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In this supplemental material, we present the implementation details in Sec-
tion 1, model analysis in Section 2, and additional results in Section 3.

1 Implementation Details

We implement our framework with PyTorch [19]. The VisDB model and SMPL
regressor are parametrized by deep neural networks and trained with an Adam
optimizer [9] . We apply Batch Normalization [7] after each convolutional layer
and use ReLU [1] as the activation function of the middle layers. The initial
learning rate is set to 10−4 and decayed by a factor of 10 after 8 epochs.

1.1 Pseudo ground-truth visibility

To obtain the dense UV correspondence map, we apply a DensePose [5] model
pre-trained on the MSCOCO dataset [14] with ResNet101 [6] as backbone and
DeepLabv3 as prediction head. The model predicts a bounding box of each hu-
man body as well as the part segmentation mask (I) and pixel-wise UV coor-
dinates in the bounding box. We discover that directly calculating the pixel-
to-vertex correspondence is too time-consuming and not feasible during train-
ing. To deal with this issue, we discretize the UV coordinates by a 30×30 grid
for each of the 24 body parts, as the maximum number of vertices per part
is smaller than 900. Given an estimated IUV image, we can efficiently obtain
the dense correspondence by discretizing it and indexing a pre-defined map
Muv ∈ {1, 2, ..., NV }24×30×30, where NV = 6890 in our experiments.

1.2 Network architecture

We show the detailed structure of VisDB network and SMPL regressor in Fig-
ure 1. The VisDB network predicts the dense heatmaps and visibility in x, y,
and z dimensions. We apply element-wise multiplication to the visibility labels
and concatenate them with the 3D coordinates obtained from heatmaps, which
is then used as the input of SMPL regressor.
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Fig. 1. Network architecture of the VisDB network (left) and SMPL re-
gressor (right). We show the prediction modules of vertex coordinates and visibility
labels. As in [17], we use a similar network for joint predictions and cascade the two
networks. Given the VisDB predictions, we concatenate the 3D coordinates (RNV ×3)
and overall visibility (RNV ×1) as the input of SMPL regressor.

1.3 Dataset details

In Table 1, we show the rough number of training and testing images for each
dataset we use. For Human3.6M, we train our models using subjects S1, S5,
S6, S7, S8, and we test the models using subjects S9 and S11. We first train
our model on all the images from all datasets until convergence. Then, for the
evaluation on the 3DPW dataset [15], we finetune the trained model on the whole
3DPW dataset and only 10% of the others since they are rather large-scale. We
have also experimented with the UP-3D [11] (3D) and MPII [2] (2D) datasets
for training, but we did not observe much performance gain.

Table 1. Dataset statistics. We show the number of training and testing images per
dataset. For the testing datasets, we also report the number of partial-body (truncated)
examples. The 3DPW dataset [15] contains more partial-body images.

Human3.6M [8] MuCo-3DHP [16] 3DPW [15] MSCOCO [14]

Annotations 3D 3D 3D 2D
Training images 312.2K 200.0K 22.7K 149.8K
Testing images 2.2K - 35.5K -
Testing images (partial-body) 0.1K - 1.9K -
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2 Model Analysis

2.1 Training and inference speed

Our entire training process takes about 24 hours to converge using 4 NVIDIA
V100 GPUs. The inference speed of our VisDB network is around 23 fps on
a single GPU, which is close to I2L-MeshNet [17] (25 fps) since both methods
adopt a similar heatmap-based representation and network backbone On the
other hand, METRO [12] and Mesh Graphormer [13] use a transformer [21]-
based network which imposes higher computational costs and takes a longer
training time to converge. METRO runs at 12 fps on a single NVIDIA P100
GPU, and Mesh Graphormer is slightly slower. Both transformer-based methods
require 5 days for model training on 8 NVIDIA V100 GPUs.

2.2 Data augmentation and visibility evaluation

We evaluate the quality of our visibility predictions on the 3DPW dataset [15].
In Table 2, we report the mean accuracy of vertex truncation in the x and y-axis
as well as occlusion in the z-axis. Note that the occlusion labels for both training
and evaluation are pseudo ground-truths obtained from dense UV estimations.
The results demonstrate that the VisDB network can effectively learn to predict
accurate visibility labels with the proposed data augmentations with truncation
and occlusion.

Table 2. Quantitative evaluations of visibility predictions. We report the accu-
racy of individual visibility prediction (x-axis truncation, y-axis truncation, and z-axis
occlusion) on the 3DPW dataset [15]. The results demonstrate that our data augmen-
tation strategies effectively facilitate the visibility learning.

Data augmentation X-truncation Y-truncation Occlusion

✗ 0.86 0.79 0.61
✓ 0.98 0.94 0.83

2.3 Ablation study on visibility prediction

To justify our model design for visibility prediction, we perform ablation study
with various prediction strategies in Table 3. A naive approach to model dense
visibility is by predicting one binary label for each joint or vertex, which indicates
whether it is overall visible in the image. The visibility labels can be predicted
either from the image-space features (after deconvolution layers in Figure 1(a))
or depth-axis features (after avgx,y in Figure 1(a)). In contrast, we separate the
joint/vertex visibility into 3 dimensions and train a network to predict 3 binary
labels from the x, y, and z axis features, respectively. The results in Table 3
demonstrate that the separate visibility prediction from individual features is
more effective with the heatmap-based framework.
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Table 3. Ablation study on visibility prediction. In the first row, we predict one
label of overall visibility per joint/vertex from the image-space features. The second
model predicts the overall visibility from the depth-wise features. Finally, our VisDB
network produces 3 separate labels for the 3 axes based on respective features. We
report the accuracy of truncation and occlusion predictions as well as joint/vertex
errors. The results show that separate visibility modeling leads to the best performance,
which justifies our model design.

Prediction Features Truncation ↑ Occlusion ↑ MPJPE ↓ PA-MPJPE ↓ MPVE ↓

Overall visibility Image-space (x,y) 0.81 0.69 78.4 46.3 89.8
Overall visibility Depth-axis (z) 0.78 0.75 77.4 46.1 88.3
Separate visibility All (x,y,z) 0.93 0.83 73.5 44.9 85.5

2.4 Depth ordering loss

In Figure 2, we show the outputs with and without depth ordering loss Ldepth and
visualize the self occluded regions (left and right hands). The results demonstrate
that Ldepth can effectively resolve depth ambiguity (left hand) based on visibility
prediction.

Input Depth error w/o Ldepth w/ Ldepth

Fig. 2. Visualization of depth ordering loss. We visualize the depth ordering
loss Ldepth and show an example outputs with an without Ldepth (blue:correct depth
ordering, red:incorrect depth ordering).

3 Additional Results

3.1 Silhouette IoU evaluation

In addition to the joint and vertex error metrics, we evaluate the 2D silhouette
IoU between the predicted mesh and ground-truth mesh. We show the compar-
ison results in Table 4, which demonstrate that both the VisDB output mesh
and optimized SMPL model capture the human body silhouettes more faithfully
compared to I2L-MeshNet† [17]. Note that the heatmap-based mesh outputs
produce higher silhouette IoUs than SMPL parameters. The proposed dense UV
correspondence loss further improves the IoU since the UV map estimations are
based on segmentation masks.
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Table 4. Silhouette IoU evaluations on the 3DPW [15] dataset. The VisDB
outputs and optimized SMPL parameters achieve higher silhouette IoUs than our base-
line, I2L-MeshNet† [17]. Moreover, the dense UV correspondence loss Luv is shown
effective in improving the faithfulness of 2D silhouettes.

Method MPJPE ↓ PA-MPJPE ↓ MPVE ↓ Silhouette IoU ↑

I2L-MeshNet† [17] (mesh) 84.5 51.1 98.2 86.3

I2L-MeshNet† [17] (param) 88.0 55.5 102.3 84.4
VisDB w/o Luv (mesh) 74.9 45.6 87.1 87.7
VisDB w/ Luv (mesh) 73.5 44.9 85.5 90.3
VisDB w/ Luv (param) 72.1 44.1 83.5 89.9

3.2 Quantitative comparisons with dense UV-based losses

Several prior works take dense UV maps as additional input [22,4] and/or apply
2D losses via differentiable rendering [22,3], which either implies stricter infer-
ence conditions or imposes additional computations during training. Instead, our
VisBD network only takes an image as input and produces image-space vertex
position and visibility jointly, which exactly match the 2D supervisory signals
we discovered from DensePose via Eq.(19) in the manuscript. We empirically
found this direct vertex-level supervision more efficient and effective for train-
ing VisDB. In Table 5, we compare the performance of VisDB trained with the
proposed vertex correspondence loss Luv, against a rendering-based loss Lrender

as baseline. To compute Lrender, we render the vertex part labels and UV co-
ordinates of a VisDB output mesh and compare with DensePose estimates in
terms of part mask IoU (as in [22]) and UV coordinate error (as in [23]). We
also include other prior dense UV-based methods for reference.

Table 5. Human3.6M results against additional baselines.

Method MPJPE PA-MPJPE

NBF [18] - 59.9
DenseRaC [22] 76.8 48.0
HoloPose [4] 60.3 46.5
OOH [24] - 41.7
DSR [3] 60.9 40.3
DecoMR [23] - 39.3
VisDB w/ Lrender (mesh/param) 56.2 / 54.7 38.1 / 37.5
VisDB w/ Luv (mesh/param) 51.0 / 50.0 34.5 / 33.8
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3.3 Failure cases

In Figure 3, we show some failure cases of VisDB. Since VisDB only takes an im-
age as input (without joint coordinates or segmentation mask), the model tends
to be confused when multiple people are around the image center. In addition,
the output meshes are sometimes tilted in the side view even though they look
faithful from the front view. This is partly due to the erroneous pseudo ground-
truths from SMPLify-X [20], which we often observe in the training datasets.

Input VisDB (mesh) VisDB (param) Visibility (side view)

Fig. 3. Failure cases. For each example, we show the results of our VisDB mesh and
optimized SMPL model, as well as visibility predictions in the side view (purple:visible,
orange:invisible). The first example contains a crowded scene, where our model sees
the two people in the middle as one. In the second example, we show that the output
meshes are sometimes tilted in the side view despite being accurate in the front view.

3.4 Qualitative comparisons with occlusion-robust methods

In Figures 4, we show the qualitative comparisons against prior arts which can
handle occlusions: PARE [10] and METRO [12]. We observe that PARE and
METRO are robust to occlusions in general but VisDB aligns with the images
better thanks to the accurate dense heatmap estimations.

3.5 Additional qualitative results

We show additional qualitative results on the Human3.6M [8] and 3DPW [15]
datasets in Figure 5 and 6, respectively. For input images where the human
bodies are truncated or occluded, the results of I2L-MeshNet [17] (param) are
not accurate, especially around the face, hand, and foot regions. On the contrary,
VisDB predicts faithful mesh and dense visibility, which lead to accurate SMPL
parameters.
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Input InputPARE PAREVisDB (param) VisDB (param)

Input InputMETRO METROVisDB (param) VisDB (param)

Fig. 4. Visual comparison with PARE [10] and METRO [12] (see red boxes).

Input Pseudo GT I2L-MeshNet VisDB VisDB
(SMPLify-X) (param) (mesh) (param)

Fig. 5. Qualitative results on the Human3.6M dataset [8]. For each example, we
show the results of SMPLify-X [20] (pseudo ground-truth), I2L-MeshNet [17] (param),
our VisDB mesh, our optimized SMPL parameters. This dataset contains more self-
occlusion cases. We further apply random occlusions to demonstrate the performance
gap. Despite that the pseudo ground-truth meshes for training are sometimes inaccu-
rate, our VisDB results and optimized SMPL models are realistic, faithful to the input
image, and robust to occlusions.



8 Yao et al.

Input Ground-truth I2L-MeshNet VisDB VisDB Visibility
(param) (mesh) (param) (side view)

Fig. 6. Qualitative results on the 3DPW dataset [15]. For each example, we
show the results of I2L-MeshNet [17] SMPL model, our VisDB mesh, our optimized
SMPL model, as well as visibility predictions in the side views (purple:visible, or-
ange:invisible).
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