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Abstract. We present a method for learning to generate unbounded
flythrough videos of natural scenes starting from a single view. This capa-
bility is learned from a collection of single photographs, without requiring
camera poses or even multiple views of each scene. To achieve this, we
propose a novel self-supervised view generation training paradigm where
we sample and render virtual camera trajectories, including cyclic camera
paths, allowing our model to learn stable view generation from a collec-
tion of single views. At test time, despite never having seen a video, our
approach can take a single image and generate long camera trajectories
comprised of hundreds of new views with realistic and diverse content.
We compare our approach with recent state-of-the-art supervised view
generation methods that require posed multi-view videos and demon-
strate superior performance and synthesis quality. Our project webpage,
including video results, is at infinite-nature-zero.github.io.

1 Introduction

There are millions of photos of natural landscapes on the Internet, capturing
breathtaking scenery across the world. Recent advances in vision and graphics
have led to the ability to turn such images into compelling 3D photos [38,70,30].
However, most prior work can only extrapolate scene content within a limited
range of views corresponding to a small head movement. What if, instead, we
could step into the picture and fly through the scene like a bird and explore the
world in 3D, and see diverse elements like mountain, lakes, and forests appear
naturally as we move through the landscape? This challenging new task was
recently proposed by Liu et al. [43], who called it perpetual view generation: given
a single RGB image, the goal is to synthesize a video depicting a scene captured
from a moving camera with an arbitrary long camera trajectory. Methods that
tackle this problem have applications in content creation and virtual reality.

However, perceptual view generation is a very challenging problem: as the
camera travels through the world, we must fill in unseen missing regions in a
harmonious manner, and must resolve new details as scene content approaches
the camera, all the while maintaining photo-realism and diversity. Liu et al. [43]
proposed a supervised solution that generates view sequences in an auto-regressive
manner. To train their model, Liu et al. (which we will refer to as Infinite Nature),
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Fig. 1. Learning perpetual view generation from single images. Given a single
RGB image input, our approach generates novel views corresponding to a continuous
long camera trajectory, without ever seeing a video during training.

require a large dataset of video clips of nature scenes along with per-frame camera
poses. In essence, perpetual view generation is a video synthesis task, but the
requirement of posed video makes data collection very challenging. Obtaining
large amounts of diverse, high-quality, and long videos of nature scenes is difficult
enough, let alone estimating accurate camera poses on these videos at scale. In
contrast, Internet photos of nature landscapes are much easier to collect, and have
spurred research into panorama synthesis [74,42], image extrapolation [10,63],
image editing [57], and multi-model image synthesis [17,29].

Can we use existing single-image datasets for perpetual 3D view genera-
tion? In other words, can we learn view generation by simply observing many
photos, without requiring video or camera poses? Training with less powerful
supervision would seemingly make this already challenging synthesis task even
harder. And doing so is not a straightforward application of prior methods.
For instance, prior single-image view synthesis methods either require posed
multi-view data [87,61,36], or can only extrapolate within a limited range of
viewpoints [38,70,30,28]. Other methods for video synthesis [1,79,92,40] require
videos spanning multiple views as training data, and can only generate a limited
number of novel frames with no ability to control camera motion at runtime.

In this work, we present a new method for learning perpetual view generation
from only a collection of single photos, without requiring multiple views of
each scene or camera information. Despite using much less information, our
approach improves upon the visual quality of prior methods that require multi-
view data. We do so by utilizing virtual camera trajectories and computing losses
that enable high-quality perpetual view generation results. Specifically, we first
introduce a self-supervised view synthesis strategy that utilizes cyclic virtual
camera trajectories, where we know that the synthesized end frame should be
identical to the starting frame. This idea provides the network a training signal
for generating a single view synthesis step without multi-view data. Second,
to learn to generate a long sequence of novel views we employ an adversarial
perpetual view generation training technique, encouraging views along a long
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virtual camera trajectory to be realistic and generation to be stable. The only
requirement for our approach is an off-the-shelf monocular depth network to
obtain disparity for the initial frame, but this depth network does not need to
be trained on our data. In this sense, our method is self-supervised, leveraging
underlying pixel statistics from single-image collections. Because we train with
no video data whatsoever, we call our approach InfiniteNature-Zero.

We show that training our model using prior video/view generation methods
leads to training divergence or mode collapse. We therefore introduce balanced
GAN sampling and progressive trajectory growing strategies that stabilize model
training. In addition, to prevent artifacts and drift during inference, we propose a
global sky correction technique that yields more consistent and realistic synthesis
results along long camera trajectories.

We evaluate our method on two public nature scene datasets, and compare to
recent supervised video synthesis and view generation methods. We demonstrate
superior performance compared to state-of-the-art baselines trained on multi-
view collections, even though our model only requires single-view photos during
training. To our knowledge, our work is the first to tackle unbounded 3D view
generation for natural scenes trained on 2D image collections, and believe this
capability will enable new methods for generative 3D synthesis that leverage
more limited supervision.

2 Related Work

Image extrapolation. An inspiring early approach to infinite view extrapola-
tion, called Infinite Images was proposed by Kaneva et al. [32], which continually
retrieves, transforms, and blends imagery from a database to create an infinite
2D landscape. We revisit this idea in a 3D context, which requires inpainting, i.e.,
filling missing content within an image [25,90,91,44,95], as well as outpainting,
extending the image and inferring unseen content outside the image bound-
aries [85,88,75,4,61,63] in order to generate images from novel camera viewpoints.
Super-resolution [21,39] is also an important aspect of perpetual view generation,
as approaching a distant object requires synthesizing additional high-resolution
detail. Image-specific GAN methods demonstrate super-resolution of textures
and natural images as a form of image extrapolation [97,73,67,72]. In contrast
to the above methods that address these problems individually, our methods
handles inpainting, outpainting, and superresolution jointly.

Generative view synthesis. View synthesis is the problem of generating novel
views of a scene from existing views. Many view synthesis methods require multiple
views of a scene as input [41,7,96,49,19,11,47,60,50,84,45], though recent works
can also generate novel views from a single image [9,78,56,77,69,87,31,71,37,62].
These methods often require multi-view posed datasets such as RealEstate10k [96].
However, empowered by advances in neural rendering, recent works show that one
can unconditionally generate 3D scene representations for 3D-consistent image
synthesis [52,64,54,16,53,23,5]. Many of these methods only require unstructured
2D images for training. When GAN inversion is possible, these methods can
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also be used for single-image view synthesis, although they have only been
demonstrated on specific object categories like faces [6,5]. All of the works above
only allow for a limited range of output viewpoints. In contrast, our method can
generate new views perpetually, eventually reaching an entirely new distant view,
from a single input image. Most related to our work is Liu et al. [43], which also
performs perpetual view generation. However, Liu et al. require posed videos
during training. Our method can be trained with unstructured 2D images, and
also experimentally achieves better view generation diversity and quality.

Video synthesis. Our work is also related to video synthesis [13,76], which
can be roughly divided into three categories: 1) unconditional video genera-
tion [79,51,20,46], which produces a video sequence from an input noise; 2) video
prediction [82,83,86,81,27,40], which generates a video sequence from one or more
initial observations; and 3) video-to-video synthesis, which maps a video from
a source domain to a target domain. Most video prediction methods focus on
generating videos of dynamic objects under a static camera [82,18,83,15,89,93,40],
e.g., human motion [3] or the movement of robot arms [18]. In contrast, we focus
on generating new views of static nature scenes with a moving camera. Several
video prediction methods can also simulate moving cameras [14,80,1,40], but
unlike our approach, they require long video sequences for training, do not reason
about underlying 3D scene geometry, and do not allow for explicit control over
camera viewpoint. More recently, Koh et al. propose to navigate and synthesize
indoor scenes with controllable camera motion [36]. However, they require ground
truth RGBD panoramas as supervision and can only generate novel frames up to
6 steps. Many prior methods in this vein also require 3D inputs, such as voxel
grids [24] or dense point clouds [48], whereas we require only a single RGB image.

3 Learning view generation from single-image collections

We formulate the task of perpetual view generation as follows: given an starting
RGB image I0, generate an image sequence (Î1, Î2, ..., Ît, ...) corresponding to an
arbitrary camera trajectory (c1, c2, ..., ct, ...) starting from I0, where the camera
viewpoints ct can be specified either algorithmically or via user input.

The prior Infinite Nature method tackles this problem by decomposing it
into three phases: render, refine and repeat [43]. Given an RGBD image
(Ît−1, D̂t−1) at camera ct−1, the render phase renders a new view (Ĩt, D̃t) at ct
by transforming and warping (Ît−1, D̂t−1) using a differentiable 3D renderer W.
This yields a warped view (Ĩt, D̃t) = W

(
(It−1, Dt−1), T tt−1

)
, where T tt−1 is an

SE(3) transformation from ct−1 to ct. In the refine phase, the warped RGBD
image (Ĩt, D̃t) is fed into a refinement network Fθ to fill in missing content and
add details: (Ît, D̂t) = Fθ(Ĩt, D̃t). The refined outputs (Ît, D̂t) are then treated as
a starting view for the next iteration of the repeat step, from which the process
iterates. We refer readers to the original work for more details [43].

To supervise a view generation model, Infinite Nature trains on video clips of
natural scenes, where each video frame has camera pose dervied from structure
from motion (SfM) [96]. During training, it randomly chooses one frame in a
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Fig. 2. Self-supervised view generation via virtual cameras. Given a starting
RGBD image (I0, D0) at viewpoint c0, our training procedure samples two virtual
camera trajectories: 1) a cycle to and back from a single virtual view (dashed orange
arrows), creating a self-supervised view synthesis signal enforced by the reconstruction
loss Lrec. 2) a longer virtual camera path for which we generate corresponding images via
the render-refine-repeat process (black dashed arrows and gray cameras). An adversarial
loss Ladv between the final view (ÎT , D̂T ) and the real image (I0, D0) enables the
network to learn long-range view generation.

video clip as the starting view I0, and performs the render-refine-repeat process
along the provided SfM camera trajectory. At a camera viewpoint ct along the
trajectory, a reconstruction loss and an adversarial loss are computed between
the image predicted by the network (Ît, D̂t) and the corresponding real RGBD
frame (It, Dt). However, obtaining long nature videos with accurate camera poses
is difficult due to often distant or non-Lambertian contents of landscape scenes
(e.g., sea, mountain, and sky). In contrast, our method does not require videos
at all, whether with camera poses or not.

We show that 2D photo collections alone provide sufficient supervision signals
to learn perceptual view generation, given an off-the-shelf monocular depth pre-
diction network. Our key idea is to sample and render virtual camera trajectories
starting from the training image, using the refined depth at each frame to warp
it to the next view. We generate two kinds of camera trajectories, illustrated in
Fig. 2: First, we produce cyclic camera trajectories that start and end at the
training image. Since the start and end frame should be identical, we can use a
reconstruction loss on the initial frame as a self-supervised loss (Sec. 3.1). This
self-supervision trains our network to do geometry-aware view refinement during
view generation. Second, we synthesize longer virtual camera paths and compute
an adversarial loss Ladv on the final rendered image (Sec. 3.2). This signal trains
our network to learn stable view generation over long camera trajectories. The
rest of this section describes the two training signals in detail, as well as a sky
correction component (Sec. 3.3) that prevents drift in sky regions at test time,
yielding more realistic and stable long-range trajectories for nature scenes.
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Fig. 3. Self-supervised view synthesis. From a real RGBD image (I0, D0), we
synthesize an input (Ĩ0, D̃0) to a refinement model by cycle-rendering through a virtual
viewpoint. From left to right: input image; input rendered to a virtual “previous” view;
virtual view rendered back to the starting viewpoint; final image (Î0, D̂0) refined with
refinement network Fθ, trained to match the starting image.

3.1 Self-supervised view synthesis

In Infinite Nature’s supervised learning framework, a reconstruction loss is applied
between predicted and corresponding real RGBD images to train the network to
refine the inputs rendered from a previous viewpoint. Note that unlike the task
of free-form image inpainting [95], this next-view supervision provides a crucial
signal for the network to learn to add suitable details and to fill in missing regions
around disocclusions using background context, while preserving 3D perspective.
Accordingly, we cannot fully simulate the necessary 3D training signals from
standard 2D inpainting supervision alone. Instead, our idea is to treat the known
real image as the held-out “next” view, and simulate a rendered image input
from a virtual “previous” viewpoint. We implement this idea by rendering a
cyclic virtual camera trajectory starting and ending at the known input training
view, then comparing the final rendered image at the end of the cycle to the
known ground truth input view. In practice, we find that a cycle including just
one other virtual view (i.e., warping to a sampled viewpoint, then rendering back
to the input viewpoint) is sufficient. Fig. 3 shows an example sequence of views
produced in such a cyclic rendering step.

To implement this idea, we first predict the depth D0 from a real image I0
using a standard monocular depth network [58]. We randomly sample a nearby
viewpoint with relative camera pose T within a set of maximum values for each
camera parameter. We then synthesize the view at virtual pose T by rendering
(I0, D0) to a new image (I ′0, D

′
0) =W ((I0, D0), T ). Next, to encourage the net-

work to learn to fill in missing content at disocclusions, we create a per-pixel binary
mask M ′0 derived from the rendered depth D′0 at the virtual viewpoint [43,30].
Finally, we render this virtual view with mask (I ′0, D

′
0,M

′
0) back to the starting

viewpoint via transform T−1: (Ĩ0, D̃0, M̃0) = W
(
(I ′0, D

′
0,M

′
0), T−1

)
where the

rendered mask is element-wise multiplied with the rendered RGBD image. Intu-
itively, this strategy constructs inputs whose pixel statistics, including blur and
missing content, are similar to those produced by warping a view forward to a
next viewpoint, yielding naturalistic input to view refinement.

The cycle-rendered images (Ĩ0, D̃0) are then fed into the refinement network
Fθ, whose outputs (Î0, D̂0) = Fθ(Ĩ0, D̃0) are compared to the original RGBD
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image (I0, D0) to yield a reconstruction loss Lrec. Because this method does not
require actual multiple views or SfM camera poses, we can generate an effectively
infinite set of virtual camera motions during training. Because the target view
is always an input training view we seek to reconstruct, this approach can be
thought of as a self-supervised way of training view synthesis.

3.2 Adversarial perpetual view generation

Although the insight above enables the network to learn to refine a rendered
image, directly applying such a network iteratively during inference over multiple
steps quickly degenerates (see third row of Fig. 4). As observed by prior work [43],
we must train a synthesis model through multiple recurrently-generated camera
viewpoints in order for the view generation to be stable. Therefore, in addition
to the self-supervised training in Sec. 3.1, we also train on longer virtual camera
trajectories. In particular, during training, for a given input RGBD image (I0, D0),
we randomly sample a virtual camera trajectory (c1, c2, ..., cT ) starting from
(I0, D0) by iteratively performing render-refine-repeat T times, yielding a sequence
of generated views (Î1, Î2, ..., ÎT ). To prevent the camera from traversing out-
of-distribution viewpoints (e.g., crashing into mountains or water) we adopt
the auto-pilot algorithm from [43] to sample the camera path. The auto-pilot
algorithm determines the pose of the next view based on the proportion of sky
and foreground elements as determined by the estimated disparity map at the
current viewpoint (see supplemental material for more details). Next, we discuss
how we train our model using such sampled virtual camera trajectories.

Balanced GAN sampling. We now have a generated sequence of views along
a virtual camera trajectory from the input image, but we do not have the ground
truth sequence corresponding to these views. How can we train the model without
such ground truth? We find that it is sufficient to compute an adversarial loss
that trains a discriminator to distinguish between real images and the synthesized
“fake” images along the virtual camera path. One straightforward implementation
of this idea is to treat all T predictions {Ît, D̂t}Tt=1, along the virtual path as
fake samples, and sample T real images randomly from the dataset. However,
this strategy leads to unstable training, because there is a significant discrepancy
in pixel statistics between the generated view sequence and the set of sampled
real photos: a generated sequence along a camera trajectory has frames with
similar content with smoothly changing viewpoints, whereas randomly sampled
real images from the dataset exhibit completely different content and viewpoints.
This vast difference in the distribution of images that the discriminator observes
leads to unstable training in conditional GAN settings [24]. To address this issue,
we propose a simple but effective technique to stabilize the training. Specifically,
for a generated sequence, we only feed the discriminator the generated image
(ÎT , D̂T ) at the last camera cT as the fake sample, and use its corresponding
input image (I0, D0) at the starting view as the real sample, as shown in Fig. 2.
In this case, the real and fake sample in each batch will exhibit similar content
and viewpoint variations. Further, during each training iteration, we randomly
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sample the length of virtual camera trajectory T between 1 and a predefined
maximum length Tmax, so that the prediction at any viewpoint and step will be
sufficiently trained.

Progressive trajectory growing. We observe that without the guidance of
ground truth sequences, the discriminator quickly gains an overwhelming advan-
tage over the generator at the beginning of training. Similarly to issues explored in
prior work on 2D GANs [34,33,68], we find that it takes longer for the network to
predict plausible views at more distant viewpoints. As a result, the discriminator
will easily distinguish real images from fake ones generated at distant views, and
hence offer meaningless gradients to the generator. To address this issue, we
propose to progressively grow the length of the virtual camera trajectory. We
begin with self-supervised view synthesis as described in Sec. 3.1 and pretrain the
model for 200K steps. We then increase the maximum length of the virtual camera
trajectory T by 1 every 25K iterations until reaching a predefined maximum
length Tmax. This progressive growing strategy ensures that images rendered at
a previous viewpoint ct−1 have been sufficiently initialized before being fed to
the refinement network to generate the view at the next viewpoint ct.

3.3 Global sky correction

The sky is an indispensable visual element of nature scenes with unique characteristics—
it should change much more slowly than the foreground content, since the sky is
at infinity. However, we found that the sky synthesized by Infinite Nature can
contain unrealistic artifacts after multiple steps. We also found that monocular
depth predictions can be inaccurate in sky regions, leading to sky contents to
quickly approach the camera in an unrealistic manner.

Therefore, we devise a method to correct the sky regions of refined RGBD
images at each test time iteration by leveraging the sky content from the starting
view. In particular, we use an off-the-shelf semantic segmentation method [8] and
the predicted disparity map to determine soft sky masks for the starting and for
each generated view, which we found to be effective in identifying sky pixels. We
then correct the sky texture and disparity at every step by alpha blending the
homography-warped sky content from the starting view (warped according to
the camera rotation’s effect on the plane at infinity) with the foreground content
in the current generated view. To avoid redundantly outpainting the same sky
regions, we expand the input image and disparity through GAN inversion [12,10]
to seamlessly create a canvas of higher resolution and field of view. We refer
readers to the supplemental material for more details. As shown in the penultimate
column of Fig. 4, when applying global sky correction at test time, sky regions
exhibit significantly fewer artifacts, resulting in more realistic generated views.

3.4 Network and supervision losses

We adopt a variant of the CoMod-GAN conditional StyleGAN model [95] as our
backbone refinement module Fθ. Specifically, Fθ consists of a global encoder and
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I0 w/o BGS w/o repeat w/o PTG w/o SVS w/o sky Full

Fig. 4. Generated views after 50 steps with different settings. Each row shows
results for a different input image. From left to right: input view; results without
balanced GAN sampling; without the adversarial perpetual view generation strategy;
without progressive trajectory growing; without self-supervised view synthesis; without
global sky correction; full approach.

a StyleGAN generator, where the encoder produces a global latent code z0 from
the input view. At each refine step, we co-modulate intermediate feature layers
of the StyleGAN generator via concatenation of z0 and a latent code z mapped
from Gaussian noise. The training loss for the generator and discriminator is:

LF = LFadv + λ1Lrec, LD = LDadv + λ2LR1 (1)

where LFadv and LDadv are non-saturated GAN losses [22], applied on the last
view from the camera trajectory and the corresponding training image. Lrec is a
reconstruction loss between real images (and depth maps) and their corresponding
cycle-synthesized views described in Sec 3.1: Lrec =

∑
l ||φl(Î0)−φl(I0)||1+||D̂0−

D0||1, where φl is a feature map at scale l from different layers of a pretrained
VGG network [65]. LR1 is a gradient regularization term that is applied to the
discriminator during training [35].

4 Experiments

4.1 Datasets and baselines

We evaluate our approach on two public datasets of nature scenes: the Landscape
High Quality (LHQ) dataset [74], a collection of 90K landscapes photos collected
from the Internet, and the Aerial Coastline Imagery Dataset (ACID) [43], a video
dataset of nature scenes with SfM camera poses.

On the ACID dataset, where posed video data is available, we compare with
several state-of-the-art supervised learning methods. Our main baseline is Infinite
Nature, the recent state-of-the-art view generation method designed for natural
scenes [43]. We also compare with other recent view and video synthesis methods,
including geometry-free view synthesis (GFVS) [62] and PixelSynth [61], both of
which are based on VQ-VAE [59,17] for long-range view synthesis. Additionally,
we compare with two recent video synthesis methods, SLAMP [1] and DIGAN [92].
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Table 1. Quantitative comparisons on the ACID test set. “MV?” indicates
whether a method requires (posed) multi-view data for training. We report view
synthesis results with two different types of ground truth (shown as X/Y): sequences
rendered with 3D Photos [71] (left), and real sequences (right). KID and Style are
scaled by 10 and 105 respectively. See Sec. 4.4 for descriptions of baselines.

View Synthesis View Generation
Method MV? PSNR↑ SSIM↑ LPIPS↓ FID↓ FIDsw ↓ KID↓ Style↓

GFVS [62] Yes 11.3/11.9 0.68/0.69 0.33/0.34 109 117 0.87 14.6
PixelSynth [61] Yes 20.0/19.7 0.73/0.70 0.19/0.20 111 119 1.12 10.54
SLAMP [1] Yes - - - 114 138 1.91 15.2
DIGAN [92] Yes - - - 53.4 57.6 0.43 5.85
Liu et al. [43] Yes 23.0/21.1 0.83/0.74 0.14/0.18 32.4 37.2 0.22 9.37
Ours No 23.5/21.1 0.81/0.71 0.10/0.15 19.3 25.1 0.11 5.63

Following their original protocols, we train both methods with video clips of 16
frames from the ACID dataset until convergence.

For the LHQ dataset, since there is no multi-view training data and we are
unaware of prior methods that can train on single images, we show results from
our approach with different configurations, described in more detail in Sec. 4.5.

4.2 Metrics

We evaluate synthesis quality on two tasks that we refer to as short-range view
synthesis and long-range view generation. By (short-range) view synthesis, we
mean the ability to render high fidelity views near a source view, and we report
standard error metrics between predicted and ground truth views, including
PSNR, SSIM and LPIPS [94]. Since there is no multi-view data for LHQ, we
create pseudo ground truth images over a trajectory of length 5 from a global LDI
mesh [66] computed using 3D Photos [71]; please see the supplemental material
for more details. On the ACID dataset, we report errors on real video sequences
where we use SfM-aligned depth maps to render images from each method. We
also report results from ground truth sequences created with 3D Photos, since
we observe that in real video sequences, pixel misalignments can also be caused
by factors like scene motion and errors in monocular depth or camera poses.

For the task of (long-range) view generation, following prior work [43] we adopt
the Fréchet Inception Distance (FID), sliding window FID (FIDsw) (with window
size ω = 20), and Kernel Inception Distance (KID) [2] to measure the synthesis
quality of different methods. We also introduce a style consistency metric that
computes an average style loss between the starting image and each generated view
along a camera trajectory. This metric reflects how much the style of a generated
sequence deviates from the original image; we evaluate it over a trajectory of
length 50. For FID and KID calculations, we compute real statistics from 50K
images randomly sampled from each dataset, and calculate fake statistics from
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Table 2. Ablation study on the LHQ test set. KID and Style are scaled by 10
and 105 respectively. See Sec. 4.5 for a description of each baseline.

Configurations View Synthesis View Generation
Method Lrec Ladv PTG BGS Sky PSNR↑ SSIM↑ LPIPS↓ FID ↓ FIDsw ↓ KID ↓ Style↓

Naive X X 28.0 0.87 0.07 38.1 52.1 0.25 6.36
w/o BGS X X X X 28.0 0.89 0.08 34.9 41.1 0.20 6.45
w/o PTG X X X X 28.1 0.90 0.07 35.3 42.6 0.21 6.04
w/o repeat X X 26.8 0.86 0.15 61.3 85.5 0.40 8.15
w/o SVS X X X X 26.6 0.85 0.08 23.4 30.2 0.12 6.37
w/o sky X X X X 28.3 0.90 0.07 24.8 31.3 0.11 6.43
Ours (full) X X X X X 28.4 0.91 0.06 19.4 25.8 0.09 5.91

70K and 100K generated images on ACID and LHQ respectively, where 700 and
1000 test images are used as starting images evaluated over 100 steps. Note that
since SLAMP and DIGAN do not support camera viewpoint control, we only
evaluate them on the view generation task.

4.3 Implementation details

We set the maximum camera trajectory length Tmax = 10. The weight of R1

regularization λ2 is set to 0.15 and 0.004 for the LHQ and ACID datasets,
respectively. During training, we found that treating a predicted view along
a long virtual trajectory as ground truth and adding a small self-supervised
view synthesis loss over these predictions yields more stable view generation
results. Therefore we set the reconstruction weight λ1 = 1 for the input training
image at the starting viewpoint, and λ1 = 0.05 for frames predicted on a camera
trajectory. Following [35], we apply lazy regularization to the discriminator
gradient regularization every 16 training steps and adopt gradient clipping and
exponential moving averaging to update the parameters of the refinement network.
For all experiments, we train on centrally cropped images of size 128× 128 for
1.8M steps with batch size 32 using 8 NVIDIA A100 GPUs, which takes ∼6 days
to converge. During rendering, we use softmax splatting [55] to 3D render images
via their depth maps. Our method can also generate higher resolution 512× 512
views. Rather than directly training the model at high resolution, which would
take an estimate of 3 weeks, we train an extra super-resolution module that takes
one day to converge using the same self-supervised learning idea. We refer readers
to the supplementary material for more details and high-resolution results.

4.4 Quantitative comparisons

Table 1 shows quantitative comparisons between our approach and other baselines
on the ACID test set. Although the model only observes single images, our
approach outperforms the other baselines in view generation on all error metrics,
while achieving competitive performance on the view synthesis task. Specifically,
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Fig. 5. Qualitative comparisons on the ACID test set. From left to right, we
show generated views over trajectories of length 100 for three methods: GFVS [62],
Liu et al. [43] and Ours.

our approach demonstrates the best FID and KID scores, indicating better
realism and diversity for our generated views. Our method also achieves the best
style consistency score. For the view synthesis task, we achieve the best LPIPS
score over the baselines, suggesting higher perceptual quality for our rendered
images. We also obtain PSNR and SSIM errors on the ACID test set that are
competitive with the supervised learning method from Infinite Nature, which
uses a supervised reconstruction loss computed on real sequences.

4.5 Ablation study

We perform an ablation study on the LHQ test set to analyze the effectiveness of
each component in our proposed system. We test the following configurations: (1)
a naive baseline where we apply an adversarial loss between all the predictions
along a camera trajectory and a set of randomly sampled real photos, and
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Fig. 6. Qualitative comparisons on the LHQ test set. On two starting views,
from left to right, we show generated views over trajectories of length 100 from a naive
baseline and our full approach. See Sec. 4.5 for more details.

apply geometry re-grounding as introduced in Infinite Nature [43] at test time
(Naive); and configurations without: (2) using balanced GAN sampling (w/o
BGS), (3) progressive trajectory growing (w/o PTG), (4) GAN training via long
camera trajectories (w/o repeat), (5) applying self-supervised view synthesis
(w/o SVS), and (6) employing global sky correction (w/o sky). Quantitative and
qualitative comparisons are shown in Table 2 and Fig. 4 respectively. Our full
system achieves the best view synthesis and view generation performance of these
configurations. In particular, adding self-supervised view synthesis significantly
improves view synthesis performance. Training via virtual camera trajectories,
adopting introduced GAN sampling/training strategies, and applying global sky
correction all improve view generation performance by a large margin.

4.6 Qualitative comparisons

Fig. 5 shows visual comparisons between our approach, Infinite Nature [43], and
GFVS [62] on the ACID test set. GFVS quickly degenerates due to the large
distance between the input and generated viewpoints. Infinite Nature can generate
plausible views over multiple steps, but the content and style of generated views
quickly diverge into an unrelated unimodal scene. Our approach, in contrast, not
only generates more consistent views with respect to starting images, but also
demonstrates significantly improved synthesis quality and realism.

Fig. 6 shows visual comparisons between the naive baseline described in
Sec. 4.5 and our full approach. The generated views from the baseline quickly
deviate from realism due to ineffective training/inference strategies. In contrast,
our full approach can generate much more realistic, consistent, and diverse results
over long camera trajectories. For example, the views generated by our approach
cover diverse and realistic natural elements such as lakes, trees, and mountains.
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t=0 t=50 t=100 t=200 t=250 t=300 t=400 t=500

Fig. 7. Perpetual view generation. Given a single RGB image, we show the results
of our method generating sequences of 500 realistic new views of natural scenes without
suffering significant drift. Please see video for animated results.

4.7 Single-image perpetual view generation

Finally, we visualize our model’s ability to generate long view trajectories from
a single RGB image in Fig. 7. Although our approach only sees single images
during training, it learns to generate long sequences of 500 new views depicting
realistic natural landscapes, without suffering significant drift or degeneration.
We refer readers to the supplemental video for the full effect and to see results
generated from different types of camera trajectories.

5 Discussion

Limitations and future directions. Our method inherits some limitations
from prior video and view generation methods. For example, although our method
produces globally consistent background sky, it does not ensure global consistency
of foreground content. Addressing this issue potentially requires generating an
entire 3D world model, which is an exciting future direction to explore. In addition,
as with Infinite Nature, our method can generate unrealistic views if the desired
camera trajectory is not seen during training (e.g., in-place rotation). Alternative
generative methods such as VQ-VAE [59] and diffusion models [26] may provide
promising paths towards addressing this limitation.

Conclusion. We presented a method for learning perpetual view generation of
natural scenes solely from single-view photos, without requiring camera poses and
multi-view data. At test time, given a single RGB image, our approach allows
for generating hundreds of new views covering realistic natural scenes along a
long camera trajectory. We conduct extensive experiments and demonstrate the
improved performance and synthesis quality of our approach over prior supervised
approaches. We hope this work demonstrates a new step towards unbounded
generative view synthesis from Internet photo collections.
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