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Abstract. We present a new framework to reconstruct holistic 3D in-
door scenes including both room background and indoor objects from
single-view images. Existing methods can only produce 3D shapes of
indoor objects with limited geometry quality because of the heavy oc-
clusion of indoor scenes. To solve this, we propose an instance-aligned im-
plicit function (InstPIFu) for detailed object reconstruction. Combining
with instance-aligned attention module, our method is empowered to de-
couple mixed local features toward the occluded instances. Additionally,
unlike previous methods that simply represents the room background as
a 3D bounding box, depth map or a set of planes, we recover the fine
geometry of the background via implicit representation. Extensive ex-
periments on the SUN RGB-D, Pix3D, 3D-FUTURE, and 3D-FRONT
datasets demonstrate that our method outperforms existing approaches
in both background and foreground object reconstruction. Our code and
model will be made publicly available.

(a) Input image (b) Reconstructed scene (c) Total3D (d) Im3D (e) Ours

Fig. 1. Given a single indoor scene image, we reconstruct the holistic scene with detailed
geometry, including the room background and indoor objects. From left to right: input
image, the scene reconstructed by our method, results of Total3D [34], Im3D [56] and
our method in a different camera pose.
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1 Introduction

With the development of virtual reality (VR) and augmented reality (AR), the
requirements for understanding and digitizing real-world 3D scenes are getting
higher, especially for the indoor environment. If reconstructing the holistic in-
door scene can be as simple as taking a picture using a mobile phone, we can
efficiently generate a large scale of high-quality 3D content and further promote
the development of VR and AR. Also, robots can better understand the real-
world with the advance of single-view scene reconstruction. Hence, the problem
of holistic indoor scene reconstruction from a single image has attracted consid-
erable attention in recent years.

Early methods simplify this problem as estimating the room layout [15, 24, 28,
5, 40] and indoor objects [7, 17, 2] as 3D bounding boxes. However, such a coarse
representation can only provide scene context information but cannot provide
shape-level reconstruction. Mesh retrieval based approaches [20, 19, 18] improve
the object shapes by substituting the 3D object boxes with meshes searched from
a database. Due to the various categories and appearances of indoor objects,
the size and diversity of the database directly influence the accuracy and time
efficiency of these methods.

Inspired by learning-based shape reconstruction methods, voxel representa-
tion [25, 49, 22] is first applied to recover the 3D geometry of indoor scenes, but
the shape quality is far from satisfactory due to the limited resolution. Mesh
R-CNN [12] can reconstruct meshes for multiple instances from a single-view
image, but lacks of scene understanding. Recently, Total3D[34] and Im3D[56]
are proposed to reconstruct the 3D indoor scene from a single image, where the
instance-level objects are represented in the form of explicit mesh and implicit
surface, respectively. Although they have achieved state-of-the-art results on this
task, they still have the following limitation. First, they often output shapes lack-
ing details, due to the issue of limited training data and the use of global image
feature for shape reconstruction. Second, the room layout in their methods is ex-
pressed as a simplified representation (i.e., the 3D bounding box) which cannot
recover backgrounds with complex geometries, like non-planar surfaces.

Recently, pixel-aligned implicit function (PIFu) has achieved promising re-
sults for detailed and generalizable 3D human reconstruction from a single im-
age [42]. Motivated by the success of PIFu, we address the limitations of ex-
isting methods by introducing an instance-aligned implicit function (InstPIFu)
for holistic and detailed indoor scene reconstruction from a single image. Note
that pixel-aligned feature cannot be straightforwardly applied to indoor scene
reconstruction, as objects (e.g., sofa, chair, bed, and other furniture) are often
occluded in a cluttered scene (see Fig. 1), such that the extracted local feature
might contain mixed information of multiple objects. It is sub-optimal to di-
rectly use such a contaminated local feature for implicit surface reconstruction.
To tackle this problem, we introduce an instance-aligned attention module, con-
sisting of attentional channel filtering, and spatial-guided supervision strategies,
to decouple the mixed local features for different instances in the overlapping
regions.
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Unlike previous methods that simply recover the room layout as a 3D bound-
ing box [15, 24, 28, 5, 40, 34, 56], sparse depth [49] or room layout structure [57,
44, 55] without non-planar geometry, our implicit surface representation allows
the detailed shape reconstruction of the room background (e.g., floor, wall, and
ceiling). Compared with existing approaches that encode the latent shape code
with global image features [34, 56], the instance-aligned local features utilized
in our encoder help alleviate the over-fitting problem and recover more de-
tailed geometry of indoor objects. Extensive experiments on the SUN RGB-D,
Pix3D, 3D-FUTURE, and 3D-FRONT datasets demonstrate the superiority of
our method.

The key contributions of this paper are summarized as follows:
– We introduce a new pipeline to reconstruct the holistic and detailed 3D indoor

scene from a single RGB image using implicit representation. To our best
knowledge, this is the first system that uses pixel-aligned feature to recover
the 3D indoor scene from a single view.

– We are the first to attempt to reconstruct the room background via implicit
representation. Compared to previous methods that represent room layout as
a 3D box, depth map or a set of planes, our method is capable to recover
background with more complex geometries, like non-planar surfaces.

– We propose a new method, called InstPIFu, to use the instance-aligned fea-
ture, extracted by a novel instance-aligned attention module, for detailed in-
door object reconstruction. Our method is more robust to object occlusion
and has a better generalization ability on real-world datasets.

– Our method achieves state-of-the-art performance on both the synthetic and
real-world indoor scene datasets.

2 Related Work

Single-view indoor scene reconstruction The long-standing problem of indoor
scene reconstruction from a single image aims to construct the holistic 3D scene,
which entails room layout estimation, object detection and pose estimation, as
well as 3D shape reconstruction. Early works first recover the room layout as a
3D room bounding box [15, 24, 28, 5, 40]. Follow-up works make rapid progress
toward object pose recovery [7, 17, 2], but still represent objects as 3D boxes
without shape details.

To recover object shapes, some methods search for models with a similar ap-
pearance from a database [20, 19, 18]. However, the mismatch between objects in
images and the database often leads to unsatisfactory results. Other methods [25,
49, 22] try to reconstruct the voxel representation for each object instance, but
they are subjected to the problem of limited resolution. Mesh R-CNN [12] is
capable to reconstruct meshes for multiple objects from a single-view image, but
ignores scene understanding. To overcome the above limitations of previous so-
lutions, Total3D [34] proposes an end-to-end system to jointly reconstruct room
layout, object bounding boxes, and meshes from a single image. But its mesh
generation network can only produce non-watertight mesh when handling shapes
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with complex topology. The following Im3D [56] represents each object with the
implicit surface function that can be converted to a watertight mesh via march-
ing cube algorithm while preserving geometry details in the meantime. However,
the state-of-the-art solution of Im3D [56] still suffers from shape over-fitting due
to the problem of limited training data and the use of global image features for
shape reconstruction.

Room background representation Early methods [15, 24, 28, 5, 40] simply recover
the room background as a 3D bounding box, but room is usually not a cuboid.
The state-of-the-art single-view indoor scene reconstruction methods [34, 56] are
still using this representation for room background. [49] predicts the background
via depth estimation, which recovers more details for background. However, the
accuracy of background depth estimation is far from satisfactory because of the
occlusion of foreground, i.e., indoor objects. Recent works try to reconstruct the
room layout structure [57, 44, 55] with the assumption that the background of
the room (e.g., floor, wall, and ceiling) is mainly composed of planes. Hence,
only planar geometry can be recovered and nonplanar information is missed by
these methods.

Learning-based 3D shape reconstruction Recent learning-based methods have
adopted different surface representations for 3D shape reconstruction, such as
voxel, mesh, point cloud, patches, primitives, and implicit surface.

Voxel-based methods [4, 26, 51, 41, 47, 53] benefit from 2D CNNs because of
the regularity of the voxel representation, but suffer from the balance between
resolution and efficiency. Mesh-based methods reconstruct the mesh of an ob-
ject through deforming a template (e.g., a unit sphere), but the topology of the
obtained mesh is restricted [52, 13, 36, 21]. To modify the topology, some ap-
proaches learn to remove extra edges and vertices [36, 46, 34], which results in
non-watertight meshes. Methods based on point cloud [9, 29, 23, 32], patches [13,
53], and primitives [48, 50, 38, 6] are adaptable to complex topology, but re-
quire post-processing to convert to structural representations. However, the post-
processing is difficult to preserve the detailed geometry of the shape. Recently,
implicit surface function [37, 3, 31, 54, 30] has been widely adopted as it can
achieve detailed reconstruction for shape with an arbitrary topology and is easy
to be converted to fine mesh.

Pixel-aligned image features Single-view implicit surface reconstruction meth-
ods often adopt an encoder-decoder pipeline and learn a latent code from the
input image for shape recovery. For time and memory efficiency, global image
feature [37, 3, 35, 30, 8] is often adopted, but it cannot recover the local detailed
information existed in the input image. As a result, coarse results often occur in
these approaches. Recently, pixel-aligned local image features have been demon-
strated to recover complex geometries from a single view [42, 54].
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Fig. 2. Overview of the proposed InstPIFu. Given a single indoor scene image as input,
our method simultaneously performs room background estimation, object detection
and camera pose estimation, as well as detailed 3D object reconstruction.

3 Instance-aligned Implicit Representation

In this section, we first review the pixel-aligned implicit function (PIFu) and
point out its limitation in dealing with the occluded object in the indoor scene.
We then introduce our instance-aligned implicit function to perform better in-
door object reconstruction where objects are often occluded in the cluttered
scene.

3.1 Review of Pixel-aligned Implicit Modeling

Single-view scene reconstruction benefits from implicit representation [56], but
the usage of global image features often causes coarse results. PIFu with pixel-
aligned local features has been witnessed to recover detailed shapes in 3D human
reconstruction [42].

A 3D surface can be defined by an implicit function as a level set of function f ,
e.g.f(X) = 0, where X is a 3D point. Similarly, a pixel-aligned implicit function
f , represented by multi-layer perceptrons (MLPs), defines the surface as a level
set of

f(F (x), z(X)) = s : s ∈ R, (1)

where x = π(X) gives the 2D image projection point of X, F (x) = g(I(x)) is the
local image feature at x extracted by a fully convolutional image encoder g, and
z(X) is the depth value in weak-perspective camera coordinate. We observe that
adding the global image feature as an extra input helps in shape reconstruction.
The adapted PIFu used in this work is defined as

f(F (x), FG(I), z(X)) = s : s ∈ R, (2)

where FG(I) represents the global features of image I encoded by G.
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Fig. 3. Occlusion causes local feature ambiguity among different objects. (a) A scene
contains two objects, and F is the extracted local feature from the image. (b)-(c)
Object reconstruction in canonical coordinate system, where points along the rays are
projected at p to sample local feature F (p). (d) Variations of occupancy s with depth
z along the ray r1 and r2 for fA and fB .

3.2 Limitation of Pixel-aligned Feature

Although PIFu demonstrates detailed reconstruction results in single human
reconstruction, applying PIFu for indoor object reconstruction straightforwardly
is not good, as it suffers a lot from the object occlusion that leads to feature
ambiguity. Multiple 3D points belonging to different objects can be projected
into similar 2D image location and get the same local image feature, such that
the local feature will contain mixed information from different instances, which
is not desirable for shape reconstruction.

As an example in Fig. 3 (a), a scene consists of a sphere A and and a cube
B, where A occludes B in the captured image. Fig. 3 (b)-(c) show that when
sampling pixel-aligned features for 3D points, points along the ray r1 and r2
(e.g., P ) are all projected at the point p in the overlapping region. This means
that the same local feature F (p) will be used to compute the occupancy value
s for implicit function of A (fA) and B (fB), i.e., s = fA(F (p), z(P )) and s =
fB(F (p), z(P )). As PIFu implemented fA and fB using the same MLPs, adopting
the same local feature F (p) raises feature ambiguity in occupancy estimation for
A and B. This is illustrated in Fig. 3 (d), where variations of s with z for fA and
fB are apparently different. Note that here we simply represent the PIFu f as
an ideal occupancy field where levels of points inside the object are 1, otherwise
0.

One possible solution might be adding the global feature of the instance as
extra inputs to the shape decoder. But only using global features to tackle the
ambiguity in occlusion region is not enough (see our ablation study). Because
the local features still contain mixed information from different instances.

3.3 Instance-aligned Feature Concentration

To address the above limitation of PIFu, we propose InstPIFu, which adopts
an instance-aligned attention module to disentangle the mixed feature informa-
tion caused by object occlusion, for indoor object reconstruction. The proposed
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instance-aligned attention module reduces the ambiguity of the local image fea-
ture by three sequential steps, i.e., RoI alignment, attentional channel filtering,
and spatial-guided supervision (see Fig. 2).

RoI alignment The first step is to extract instance-related features for each
instance. A straight-forward solution is to extract features independently from
the cropped image patch of each target instance. However, it is inefficient when
there are multiple objects in a cluttered scene, and the useful scene contextual
information will be ignored. Instead, we follow Mask R-CNN [14] to use RoI
alignment for instance-related feature extraction. Given an image I and the 2D
bounding box Bj of an instance j, we first crop out the corresponding local
features of the region of interest (RoI) from the whole pixel-aligned feature map
F and align them to F r as [14]

F r = RoIAlign(F,Bj). (3)

Note that F r has a fixed size of Wr ×Hr for input feature maps with different
shapes and the 2D bounding box Bj of object j is obtained by a Faster R-CNN
detector [39]. We then extract a global instance feature for instance j as G′(F r),
where G′ is a global instance image encoder. The global instance feature will be
used to compute the channel-wise attention for local feature filtering.

Attentional channel filtering Each local feature in the aligned RoI feature map
F r will be concatenated with the global instance feature G′(F r) as input for a
channel-wise attention layer, similar to the Squeeze-and-Excitation block in [16]
structurally, to generate an attention map with the same channel number of Lc

as the local feature. This attention map will multiply with the local feature to
filter out irrelevant feature by channel filtering to allow the updated local feature
to concentrate on the target instance. This operation can be expressed as

F c(x) = Cattention(F
r(x), G′(F r))× F r(x), (4)

where F c(x) is the filtered local image feature at the 2D projection x of a 3D
point X for instance j. Note that F r(x) in Eq. (4) adopts bilinear interpolation
to access the features, and x in F r(x) should be shifted and scaled as well.

Spatial-guided supervision To better guide the learning of the channel filtering,
we need a module that can encourage the filtered feature to focus more on the
target instance. Thus, we exploit a spatial-guided supervision on the the filtered
local feature map F c that is the output of the channel-wise attention layer with
the same shape as F r. The Feature map F c will be fed into a fully convolutional
layer S to estimate a complete mask M for the target instance, i.e., M = S(F c).
This spatial-guided supervision can filter out irrelevant information out of the
mask.
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Instance-aligned implicit function Given the instance-aligned feature, we define
InstPIFu fo as

fo(F
c(x), G′(F r), z(X)) = s : s ∈ R. (5)

By applying the proposed instance-aligned attention module for decoupling the
mixed local feature, compared with PIFu, the local feature used in our Inst-
PIFu provides more discriminative information for accurate and detailed shape
reconstruction. And this can be demonstrated by our ablation study.

4 Holistic Indoor Scene Reconstruction

Given a single image of an indoor scene, we aim to recover the holistic and
detailed 3D scene in implicit representation (see Fig. 2). This problem is nor-
mally divided into several sub-tasks, including room background estimation, 3D
object detection (pose estimation), as well as instance-level object reconstruc-
tion [34, 56]. We first process these three tasks individually and then perform
scene compositing for holistic scene reconstruction. Note that our method recov-
ers the room background with geometry details instead of just a simplified 3D
bounding box.

4.1 Room Background Estimation

Room is usually not a cuboid. Thus, it is inappropriate to represent the room
background as a 3D bounding box like [34, 56]. Depth map [49] is also not an ideal
representation, because the accuracy of background depth estimation is heavily
influenced by the occlusions of indoor objects in front of the background. Also,
methods [44, 55] based on plane detection cannot recover small planes and non-
planar background geometries. To address the above issues, we explore to use
the implicit representation for room background reconstruction in this work.

The ground-truth room surface is represented as a 0.5 level set and then
discretized to a 3D occupancy field:

f∗
r (X) =

{
1, if X is inside the room

0, otherwise
. (6)

Compared with indoor objects that have various styles and complicated geome-
tries, the shape of the room background is much simpler. We find that applying
the adapted PIFu (see Eq. (2)) which takes pixel-aligned features and global
features for room background reconstruction already achieves good results. We
train our room estimation PIFu fr by minimizing the average of mean squared
error (MSE):

Lr =
1

n

n∑
i=1

|fr (F (xi) , G (F ) , z (Xi))− f∗
r (Xi)|2 , (7)
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where n is the number of sample points, Xi ∈ R3 is a point in the camera
coordinate system, F (x) = g(I(x)) is the local image feature located at x,G(F ) is
the global image feature of the room background and F is the whole feature map
produced by Hourglass network. The local and global image features are both
from a stacked hourglass network [33], but an extra global encoder G is needed
to encode the whole feature map F to the global feature. The obtained implicit
room background can be easily converted to an explicit mesh via marching cube
algorithm.

4.2 Indoor Object Reconstruction

As discussed in Sec. 3, due to the heavy occlusions between indoor objects, di-
rectly applying PIFu for instance reconstruction suffers from the problem of am-
biguous local features. We adopt the proposed InstPIFu, which applies instance-
aligned attention module for feature filtering, to reconstruct the indoor objects.
We define the ground-truth surface of an indoor object as the room background
(see Eq. (6)). The InstPIFu fo is also trained by minimizing the average of MSE:

Lo =
1

n

n∑
i=1

|fo (F c (xi) , G
′(F r), z (Xi))− f∗

o (Xi)|
2
, (8)

where Xi ∈ R3 is a point in the canonical coordinate system. Note that the pro-
jection from Xi to xi is different from the original PIFu. Because Xi is in object
coordinate system, extra camera and object poses are needed when projecting.
We follow [56] to predict these parameters for projecting. The channel-wise at-
tention layer is implemented as MLPs. During training, we add an extra instance
mask loss for the instance-aligned attention module to enforce the feature to be
constrained on the corresponding instance mask. The mask loss is simply imple-
mented by the MSE between the predicted mask and the ground truth.

4.3 Scene Compositing

The room background is obtained in the camera coordinate system, while the
objects are recovered in their canonical coordinate system to ease the learning of
reconstructing indoor objects with various poses and scales. To embed objects
into the scene together with the room background, the camera pose R(β, γ)
and object bounding box parameters (δ, d, s, θ) are required. We use similar
camera estimator and 3D object detector to predict above parameters as [34,
56]. Additionally, the Scene Graph Convolutional Network proposed in [56] is
also used in our work to improve the performance of camera and object pose
estimation. Note that we use perspective camera model.

5 Experiment

5.1 Experiment Setup

Datasets We conduct experiments on both synthetic and real datasets. The
proposed pipeline is trained on 3D-FRONT [10] which is a large-scale repository
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of synthetic indoor scenes, consisting of professionally designed rooms populated
by 3D furniture models with high-quality geometry and texture in various styles.
The furniture models come from 3D-FUTURE [11]. We use about 20K scene
images for training and 6K for testing, where more than 16K objects from 3D-
FUTURE are included. Following [34, 56], we also evaluate our method on real-
world datasets: SUN RGB-D [43] and Pix3D [45].

Metrics We adopt the commonly used Chamfer distance (CD) to evaluate the
background reconstruction, as it is difficult to compare our background re-
sults with layout Intersection over Union (IoU) [34, 56, 55, 44] (detailed reasons
in Sec. 5.2). The reconstructed indoor objects are evaluated with CD and F-
Score [52, 34, 56].

5.2 Evaluation on Room Background Estimation

We first evaluate the effectiveness of our room background estimation module.
Layout IoU is a commonly used metric when comparing the room background. It
is computed using the layout structure of the whole room. However, our method
only reconstructs partial room background within the camera view. Hence, to
compare our room background results with existing methods quantitatively, we
firstly sample 10K points within the camera frustum from the reconstructed
background in representations of bounding box [56], depth map [49, 1], plane
sets [27] and our implicit surface, then compute CD with points on ground truth
background. We choose to compare with PlaneRCNN [27] since it is popular and
has decent performance in plane estimation. Because Factored3D [49] is based
on depth estimation, we also compare it with Adabins [1] that is the state-of-
the-art depth estimation approach. Quantitative comparisons in Tab. 1 shows
the superiority of our method in detailed background recovery. Visual results
of background reconstruction on 3D-FRONT and SUN RGB-D show that our
method can recover the geometry details of the room background (see Fig. 5).
More visual comparisons are given in the Supplementary Material.

Method Factored3D [49] Adabins [1] Im3D [56] PlaneRCNN [27] Ours

CD on 3D-FRONT ↓ 0.697 0.573 1.974 0.717 0.481

Table 1. Quantitative comparisons of room background estimation on 3D-FRONT.

5.3 Evaluation on Indoor Object Reconstruction

We compare our InstPIFu against the MGN of Total3D [34] and the LIEN of
Im3D [56] on indoor object reconstruction. Quantitative and qualitative compar-
isons are shown on both 3D-FUTURE and Pix3D. Furthermore, we also train
and test these object reconstruction networks on Pix3D with a non-overlapped
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Fig. 4. Qualitative comparisons of indoor object reconstruction. From left to right of
every quintuplet: (1) Input images and results from (2) MGN [34], (3) LDIF [56], (4)
Ours, (5) Ground truth. The first two rows are compared on 3D-FUTURE, and the
last two rows are on Pix3D. Note that results of the last row are generated by models
trained and tested on non-overlapped split.

split to evaluate their generalization ability. CD is used to evaluate on the 10K
points sampled from the reconstructed mesh after being aligned with the ground-
truth using ICP. Note that results generated by InstPIFu and LIEN are in im-
plicit representation which are converted to mesh using marching cube algorithm
with a resolution of 256.

Evaluation on 3D-FUTURE Tab. 2 summarizes the quantitative results on 3D-
FUTURE evaluated on 2000 indoor objects in 8 different categories. We use
scene images in 3D-FRONT as the input for our InstPIFu, and cropped patches
by ground-truth 2D bounding boxes (following [34, 56]) from every scene image
as the input for MGN and LIEN. In these input images, object occlusions often
occur. And thanks to the use of the instance-aligned feature, our method achieves
the best on F-Score and shows decent results on CD (see Tab. 2). Although
explicit methods like MGN achieve better CD loss as they directly optimize the
CD loss during training, the reconstructed meshes lack details [30, 36, 54]. Also,
MGN can not generate watertight mesh which is desired in object reconstruction.
Fig. 4 (first two rows) shows that the results of our method have the most similar
appearances to objects in the input images.

Comparison on Pix3D Quantitative results on Pix3D using the train/test split
in [34] are shown in Tab. 3, where LIEN and MGN achieve better than ours. The
major reason is that LIEN and MGN tend to be over-fitting on Pix3D which
has only about 400 shapes. Because the split in [34] is based on different images,
and all shapes in testing dataset also occur in training dataset. Also, the usage
of pixel-aligned local feature makes our model achieve better generalization abil-
ity, but weaken the fitting performance. Nevertheless, our method still achieves
comparable qualitative results (see the third row in Fig. 4).

Comparison of generalization To compare the generalization ability of the above
three object reconstruction networks, we re-split Pix3D based on different shapes
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Method bed chair sofa table desk nightstand cabinet bookshelf mean ↓ / ↑
MGN [34] 15.48 / 46.81 11.67 / 57.49 8.72 / 64.61 20.90 / 49.80 17.59 / 46.82 17.11 / 47.91 13.13 / 54.18 10.21 / 54.55 14.07 / 55.64
LIEN [56] 16.81 / 44.28 41.40 / 31.61 9.51 / 61.40 35.65 / 43.22 26.63 / 37.04 16.78 / 50.76 7.44 / 69.21 11.70 / 55.33 28.52 / 45.63
Ours 18.17 / 47.85 14.06 / 59.08 7.66 / 67.60 23.25 / 56.43 33.33 / 48.49 11.73 / 57.14 6.04 / 73.32 8.03 / 66.13 14.46 / 61.32

Table 2. Quantitative comparisons of object reconstruction on 3D-FUTURE (CD /
F-Score). The values of CD are in units of 10−3.

Split in [34] bed bookcase chair desk sofa table tool wardrobe misc mean ↓ / ↑
MGN [34] 5.99 / 78.08 6.56 / 62.98 5.32 / 72.73 5.93 / 75.04 3.36 / 79.64 14.19 / 65.27 3.12 / 81.17 3.83 / 85.51 26.93 / 46.76 6.84 / 73.18
LIEN [56] 4.11 / 65.26 3.96 / 46.05 5.45 / 59.84 7.85 / 76.03 5.61 / 64.02 11.73 / 72.28 2.39 / 36.09 4.31 / 58.59 24.65 / 57.50 6.72 / 63.96
Ours 9.52 / 59.47 4.38 / 73.25 14.40 / 48.26 13.70 / 64.24 8.21 / 57.17 22.6 / 57.52 7.76 / 69.36 3.67 / 87.36 30.32 / 35.05 13.60 / 56.07
Non-overlapped Split bed bookcase chair desk sofa table tool wardrobe misc mean ↓ / ↑
MGN [34] 22.91 / 34.69 36.61 / 28.42 56.47 / 35.67 33.95 / 34.90 9.27 / 51.15 81.19 / 17.05 94.70 / 57.16 10.43 / 52.04 137.5 / 10.41 44.32 / 36.20
LIEN [56] 11.88 / 37.13 29.61 / 15.51 40.01 / 25.70 65.36 / 26.01 10.54 / 49.71 146.13 / 21.16 29.63 / 5.85 4.88 / 59.46 144.06 / 11.04 51.31 / 31.45
Ours 10.90 / 54.99 7.55 / 62.26 32.44 / 35.30 22.09 / 47.30 8.13 / 56.54 45.82 / 37.51 10.29 / 64.24 1.29 / 94.62 47.31 / 27.03 24.65 / 45.62

Table 3. Quantitative comparisons of object reconstruction on Pix3D with split in [34]
and non-overlapped split.

(70% for training and 30% for testing), which ensures that all shapes in testing
dataset have not been seen when training (non-overlapped split). Quantitative
results are shown in Tab. 3, where our method achieves the best result due to the
use of local image features. In contrast, MGN and LIEN suffer from over-fitting
caused by global image features. Qualitative results in Fig. 4 (the last row) give
the same conclusion, where objects reconstructed by MGN and LIEN are coarse
shapes. More results are shown in the supplementary material.

5.4 Qualitative Result of Holistic Scene Reconstruction

We compare our method with Total3D [34] and Im3D [56] in holistic indoor
scene reconstruction on both 3D-FRONT [10] and SUN RGB-D [43] datasets.
Qualitative comparisons shown in Fig. 5 demonstrate the superiority of our
instance-aligned implicit representation. For fair comparison on SUN RGB-D,
we first train the InstPIFu on 3D-FRONT and 3D-FUTURE and then finetune
it on Pix3D. And we also use the predicted 3D object boxes by Im3D. Although
our reconstructed scenes on SUN RGB-D may have some noisy patches due to
the domain gap between the synthetic and the realistic datasets, the results are
full of details in both the background and indoor objects, which reveals the good
generalization ability of our method to some extend.

5.5 Ablation Study

To better study the effect of instance-aligned implicit representation for indoor
object reconstruction, our method is ablated with five configurations:
– Baseline: only pixel-aligned feature is used in object reconstruction.
– C0: pixel-aligned feature + global instance feature.
– C1: C0 + attentional channel filtering.
– C2: C0 + spatial-guided supervision.
– Full: C0 + attentional channel filtering + spatial-guided supervision.

As the quantitative comparisons shown in Tab. 4, our Full model achieves
the best results on metrics CD and F-Score, where we add the channel-wise
attention together with the mask supervision to C0. If we remove the anyone
of these two modules from Full, that are C1 and C2, CD and F-Score both
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(a) Scene reconstruction results on 3D-FRONT 

(b) Scene reconstruction results on SUN RGB-D

Fig. 5. Qualitative comparisons of holistic scene reconstruction. From the first row to
the last: the input image, scene reconstruction results of Total3D, Im3D and ours. Note
that the first four rows are compared on 3D-FRONT and the rest are on SUN RGB-D.

Fig. 6. Visual comparisons for ablation study. From left to right: the input image, results
of Baseline, C0, C1, C2 and Full.
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Method Baseline C0 C1 C2 Full

CD ↓ 17.95 16.42(-1.53) 15.54(-2.41) 15.28(-2.67) 14.46(-3.49)
F-Score ↑ 56.98 58.62(+1.64) 60.23(+3.25) 60.56(+3.58) 61.32(+4.34)

Table 4. Ablation study for the network architecture.

become worse. But C1 and C2 still perform better than C0. This gives us the
insight that both of channel-level filtering and spatial guidance help to decouple
the feature ambiguity towards occluded objects. And the comparisons between
the Baseline and C0 show that concatenating global instance feature with
pixel-aligned local feature is helpful for indoor object reconstruction. But from
the comparisons of the whole table, we can see that only using global feature to
tackle the ambiguity in occlusion region is not enough. Same conclusions can be
drawn by the visual comparisons in Fig. 6.

6 Conclusion

We have introduced a new method based on implicit representation, called In-
stPIFu, for holistic and detailed 3D indoor scene reconstruction from a single
image. To resolve the problem of ambiguous local features caused by object oc-
clusions in an indoor scene, we proposed an instance-aligned attention module to
effectively disentangle the mixed features for accurate instance shape reconstruc-
tion. Moreover, our method is the first to estimate the detailed room background
via implicit representation, resulting in a more complete scene reconstruction.
Extensive experiments on both synthetic and real datasets show that our method
achieves state-of-the-art results for this problem.

Although our instance-aligned implicit function enables a more detailed and
accurate indoor object reconstruction, the use of local feature makes the joint
training of the 3D detection network and object reconstruction network not easy.
Besides, real-world indoor scene datasets with high-quality 3D ground truth are
scarce, and methods trained or finetuned with limited real data perform less well
on real-world scenes compared with results on the synthetic scene (see Fig. 5). It
would be interesting to explore how to take advantage of the existing large-scale
and photo-realistic synthetic datasets for improving the generalization ability of
the method.
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