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In this supplemental document, we present:

1. implementation details of GCN-Contact (Section 1);
2. ablations on pseudo-labels (Section 2);
3. comparison with state-of-the-arts (Section 3);
4. additional qualitative examples (Section 4);
5. complete performances of different GCN-Contact design choices (Section 5);
6. complete table for computational analysis (Section 6).

Note that all the notation and abbreviations here are consistent with the
main manuscript.

1 Implementation details of GCN-Contact

The network architecture is illustrated in Table 1.

2 Ablations on pseudo-labels
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Fig. 1. Object performance with different geometric thresholds on HO-3D, distance
threshold tdist (left) and penetration threshold tpen (right).

⋆ Equal contribution
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Table 1. Architecture of GCN-Contact. B refers to batch size and log softmax refers
to softmax followed by a logarithm. Note that layers 2-5 are performed in parallel.

Layer Operation Dimensionality

Input point clouds P = {Ppos,PF } B × 28

1 K-NN search on Ppos 2× 10B
1 K-NN search on PF 2× 10B

2 Graph conv. on Ppos B × 64
3 Graph conv. on Ppos B × 64
4 Graph conv. on PF B × 64
5 Graph conv. on PF B × 64

6 Concat(2, 3, 4, 5) B × 256
7 MLP B × 1024
8 MLP B × 256
9 Dropout(p = 0.5) B × 256
10 MLP B × 128
11 Dropout(p = 0.5) B × 128
12 MLP B × 10
13 log softmax(12) B × 10

2.1 Effects of varying thresholds for pseudo-labels generation

We study the effect of different thresholds of the pseudo-labels filtering mech-
anism on HO-3D in Figure 1 and Figure 2. As shown in Figure 1, the perfor-
mance is higher than the method without Chamfer distance by large margins
when 60 < tdist ≤ 80. Note that the performance peaks at tdist = 70. When
tdist > 70, further increasing tdist led to a drastic drop in pseudo-label as hand
and object are so far away from each other such that the resulting pseudo-labels
are in low-quality. On the contrary, when tdist ≤ 60, there are less qualifying
pseudo-labels leading to performance drop from insufficient training labels. We
obtain similar observations for tpen and tSSIM .

2.2 Amounts of pseudo-labels

We analyse the effect of using different fractions of pseudo-labels in semi-supervised
learning on HO-3D in Figure 3. We uniformly sample 20%, 40%, 60%, and 80%
of the collected pseudo-labels for semi-supervised learning. As shown, the per-
formance has been significantly improved after adding 20% of pseudo-labels. We
observe that the more pseudo-labels used in training, the better the performance
the model can achieve.

3 Comparison with state-of-the-arts

We compare against the state-of-the-art approaches [3,17,18] on HO-3D in Ta-
ble 2. [3] is an optimisation-based method which leverages 2D image cues and
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Fig. 2. Object performance with vary-
ing visual consistency constraint thresh-
olds tSSIM on HO-3D.
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Fig. 3. Object performance with vary-
ing percentage of pseudo-labels on the
HO-3D.

Table 2. Error rates on HO-3D. cover refers to intersection volume (cm3) and inter
refers to contact coverage (%).

Hand error Object Contact
Methods joint ↓ mesh ↓ add-0.1d ↑ cover ↑ inter ↓

Cao et al. [3] 9.7 9.7 79.5 18.5 4.9±2.1
Hasson et al. [17] 11.1 11.0 74.5 4.4 15.3±21.1
Hasson et al. [18] 14.1 14.7 64.2 11.5 13.5±17.6
Ours 8.7 8.9 81.4 19.2 3.5±1.8

3D contact priors for reconstructing hand-object interactions. [17] uses a feed-
forward neural network to predict 3D hand pose and object pose where its single-
frame model with full 3D supervision. [18] follows a fitting-based approach which
builds on estimates from neural network models for detection, object segmenta-
tion and 3D hand pose estimation trained with full supervision.

4 Additional qualitative examples

In this section, we show additional qualitative results. In Figure 4, we visualise
the predictions of ContactOpt [13] and our method as well as the ground-truth.
We can see that our method is able to better reconstruction hand and object with
more accurate contact map estimations. Our method performs significantly bet-
ter than previous approaches. In Figure 5, we show more examples of our method
and [30] on HO-3D. Our method significantly improve the hand-object pose. The
last row of Figure 5 shows a failure case where the region of hand-object contact
was too small for the network to produce a good contact prediction.

We provide qualitative examples on out-of-domain objects in Figure 6.
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Fig. 4. Qualitative comparison with ContactOpt [13] on ContactPose. We observe that
accurate contact map estimations allows our method to recover plausible grasps and
significantly improves upon ContactOpt.
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(a) Liu et al. (b) Ours (c) Groundtruth

Fig. 5. Qualitative comparison with Liu et al. [30] on HO-3D.

Fig. 6. Qualitative results on EPIC-Kitchens [1] and 100 Days of Hands [2].

5 Performances of different GCN-Contact design choices

Complete results are reported in Table 3.

6 Computational analysis

Complete results are reported in Table 4.
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Table 3. Performances of different GCN-Contact design choices on ContactPose and
HO-3D. semi refers to semi-supervised learning. We experiment on (a) number of K
neighbours without dilation, (b) size of dilation factor d with K = 10 and (c) combining
K-NN computation (denoted with *) with d = 4.

ContactPose HO-3D w/o semi
Hand error Hand error Object error

models joint ↓ mesh ↓ joint ↓ mesh ↓ add-0.1d (↑)

K = 5 8.252 8.134 12.69 12.86 66.33
K = 10 6.691 6.562 11.81 11.91 68.71

(a) K = 15 6.715 6.617 11.85 11.92 68.70
K = 20 6.708 6.590 11.81 11.98 68.69
K = 25 6.691 6.615 11.84 11.92 68.71

d = 2 5.959 5.865 10.91 10.86 70.25
d = 4 5.878 5.765 9.92 9.79 72.81

(b) d = 6 5.911 5.805 9.95 9.79 72.81
d = 8 5.899 5.812 9.94 9.85 72.80
d = 10 5.889 5.776 9.93 9.79 72.78

K∗ = 5 8.451 8.369 12.91 12.86 68.86
(c) K∗ = 10 8.359 8.251 11.55 11.97 69.10

K∗ = 25 8.369 8.286 11.57 11.97 69.06

Table 4. Comparison on computational requirements of different networks.

Baseline DGCNN [3] Ours

Parameters 1,424,138 530,442 587,658
GPU memory (GB) 13.3 21.1 10.4


