D human mesh recovery from a single image. Our method
resolves the performance bottleneck in the encoder-based transformers, and
improves the Pareto-front of accuracy and efficiency.

• The proposed model converges much faster by reducing optimization difficulty.
Our FastMETRO leverages the prior knowledge of human body’s morphological
relationship, e.g ., masking attentions according to the human mesh topology.

• We present model-size variants of our FastMETRO. The small variant shows
competitive results with much fewer parameters and faster inference speed.
The large variant clearly outperforms existing image-based methods on the
Human3.6M and 3DPW datasets, which is also more lightweight and faster.

2 Related Work

Our proposed method aims to estimate the 3D coordinates of human mesh
vertices from an input image by leveraging the attention mechanism in the
transformer architecture. We briefly review relevant methods in this section.
Human Mesh Reconstruction. The reconstruction methods belong to one
of the two categories: parametric approach and non-parametric approach. The
parametric approach learns to estimate the parameters of a human body model
such as SMPL [29]. On the other hand, the non-parametric approach learns to
directly regress the 3D coordinates of human mesh vertices. They obtain the 3D
coordinates of human body joints via linear regression from the estimated mesh.

The reconstruction methods in the parametric approach [2, 8, 11, 15, 16, 20, 21,
36,40,44] have shown stable performance in monocular 3D human mesh recovery.
They have achieved the robustness to environment variations by exploiting the
human body prior encoded in a human body model such as SMPL [29]. However,
their regression targets are difficult for deep neural networks to learn; the pose
space in the human body model is expressed by the 3D rotations of human body
joints, where the regression of the 3D rotations is challenging [31].

Recent advances in deep neural networks have enabled the non-parametric
approach with promising performance [6, 22, 24, 25, 34]. Kolotouros et al . [22]
propose a graph convolutional neural network (GCNN) [18] to effectively learn
local vertex-vertex relations, where the graph structure is based on the topology
of SMPL human triangle mesh [29]. They extract a global image feature vector
through a CNN backbone, then construct vertex embeddings by concatenating
the image feature vector with the 3D coordinates of vertices in the human mesh.
After iterative updates via graph convolutional layers, they estimate the 3D
locations of human mesh vertices. To improve the robustness to partial occlusions,
Lin et al . [24, 25] propose transformer encoder architectures which effectively
learn the non-local relations among human body joints and mesh vertices via the
attention mechanism in the transformer. Their models, METRO [24] and Mesh
Graphormer [25], follow the similar framework with the GCNN-based method [22].
They construct vertex tokens by attaching a global image feature vector to the 3D
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coordinates of vertices in the human mesh. After several updates via transformer
encoder layers, they regress the 3D coordinates of human mesh vertices.

Among the reconstruction methods, METRO [24] and Mesh Graphormer [25]
are the most relevant work to our FastMETRO. We found that the token design
in those methods leads to a substantial number of unnecessary parameters and
computations. In their architectures, transformer encoders take all the burdens
to learn complex relations among mesh vertices, along with the highly non-linear
mapping between 2D space and 3D space. To resolve this issue, we disentangle the
image-encoding and mesh-estimation parts via an encoder-decoder architecture.
This makes FastMETRO more lightweight and faster, and allows our model to
learn the complex relations more effectively.

Transformers. Vaswani et al . [41] introduce a transformer architecture which
effectively learns long-range relations through the attention mechanism in the
transformer. This architecture has achieved impressive improvements in diverse
computer vision tasks [3–5,7,12,17,24,25,27,28,30,38,43,45]. Dosovitskiy et al . [7]
present a transformer encoder architecture, where a learnable token aggregates
image features via self-attentions for image classification. Carion et al . [3] propose
a transformer encoder-decoder architecture, where learnable tokens focus on
certain image regions via cross-attentions for object detection. Those transformers
have the most relevant architectures to our model.

Our FastMETRO employs a transformer encoder-decoder architecture, whose
decoupled structure is favorable to learn the complex relations between the
heterogeneous modalities of 2D image and 3D mesh. Compared with the existing
transformers [3–5, 7, 12, 17, 27, 30, 38, 43, 45], we progressively reduce hidden
dimension sizes in the transformer architecture as in [24, 25]. Our separate
decoder design enables FastMETRO to easily impose the human body prior by
masking self-attentions of decoder input tokens, which leads to stable optimization
and higher accuracy. This is novel in transformer architectures.

3 Method

We propose a novel method, called Fast MEsh TRansfOrmer (FastMETRO).
FastMETRO has a transformer encoder-decoder architecture for 3D human mesh
recovery from an input image. The overview of our method is shown in Figure 2.
The details of our transformer encoder and decoder are illustrated in Figure 3.

3.1 Feature Extractor

Given a single RGB image, our model extracts image features XI ∈ RH×W×C

through a CNN backbone, where H ×W denotes the spatial dimension size and
C denotes the channel dimension size. A 1× 1 convolution layer takes the image
features XI as input, and reduces the channel dimension size to D. Then, a
flatten operation produces flattened image features XF ∈ RHW×D. Note that we
employ positional encodings for retaining spatial information in our transformer,
as illustrated in Figure 3.
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Fig. 3. Details of our transformer architecture and 3D human body mesh. For simplicity,
we illustrate the transformer without progressive dimensionality reduction. Note that
the camera feature is not fed as input to the decoder. We mask attentions using the
adjacency matrix obtained from the human triangle mesh of SMPL [29].

3.2 Transformer with Progressive Dimensionality Reduction

Following the encoder-based transformers [24, 25], FastMETRO progressively
reduces the hidden dimension sizes in the transformer architecture via linear
projections, as illustrated in Figure 2.

Transformer Encoder. Our transformer encoder (Figure 3a) takes a learnable
camera token and the flattened image features XF as input. The camera token
captures essential features to predict weak-perspective camera parameters through
the attention mechanism in the transformer; the camera parameters are used for
fitting the 3D estimated human mesh to the 2D input image. Given the camera
token and image features, the transformer encoder produces a camera feature
and aggregated image features XA ∈ RHW×D.

Transformer Decoder. In addition to the image features XA obtained from
the encoder, our transformer decoder (Figure 3a) takes the set of learnable joint
tokens and the set of learnable vertex tokens as input. Each token in the set of
joint tokens TJ = {tJ1 , tJ2 , . . . , tJK} is used to estimate 3D coordinates of a human
body joint, where tJi ∈ RD. The joint tokens correspond to the body joints in
Figure 3b. Each token in the set of vertex tokens TV = {tV1 , tV2 , . . . , tVN} is used
to estimate 3D coordinates of a human mesh vertex, where tVj ∈ RD. The vertex
tokens correspond to the mesh vertices in Figure 3b. Given the image features
and tokens, the transformer decoder produces joint features XJ ∈ RK×D and
vertex features XV ∈ RN×D through self-attention and cross-attention modules.
Our transformer decoder effectively captures non-local relations among human
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body joints and mesh vertices via self-attentions, which improves the robustness
to environment variations such as occlusions. Regarding the joint and vertex
tokens, each focuses on its relevant image region via cross-attentions.
Attention Masking based on Human Mesh Topology. To effectively capture
local vertex-vertex and non-local joint-vertex relations, we mask self-attentions
of non-adjacent vertices according to the topology of human triangle mesh in
Figure 3b. Although we mask the attentions of non-adjacent vertices, the coverage
of each vertex token increases as it goes through decoder layers in the similar
way with iterative graph convolutions. Note that GraphCMR [22] and Mesh
Graphormer [25] perform graph convolutions based on the human mesh topology,
which demands additional learnable parameters and computations.

3.3 Regressor and Mesh Upsampling

3D Coordinates Regressor. Our regressor takes the joint features XJ and
vertex features XV as input, and estimates the 3D coordinates of human body
joints and mesh vertices. As a result, 3D joint coordinates Ĵ3D ∈ RK×3 and 3D
vertex coordinates V̂3D ∈ RN×3 are predicted.
Coarse-to-Fine Mesh Upsampling. Following [22,24,25], our FastMETRO
estimates a coarse mesh, then upsample the mesh. In this way, we avoid the
redundancy caused by the spatial locality of human mesh vertices. As in [22],

FastMETRO obtains the fine mesh output V̂′
3D ∈ RM×3 from the coarse mesh

output V̂3D by performing matrix multiplication with the upsampling matrix
U ∈ RM×N , i.e., V̂′

3D = UV̂3D, where the upsampling matrix U is pre-computed
by the sampling algorithm in [37].

3.4 Training FastMETRO

3D Vertex Regression Loss. To train our model for the regression of 3D mesh
vertices, we use L1 loss function. This regression loss LV

3D is computed by

LV
3D =

1

M
∥V̂′

3D − V̄3D∥1, (1)

where V̄3D ∈ RM×3 denotes the ground-truth 3D vertex coordinates.
3D Joint Regression Loss. In addition to the estimated 3D joints Ĵ3D, we
also obtain 3D joints Ĵ′

3D ∈ RK×3 regressed from the fine mesh V̂′
3D, which

is the common practice in the literature [6, 8, 16, 20–22, 24, 25, 34, 40, 44]. The

regressed joints Ĵ′
3D are computed by the matrix multiplication of the joint

regression matrix R ∈ RK×M and the fine mesh V̂′
3D, i.e., Ĵ

′
3D = RV̂′

3D, where
the regression matrix R is pre-defined in SMPL [29]. To train our model for the
regression of 3D body joints, we use L1 loss function. This regression loss LJ

3D is
computed by

LJ
3D =

1

K
(∥Ĵ3D − J̄3D∥1 + ∥Ĵ′

3D − J̄3D∥1), (2)

where J̄3D ∈ RK×3 denotes the ground-truth 3D joint coordinates.
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Table 1. Configurations for the variants of FastMETRO. Each has the same transformer
architecture with a different number of layers. Only transformer parts are described.

Enc–1 & Dec–1 Enc–2 & Dec–2
Model #Params Time (ms) #Layers Dimension #Layers Dimension

FastMETRO–S 9.2M 9.6 1 512 1 128
FastMETRO–M 17.1M 15.0 2 512 2 128
FastMETRO–L 24.9M 20.8 3 512 3 128

2D Joint Projection Loss. Following the literature [8, 16, 20–22,24,25, 40, 44],
for the alignment between the 2D input image and the 3D reconstructed human
mesh, we train our model to estimate weak-perspective camera parameters {s, t};
a scaling factor s ∈ R and a 2D translation vector t ∈ R2. The weak-perspective
camera parameters are estimated from the camera feature obtained by the
transformer encoder. Using the camera parameters, we get 2D body joints via an
orthographic projection of the estimated 3D body joints. The projected 2D body
joints are computed by

Ĵ2D = sΠ(Ĵ3D) + t, (3)

Ĵ′
2D = sΠ(Ĵ′

3D) + t, (4)

where Π(·) denotes the orthographic projection;
[
1 0 0
0 1 0

]T ∈ R3×2 is used for this
projection in FastMETRO. To train our model with the projection of 3D body
joints onto the 2D image, we use L1 loss function. This projection loss LJ

2D is
computed by

LJ
2D =

1

K
(∥Ĵ2D − J̄2D∥1 + ∥Ĵ′

2D − J̄2D∥1), (5)

where J̄2D ∈ RK×2 denotes the ground-truth 2D joint coordinates.
Total Loss. Following the literature [6, 8, 16, 19–22, 24, 25, 34, 40, 44], we train
our model with multiple 3D and 2D training datasets to improve its accuracy
and robustness. This total loss Ltotal is computed by

Ltotal = α(λV
3DL

V
3D + λJ

3DL
J
3D) + βλJ

2DL
J
2D, (6)

where λV
3D, λ

J
3D, λ

J
2D > 0 are loss coefficients and α, β ∈ {0, 1} are binary flags

which denote the availability of ground-truth 3D and 2D coordinates.

4 Implementation Details

We implement our proposed method with three variants: FastMETRO-S,
FastMETRO-M, FastMETRO-L. They have the same architecture with a different
number of layers in the transformer encoder and decoder. Table 1 shows the
configuration for each variant. Our transformer encoder and decoder are initialized
with Xavier Initialization [9]. Please refer to the supplementary material for
complete implementation details.
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Table 2. Comparison with transformers for monocular 3D human mesh recovery on
Human3.6M [14]. † and ∗ indicate training for 60 epochs and 200 epochs, respectively.

CNN Backbone Transformer Overall
Model #Params Time (ms) #Params Time (ms) #Params FPS PA-MPJPE ↓
METRO–R50∗ [24] 23.5M 7.5 102.3M 24.2 125.8M 31.5 40.6

METRO–H64† [24] 128.1M 49.0 102.3M 24.2 230.4M 13.7 38.0
METRO–H64∗ [24] 128.1M 49.0 102.3M 24.2 230.4M 13.7 36.7

MeshGraphormer–H64† [25] 128.1M 49.0 98.4M 24.5 226.5M 13.6 35.8
MeshGraphormer–H64∗ [25] 128.1M 49.0 98.4M 24.5 226.5M 13.6 34.5

FastMETRO–S–R50† 23.5M 7.5 9.2M 9.6 32.7M 58.5 39.4

FastMETRO–M–R50† 23.5M 7.5 17.1M 15.0 40.6M 44.4 38.6

FastMETRO–L–R50† 23.5M 7.5 24.9M 20.8 48.4M 35.3 37.3

FastMETRO–L–H64† 128.1M 49.0 24.9M 20.8 153.0M 14.3 33.7
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Fig. 4. Comparison with encoder-based transformers [24, 25] and our proposed models
on Human3.6M [14]. The small variant of our FastMETRO shows much faster inference
speed, and its large variant converges faster than the transformer encoders.

5 Experiments

5.1 Datasets

Following the encoder-based transformers [24, 25], we train our FastMETRO
with Human3.6M [14], UP-3D [23], MuCo-3DHP [33], COCO [26] and
MPII [1] training datasets, and evaluate the model on P2 protocol in Human3.6M.
Then, we fine-tune our model with 3DPW [32] training dataset, and evaluate
the model on its test dataset.

Following the common practice [6,24,25,34], we employ the pseudo 3D human
mesh obtained by SMPLify-X [35] to train our model with Human3.6M [14]; there
is no available ground-truth 3D human mesh in the Human3.6M training dataset
due to the license issue. For fair comparison, we employ the ground-truth 3D
human body joints in Human3.6M during the evaluation of our model. Regarding
the experiments on 3DPW [32], we use its training dataset for fine-tuning our
model as in the encoder-based transformers [24,25].
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Table 3. Comparison with the state-of-the-art monocular 3D human pose and mesh
recovery methods on 3DPW [32] and Human3.6M [14] among image-based methods.

3DPW Human3.6M
Model MPVPE ↓ MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓
HMR–R50 [16] – 130.0 76.7 88.0 56.8
GraphCMR–R50 [22] – – 70.2 – 50.1
SPIN–R50 [21] 116.4 96.9 59.2 62.5 41.1
I2LMeshNet–R50 [34] – 93.2 57.7 55.7 41.1
PyMAF–R50 [44] 110.1 92.8 58.9 57.7 40.5
ROMP–R50 [40] 105.6 89.3 53.5 – –
ROMP–H32 [40] 103.1 85.5 53.3 – –
PARE–R50 [20] 99.7 82.9 52.3 – –
METRO–R50 [24] – – – 56.5 40.6
DSR–R50 [8] 99.5 85.7 51.7 60.9 40.3
METRO–H64 [24] 88.2 77.1 47.9 54.0 36.7
PARE–H32 [20] 88.6 74.5 46.5 – –
MeshGraphormer–H64 [25] 87.7 74.7 45.6 51.2 34.5

FastMETRO–S–R50 91.9 79.6 49.3 55.7 39.4
FastMETRO–M–R50 91.2 78.5 48.4 55.1 38.6
FastMETRO–L–R50 90.6 77.9 48.3 53.9 37.3
FastMETRO–L–H64 84.1 73.5 44.6 52.2 33.7

5.2 Evaluation Metrics

We evaluate our FastMETRO using three evaluation metrics: MPJPE [14],
PA-MPJPE [46], MPVPE [36]. The unit of each metric is millimeter.
MPJPE. This metric denotes Mean-Per-Joint-Position-Error. It measures the
Euclidean distances between the predicted and ground-truth joint coordinates.
PA-MPJPE. This metric is often called Reconstruction Error. It measures
MPJPE after 3D alignment using Procrustes Analysis (PA) [10].
MPVPE. This metric denotes Mean-Per-Vertex-Position-Error. It measures the
Euclidean distances between the predicted and ground-truth vertex coordinates.

5.3 Experimental Results

We evaluate the model-size variants of our FastMETRO on the 3DPW [32]
and Human3.6M [14] datasets. In this paper, the inference time is measured
using a single NVIDIA V100 GPU with a batch size of 1.
Comparison with Encoder-Based Transformers. In Table 2, we compare
our models with METRO [24] and Mesh Graphormer [25] on the Human3.6M [14]
dataset. Note that encoder-based transformers [24, 25] are implemented with
ResNet-50 [13] (R50) or HRNet-W64 [42] (H64). FastMETRO-S outperforms
METRO when both models employ the same CNN backbone (R50), although
our model demands only 8.99% of the parameters in the transformer architecture.
Regarding the overall inference speed, our model is 1.86× faster. It is worth
noting that FastMETRO-L-R50 achieves similar results with METRO-H64, but
our model is 2.58× faster. FastMETRO-L outperforms Mesh Graphormer when
both models employ the same CNN backbone (H64), while our model demands
only 25.30% of the parameters in the transformer architecture. Also, our model
converges much faster than the encoder-based methods as shown in Figure 4.
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Fig. 5. Qualitative results of our FastMETRO on Human3.6M [14] and 3DPW [32].
We visualize the 3D human mesh estimated by FastMETRO-L-H64. By leveraging the
attention mechanism in the transformer, our model is robust to partial occlusions.

Comparison with Image-Based Methods. In Table 3, we compare our
FastMETRO with the image-based methods for 3D human mesh reconstruction
on 3DPW [32] and Human3.6M [14]. Note that existing methods are implemented
with ResNet-50 [13] (R50) or HRNet-W32 [42] (H32) or HRNet-W64 [42] (H64).
When all models employ R50 as their CNN backbones, FastMETRO-S achieves
the best results without iterative fitting procedures or test-time optimizations.
FastMETRO-L-H64 achieves the state of the art in every evaluation metric on
the 3DPW dataset and PA-MPJPE metric on the Human3.6M dataset.

Visualization of Self-Attentions. In Figure 6, the first and second rows show
the visualization of the attention scores in self-attentions between a specified body
joint and mesh vertices. We obtain the scores by averaging attention scores from
all attention heads of all multi-head self-attention modules in our transformer
decoder. As shown in Figure 6, our FastMETRO effectively captures the non-local
relations among joints and vertices via self-attentions in the transformer. This
improves the robustness to environment variations such as occlusions.

Visualization of Cross-Attentions. In Figure 6, the third and fourth rows show
the visualization of the attention scores in cross-attentions between a specified
body joint and image regions. We obtain the scores by averaging attention
scores from all attention heads of all multi-head cross-attention modules in
our transformer decoder. As shown in Figure 6, the input tokens used in our
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Input R−Wrist L−Wrist R−Ankle L−Ankle Head Output

Fig. 6. Qualitative results of FastMETRO-L-H64 on COCO [26]. We visualize the
attentions scores in self-attentions (top two rows) and cross-attentions (bottom two
rows). The brighter lines or regions indicate higher attention scores.

transformer decoder focus on their relevant image regions. By leveraging the
cross-attentions between disentangled modalities, our FastMETRO effectively
learns to regress the 3D coordinates of joints and vertices from a 2D image.

5.4 Ablation Study

We analyze the effects of different components in our FastMETRO as shown
in Table 4. Please refer to the supplementary material for more experiments.

Attention Masking. To effectively learn the local relations among mesh vertices,
GraphCMR [22] and Mesh Graphormer [25] perform graph convolutions based
on the topology of SMPL human triangle mesh [29]. For the same goal, we
mask self-attentions of non-adjacent vertices according to the topology. When
we evaluate our model without masking the attentions, the regression accuracy
drops as shown in the first row of Table 4. This demonstrates that masking the
attentions of non-adjacent vertices is effective. To compare the effects of attention
masking with graph convolutions, we train our model using graph convolutions
without masking the attentions. As shown in the second row of Table 4, we obtain
similar results but this requires more parameters. We also evaluate our model
when we mask the attentions in half attention heads, i.e., there is no attention
masking in other half attention heads. In this case, we get similar results using
the same number of parameters as shown in the third row of Table 4.
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Table 4. Ablation study of our FastMETRO on Human3.6M [14]. The effects of
different components are evaluated. The default model is FastMETRO-S-R50.

Human3.6M
Model #Params MPJPE ↓ PA-MPJPE ↓
w/o attention masking 32.7M 58.0 40.7
w/o attention masking + w/ graph convolutions 33.1M 56.6 39.4
w/ attention masking in half attention heads 32.7M 55.8 39.4
w/ learnable upsampling layers 45.4M 58.1 41.1
w/o progressive dimensionality reduction 39.5M 55.5 39.6

FastMETRO–S–R50 32.7M 55.7 39.4

Coarse-to-Fine Mesh Upsampling. The existing transformers [24,25] also
first estimate a coarse mesh, then upsample the mesh to obtain a fine mesh. They
employ two learnable linear layers for the upsampling. In our FastMETRO, we
use the pre-computed upsampling matrix U to reduce optimization difficulty as
in [22]; this upsampling matrix is a sparse matrix which has only about 25K
non-zero elements. When we perform the mesh upsampling using learnable linear
layers instead of the matrix U, the regression accuracy drops as shown in the
fourth row of Table 4, although it demands much more parameters.

Progressive Dimensionality Reduction. Following the existing transformer
encoders [24, 25], we also progressively reduce the hidden dimension sizes in our
transformer via linear projections. To evaluate its effectiveness, we train our
model using the same number of transformer layers but without progressive
dimensionality reduction, i.e., hidden dimension sizes in all transformer layers
are the same. As shown in the fifth row of Table 4, we obtain similar results but
this requires much more parameters. This demonstrates that the dimensionality
reduction is helpful for our model to achieve decent results using fewer parameters.

Generalizability. Our model can reconstruct any arbitrary 3D objects by
changing the number of input tokens used in the transformer decoder. Note that we
can employ learnable layers for coarse-to-fine mesh upsampling without masking
attentions. For 3D hand mesh reconstruction, there is a pre-computed upsampling
matrix and a human hand model such as MANO [39]. Thus, we can leverage the

Hand Joints

Vertices& Edges

Fig. 7. Hand Joints and Mesh Topology.

matrix for mesh upsampling and mask
self-attentions of non-adjacent vertices
in the same way with 3D human mesh
recovery. As illustrated in Figure 7,
we can obtain an adjacency matrix
and construct joint and vertex tokens
from the human hand mesh topology.
To validate the generalizability of our
method, we train FastMETRO-L-H64
on the FreiHAND [47] training dataset
and evaluate the model. As shown in
Table 5, our proposed model achieves
competitive results on FreiHAND.
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Table 5. Comparison with transformers for monocular 3D hand mesh recovery on
FreiHAND [14]. Test-time augmentation is not applied to these transformers.

Transformer Overall FreiHAND
Model #Params #Params PA-MPJPE ↓ F@15mm ↑
METRO–H64 [24] 102.3M 230.4M 6.8 0.981

FastMETRO–L–H64 24.9M 153.0M 6.5 0.982

Fig. 8. Qualitative results of our FastMETRO on FreiHAND [47]. We visualize the 3D
hand mesh estimated by FastMETRO-L-H64. By leveraging the attention mechanism
in the transformer, our model is robust to partial occlusions.

6 Conclusion

We identify the performance bottleneck in the encoder-based transformers is
due to the design of input tokens, and resolve this issue via an encoder-decoder
architecture. This allows our model to demand much fewer parameters and shorter
inference time, which is more appropriate for practical use. The proposed method
leverages the human body prior encoded in SMPL human mesh, which reduces
optimization difficulty and leads to faster convergence with higher accuracy.
To be specific, we mask self-attentions of non-adjacent vertices and perform
coarse-to-fine mesh upsampling. We demonstrate that our method improves the
Pareto-front of accuracy and efficiency. Our FastMETRO achieves the robustness
to occlusions by capturing non-local relations among body joints and mesh
vertices, which outperforms image-based methods on the Human3.6M and 3DPW
datasets. A limitation is that a substantial number of samples are required to
train our model as in the encoder-based transformers.
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