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This supplementary material contains more experimental analysis of the pro-
posed bilaterally weighted functional (Section 1) and our unified normal integra-
tion equations (Section 2), and discusses the limitations of the proposed method
(Section 3).

1 Experimental analysis of bilaterally weighted functional

This section examines the behavior of our method with different hyperparameter
setups, the convergence of IRLS, and our weight functions. We test our method
using two classical toy surfaces “Vase” and “Tent” [1,5].

Hyperparameter setup: There is one hyperparameter k in our objective function
Eq. (19), controlling the sharpness of the sigmoid function. Figure 1 shows the
integration results with different hyperparameters k. It can be seen that when
k is small, the integrated surfaces tend to be smooth; when k is excessively
large, artifacts are visible around discontinuities. This is because k controls the
sensitivity to depth differences between adjacent pixels.

A smaller k leads to a smoother sigmoid function. Therefore, a pixel is easier
to be treated continuous because even if the depth differences between adjacent
pixels are significant, the sigmoid function still takes values close to 0.5. The
extreme case is when k = 0, the sigmoid function takes the constant value 0.5,
and our method degrades to a smooth surface recovery method.

In contrast, a larger k pushes the sigmoid function towards the step function.
Therefore, a pixel is easier to be treated one-sided discontinuous because a tiny
depth difference between adjacent pixels can be mapped to a value close to 0 or
1, which can cause numerical instability.

For surfaces presented in the main paper, we empirically find k = 2 suitable.
Therefore, we recommend setting k = 2 initially, then slightly increasing or
decreasing k depending on whether the integrated surface appears overly smooth
or flawed.
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Fig. 1. The effects of the hyperparameter k, which controls the sharpness of the sigmoid
function. Smaller k pushes our method toward a smooth surface recovery method, and
an excessively large k introduces artifacts around discontinuities.
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Fig. 2. Discontinuities are gradually preserved over the iteration as the energy of
our objective function monotonically decreases. For figures in the last column, x-axis
indicates the iteration step, and y-axis indicates the energy.

Convergence: As shown in Fig. 2, the energy of our objective function mono-
tonically decreases over iterations in these two tested surfaces. The same was
true for all the surfaces presented in the paper. The discontinuities are gradually
preserved as the energy steadily decreases. The iteration of Eq. (23) achieves
the fixed point within 100 steps given the stopping tolerance 1 × 10−5 for the
two surfaces, which means the major computation time spends on solving the
inhomogeneous system of Eq. (24) dozens of times.

Figure 3 shows the energy curves of the DiLiGenT objects presented in the
main paper’s Fig. 7. Iterations on all objects converge to the fixed points within
dozens of steps. See the supplementary video for the iteration process of all
tested surfaces.

Discontinuity maps: Our weight functions wu and wv in Eq. (15) can be viewed
as horizontal and vertical discontinuity maps, respectively. Figure 4 shows the
discontinuity maps computed from the integrated surface after convergence. Our
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Fig. 3. Our method converges on all perspective DiLiGenT normal maps [6]. In all
figures, x-axis indicates the iteration step, and y-axis indicates the energy. The inte-
grated surfaces are visualized in the main paper’s Fig. 7.
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Fig. 4. Our weight functions wu and wv faithfully reflect the discontinuous side of each
pixel in the horizontal and vertical directions, respectively. For example, in the wu map,
1 indicates the left side is discontinuous, 0 indicates the right side is discontinuous, and
0.5 indicates both sides are continuous, as shown in the close-up images.
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Fig. 5. Horizontal (2nd row) and vertical (3rd row) discontinuity maps by our method
on DiLiGenT [6] normal maps (1st row). The integrated surfaces are visualized in the
main paper’s Fig. 7.

weight functions accurately reflect each pixel’s discontinuous side in the hori-
zontal and vertical directions. Figure 5 shows the discontinuity maps on DiLi-
GenT [6] objects, whose integrated surfaces are presented in the main paper’s
Fig. 7. In the perspective case, our weight functions still faithfully identify the
side of discontinuity.

2 Comparison of unified normal integration equations

This section shows that the proposed bilaterally weighed functional is numer-
ically more robust to outlier normal vectors and more effective in preserving
discontinuities using our unified normal integration equations than the tradi-
tional unified ones.
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In the main paper, we present our unified partial differential equations
(PDEs) in the orthographic and perspective cases as

nz∂uz + nx = 0, and nz∂vz + ny = 0 (Orthographic),
ñz∂uz̃ + nx = 0, and ñz∂v z̃ + ny = 0 (Perspective),

(1)

which are derived from the orthogonal constraint

n⊤∂up = 0 and n⊤∂vp = 0. (2)

Unlike ours, the traditional unified PDEs [2,3,4] formulate the problem as
depth from gradient:

∂uz +
nx

nz
= 0, and ∂vz +

ny

nz
= 0 (Orthographic),

∂uz̃ +
nx

ñz
= 0, and ∂v z̃ +

ny

ñz
= 0 (Perspective),

(3)

which are derived from the parallel constraint

n ∥ ∂up× ∂vp. (4)

Our unified PDEs (Eq. (1)) differ from the traditional ones (Eq. (3)) by a per-
point nz or ñz scale.

In the main paper, based on our unified PDEs (Eq. (1)), we present the
quadratic functional under the smooth surface assumption as

min
z

∫∫
Ω

0.5
(
nz∂

+
u z + nx

)2
+ 0.5

(
nz∂

−
u z + nx

)2
+0.5

(
nz∂

+
v z + ny

)2
+ 0.5

(
nz∂

−
v z + ny

)2
du dv,

(5)

and propose the bilaterally weighted functional under the semi-smooth surface
assumption as

min
z

∫∫
Ω

wu

(
nz∂

+
u z + nx

)2
+ (1− wu)

(
nz∂

−
u z + nx

)2
+wv

(
nz∂

+
v z + ny

)2
+ (1− wv)

(
nz∂

−
v z + ny

)2
du dv.

(6)

For the traditional unified PDEs (Eq. (3)), we can consider the quadratic
functional under the smooth surface assumption as

min
z

∫∫
Ω

0.5

(
∂+
u z +

nx

nz

)2

+ 0.5

(
∂−
u z +
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nz
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du dv,

(7)

or the bilaterally weighted functional under the semi-smooth surface assumption

min
z

∫∫
Ω

wu

(
∂+
u z +

nx

nz

)2
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(
∂−
u z +

nx

nz

)2

+wv

(
∂+
v z +

ny

nz

)2

+ (1− wv)

(
∂−
v z +

ny

nz

)2

du dv.

(8)
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As such, our unified PDEs leads to a different functional than the traditional
one.

To demonstrate the difference, Figure 6 compares the integration results by
solving Eqs. (5) to (8) from perspective normal maps containing outliers. We
gradually increase the percentage of outlier normal vectors in the input normal
map. To generate outliers, we replace original normal vectors at randomly chosen
pixels by the vectors randomly sampled on a semi-sphere.

Both Eqs. (5) and (7) are based on the smooth surface assumption, so both
methods cannot recover depth gaps as expected. However, as shown in the first
block in Fig. 6, the functional Eq. (7) based on the traditional unified PDEs
(Eq. (3)) is likely to introduce spike artifacts to the integrated surface when the
normal map contains outliers. On the method, as shown in the third block in
Fig. 6, the functional Eq. (5) based on our unified PDEs (Eq. (1)) is numerically
more robust to outlier normal vectors; we can barely see spikes in the integrated
surfaces.

Our proposed bilaterally weighed functional Eq. (6) inherits this numerical
robustness. As shown in the fourth block in Fig. 6, even in the existence of outlier
normal vectors, our method can faithfully recover surfaces with discontinuities.
On the other hand, if we apply the traditional PDEs (Eq. (3)) to our proposed
bilaterally weighted functional Eq. (8), the spike artifacts are further amplified,
as shown in the second block in Fig. 6.

Further, comparing the first column of Fig. 6, it can be seen that the pro-
posed bilaterally weighted functional Eq. (6) can be more effective in preserving
discontinuities using our PDEs (Eq. (1)) than the traditional ones (Eq. (3)).

To conclude, our unified PDEs (Eq. (1)) improve the numerical robustness
to outlier normal vectors. Inheriting this numerical robustness, the proposed
bilaterally weighted functional Eq. (6) can effectively preserve discontinuities
from normal maps with outliers.
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Input normal maps with outliers. The percentages above are outlier percentages.
0% 2% 4% 6% 8% 10% 12%

Smooth assumption + traditional PDEs (Eq. (7))
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0
3.15 4.44 3.41 3.63 7.60 4.58 7.47

Semi-smooth assumption + traditional PDEs (Eq. (8))
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0
1.33 4.08 9.20 19.64 174.01 16.03 39.67

Smooth assumption + our PDEs (Eq. (5))
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3.08 3.29 3.49 3.67 3.95 4.15 4.40

Semi-smooth assumption + our PDEs (Eq. (6))

high
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0
0.45 0.55 0.71 0.89 1.09 1.31 1.48

Fig. 6. Robustness comparison on perspective normal maps with increasing outliers. In
each block, we show the integrated surfaces, corresponding absolute depth error maps,
and MADEs. Compared to traditional unified PDEs (1st block), our unified PDEs
are robust to outliers (3rd block), and our bilaterally weighted functional recovers
discontinuities (4th block). As a whole, our method faithfully recovers surfaces with
discontinuities from normal maps with outliers.
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Fig. 7. Our method’s limitations. (Left) We cannot correctly identify the discontinu-
ity locations when normals happen to be continuous across the depth discontinuities.
(Right) Our method breaks down when a pixel’s both sides are discontinuous, as our
semi-smooth assumption requires at least one side of each pixel, horizontally and ver-
tically, to be continuous.

3 Limitations

We have shown our method’s effectiveness and superiority; this section will dis-
cuss three limitations of our method.

First, when discontinuities separate the integration domain into multiple dis-
joint regions, multiple offset or scale ambiguities arise between disjoint regions
of the surface. In principle, we cannot estimate the multiple offsets or scales
given only a normal map. This phenomenon exists in the objects “Harvest” and
“Goblet” in the main paper’s Fig. 7. Our method cannot correctly estimate the
relative depths between disjoint patches, which can be confirmed from the piece-
wise uniform depth error map of “Goblet.” Nevertheless, our method can be
accurate up to scales between disjoint regions; the surface is barely distorted
near discontinuities.

Second, our method cannot accurately identify discontinuity locations when
the normals happen to be continuous across depth discontinuities. Figure 7 left
shows a toy example where the normals appear planar on both sides of depth
discontinuities, and the surface does not have disjoint regions. Our method fails
at identifying correct discontinuity locations in the planar region of the surface.
In such a case, additional information other than the normal map is required to
identify the discontinuity locations.

Third, our method breaks down when a pixel’s both sides are discontinuous.
Figure 7 right shows a surface consisting of multiple stripes, with stripes being
two-pixel wide at the left half and one-pixel wide at the right half. Our method
can recover the two-pixel wide stripes but cannot recover the one-pixel wide
stripes because both sides of the one-pixel wide stripes are discontinuous.
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