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Fig. 1. After self-supervised fine-tuning during test time, the quality network selects
better scene coordinates.

1 Evaluations with SfM ground truth on 7Scenes dataset

As illustrated in [1], the reference algorithm used to create pseudo ground truth
has an influence on the performance of a certain family of re-localisation meth-
ods. Thus we also train (w/o 3D model) and evaluate our method using the
pseudo ground truth (pGT) generated by SfM [1] on 7Scenes dataset. In Ta-
ble 1, we report the median translational and rotational errors and recalls with
pose error below 5cm, 5deg, and the settings are the same as Table 1, 4 in the
main paper. Compared with the results on the original 7Scenes dataset, the per-
formance of our methods trained with pGT-SfM improves on all of the scenes,
which is consistent with other re-localization methods reported in [1]. Besides,
it is shown that the recalls of our method Ours (dlt+e2e+ref) under-perform
DSAC* (w/ model), and using DSAC*’s exact post-processing can compensate
for this gap.

? equal contribution
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Table 1. Results on the 7Scenes dataset [6], with translational and rotational errors
measured in m and ◦, and recalls (%) with pose error below 5cm, 5◦. Here notations are
the same as the Table 1, 4 in the main paper. Note DSAC* [1] w/ model is trained with
3D model, and all of these methods are trained using pseudo ground truth generated
by SfM [1].

Median Errors Chess Fire Heads Office Pumpkin Kitchen Stairs

Ours (dlt) 0.012/0.39 0.030/0.59 0.024/1.53 0.036/0.65 0.038/0.47 0.039/0.73 0.155/2.85
Ours (dlt+e2e) 0.011/0.37 0.029/0.58 0.022/1.46 0.029/0.59 0.035/0.43 0.033/0.60 0.093/2.03
Ours (dlt+e2e+ref) 0.007/0.20 0.010/0.34 0.009/0.53 0.013/0.28 0.017/0.32 0.010/0.21 0.032/0.81

Recalls Chess Fire Heads Office Pumpkin Kitchen Stairs Avg

DSAC* [1] w/ model 99.9 98.9 99.8 98.1 99.0 97.0 92.0 97.8

Ours (dlt+e2e) 90.1 66.0 60.7 75.6 63.2 64.0 28.8 64.1
Ours (dlt+e2e+ref) 100 86.3 68.9 93.9 80.5 91.1 65.9 83.8
Ours (dlt+e2e+dsac∗) 100 99.7 97.9 99.5 94.4 97.7 84.2 96.0

2 More ablation studies

Graph Attention Layer. As described in Section 3.2 in the main paper, we use
Graph Attention Layers in the quality weight network. The quality weight net-
work is based on OANet [8], which is a PointNet-like architecture that takes
2D-3D correspondence pairs as input. We propose to introduce the self-attention
mechanism into OANet, replacing the original normalized MLP modules with
Graph Attention Layers. This layer builds a fully connected graph upon clusters
and conducts global message passing between all nodes. This network architec-
ture enhancement improves the re-localization accurary. As shown in Table 2,
using the Graph Attention Layer, the median transition error for Ours (dlt) is
decreased from 23cm to 18cm on Stairs, and 19cm to 15cm on Shop Facade. We
also report the results of Ours (dlt+e2e) in Table 2, which are consistent with
Ours (dlt) in most scenes.

Classification loss Lc in Section 3.3 is a binary cross-entropy function which
plays the role of a hard outlier pruner. It allows a more stable convergence during
training, and enhances the pose estimation accuracy. Lc is effective for both
indoor and outdoor scenes, and especially useful for chanllenge environments, as
shown in Table 2. For instance, it results in a relative error reduction of 77%
on Shop Facade, whose scene coordinates are very noisy due to dynamic objects
and non-Lambertian reflection.

3 Self-supervised adaptation at test time

As illustrated in the main paper, self-supervised adaptation deals with the do-
main shift problem during test time and significantly enhances the re-localization
performance of the DLT setting. As a supplement to Fig. 4 in the main paper, we
compare learned weights on Cambridge before and after self-supervised adapta-
tion at test-time, in Fig. 1. It shows that the quality network is capable of
selecting better scene coordinates after test-time adaptation.
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Table 2. More ablation studies on some scenes of 7Scenes dataset [6] and Cambridge
dataset [4]. We validate the effects of Graph Attention Layer and classification loss Lc,
and report median translational and rotational errors measured in m and ◦. dlt and
e2e are evaluated without and with the third end-to-end fine-tuning stage mentioned
in Section 3.4 of the main paper. The best results are highlighted.

Ours (dlt)

Attention Layer Lc Fire Office Stairs Shop Facade Church

X 0.055/1.06 0.076/1.06 0.251/4.16 0.65/2.5 0.62/1.9
X 0.060/1.09 0.068/1.03 0.230/4.00 0.19/1.2 0.50/1.5

X X 0.051/1.04 0.063/0.93 0.179/3.61 0.15/1.1 0.50/1.5

Ours (dlt + e2e)

X 0.057/1.10 0.061/0.84 0.163/3.06 0.12/0.7 0.35/1.3
X X 0.048/1.09 0.055/0.86 0.123/2.80 0.11/0.7 0.39/1.3

Table 3. Median errors of the pose estimation on 7Scenes dataset [6] w.r.t. the self-
supervised adaptation module. Translational and rotational errors are measured in
cm and ◦. dlt is the weighted DLT method, e2e, ref and self denote end-to-end
training step, LM-Refine and self-supervised adaptation, respectively. 150k means 150k
iterations of fine-tuning. The best results are highlighted.

Methods Chess Fire Heads Office Pumpkin Kitchen Stairs

Ours (dlt+e2e+self [150k]) 2.5/0.71 3.3,0.98 2.6/1.84 4.1/0.81 6.1/1.21 6.2/1.26 6.8/1.24
Ours (dlt+e2e+self [600k]) 2.1/0.64 2.3/0.80 1.3/0.79 3.7/0.76 4.8/1.06 5.1/1.08 5.5/1.48
Ours (dlt+e2e+self+ref [600k]) 1.9/0.62 2.4/0.86 1.3/0.69 3.4/0.76 4.9/1.04 5.2/1.12 4.7/1.21

In the main paper, we report the results of fine-tuning for 600k iterations
on 7Scenes and Cambridge datasets. It is important to investigate how well the
network adapt with fewer iterations, so as to be practical in real-world applica-
tions. As shown in Fig. 2, the median translation error of the estimated poses
drops rapidly within 20k iterations (wall-clock time: 23 minutes). Thus, we show
additional pose estimation results within fewer iterations (150k, wall-clock time:
2.9 hours), in Table 3 and 4. It demonstrates that the proposed self-supervised
adaptation module can achieve reasonably good results using few iterations, and
fine-tuning with more iterations proceeds to improve the pose estimation.

Besides, we describe the mechanism of self-supervised adaptation in detail,
using Fig. 3. Specifically, we select two adjacent frames as source and target
images, and warp Is to target It using the predicted scene coordinates Cs in

Table 4. Median errors of the pose estimation on Cambridge dataset [4] w.r.t. the
self-supervised adaptation module. Translational and rotational errors are measured in
m and ◦. The notations are the same as Table 3. The best results are highlighted.

Methods Greatcourt King’s College Shop Facade Old Hospital Church

Ours (dlt+e2e+self [150k]) 0.95/0.5 0.11/0.4 0.05/0.4 0.20/0.7 0.22/0.9
Ours (dlt+e2e+self [600k]) 0.94/0.5 0.11/0.3 0.05/0.4 0.18/0.7 0.17/0.8
Ours (dlt+e2e+self+ref [600k]) 0.28/0.2 0.08/0.2 0.04/0.3 0.11/0.4 0.09/0.3
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the world coordinate system and the transform matrix Tt2w calculated by the
DLT process. Then the photometric error serves as self-supervision and back-
propagates gradients along the red arrows, while others are detached in this
stage. Note that the Tt2w is post-processed by the algorithm of Section 7, which
is fully differentiable and enables the gradients flowing from the photometric loss.
In our experiments, the sampling interval of two images is 7 for 7-Scenes and 1
for Cambridge, respectively.
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Fig. 2. The median translation error of the estimated poses on shopfacade (from Cam-
bridge) during self-supervised adaptation. It rapidly converges within 20k iterations,
which demonstrates the effectiveness of this module in real world scenarios.

4 3D Map visualization

In Fig. 5, we visualize point clouds predicted directly by scene coordinate regres-
sion networks and those filtered by the learned weights of our SC-wLS frame-
work. We filter out points with weights smaller than λ = 0.9. It shows that the
scene coordinates are particularly noisy and due to the nature of reprojection
supervision, point clouds may drift away far along the bearing vectors. However,
with the assistance of our SC-wLS, the weight-filtered point clouds are much
more accurate and cleaner, showing the effectiveness and interpretability of the
learned weights as well.

5 Loss functions

This section elaborates on the hyper-parameter tuning of the regression loss Lr
in Section 3.3. As illustrated in the main paper, we use an eigen-decomposition
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Fig. 3. A detailed illustration of the self-supervised fine-tuning procedure. Is is the
source RGB image. It is the target RGB image. SCRNet (A) is the scene coordinate
regression network. Cs is the scene coordinate map for the source image. Ct is the scene
coordinate map for the target image. P is the 2D pixel coordinate map. SCWNet (B) is
the scene coordinate quality weight network. Ws is the scene coordinate weight map for
the source image. Wt is the scene coordinate weight map for the target image. wDLT
(C) is the weighted least squares solver. Ts2w is the camera pose of the source image
in the world frame. Tt2w is the camera pose of the target image in the world frame.
Only tensors that flow through red arrows receive supervision signals while others are
detached.

free loss [3] to refrain from the numerical instability caused by the eigen-vector
switching problem:

Lr = t>X>diag(w)Xt + αe−βtr(X̄
>diag(w)X̄) (1)

where t is the flattened ground-truth pose, X̄=X(I − tt>), while α and β are
positive scalars.

As mentioned before, those two terms in Eq. 1 serve as different roles. The
former originates from diag(

√
w)Xt = 0, and minimizing this term leads to the

trivial solution of w = 0 as well. Thus the latter term is proposed to alleviate its
impact. Since X̄ projects all data vectors onto the hyperplane normal to t, we
could maximize the trace of X̄>diag(w)X̄ to make the eigenvalues correspond-
ing to directions orthogonal to t to be as large as possible. It’s important to
select proper hyperparameters α and β to balance these two terms. At the same
time, the magnitude of the last term varies considerably on different scenes. We
recommend to choose β as the inverse of the magnitude of this trace, and in our
experiments, α and β are set to 5 and 1e-4 for indoor 7Scenes while 5 and 1e-6
for outdoor Cambridge, respectively.

6 Network architecture

As mentioned in Section 4.1 in the main paper, we adopt the scene coordinate
regression network architecture from [2] for 7Scenes. For Cambridge, we use the
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same architecture as the feature encoder in RAFT [7] to replace the early layers
of this network, which has residual connections, as shown in Fig 4. It increases
the receptive field size of the network, and enhances the robustness of feature
extraction for complicated environments. We have also tried this enhanced ar-
chitecture for 7Scenes, which does not bring performance improvements.

7 Post-processing of the DLT algorithm

As described in Section 3.1 of the main paper, pose estimation is solved by the
Direct Linear Transform (DLT) algorithm:

X>diag(w)XVec(T) = 0 (2)

where the transform matrix is flattened as Vec(T), and corresponds to the small-
est eigen-vector of X>diag(w)X. To guarantee that the rotation matrix R is
orthogonal and has determinant 1, we post-process the DLT results using the
common generalized Procrustes algorithm [5]. The pseudo-code of our imple-
mentation is:

Algorithm 1 Post-processing of the pose calculated by the DLT algorithm

1: Input:T̄ =

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12

 = [R̄3×3|t̄3×1], and learned weight w;

2: Output: Regularized T = [R3×3|t3×1];
3: UΣV = SVD(R̄);
4: s = 3

tr(Σ)
;

5: Selecting the most confident 2D-3D correspondence c = (u, v, x, y, z) according to
the learned weight w;

6: if s(xp9 + yp10 + zp11 + p12) > 0 then
7: s = s;
8: else
9: s = −s;

10: end if
11: R = sign(s)UV>;
12: t = st̄;

It’s worth noting that these steps are fully differentiable, thus the self-supervised
adaptation in Section 3.6 is able to back-propagate gradients through this oper-
ation.

8 Error Metrics

Median errors are robust to outlier estimates. We report the translation and
rotation errors per testing frame on office and kingscollege in Fig. 6. It’s shown
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Fig. 4. Scene coordinate regression network details for Cambridge. The first 8 blocks
are the same as the feature encoder in [7], and no normalization is used. Skip connec-
tions are used in both ResBlocks and the last 12 blocks as denoted.

that per frame error may be negatively impacted by outliers thus hard to tell the
true algorithm performances, while median errors are easier to compare between
lots of methods. We have released the code for per frame error analysis.

9 Delving into Interpretability

As for interpretability, we report pearson correlation coefficients between learned
weights and inverse reprojection errors in Table 5, in which outdoor scenes give
higher correlation values due to many uncertain regions like sky and human.

Table 5. Pearson correlation coefficients. (p < 0.01)

Chess Fire Heads Office Pumpkin Kitchen

0.18 0.15 0.18 0.15 0.21 0.14

Stairs Court College Shop Hospital Church

0.21 0.23 0.22 0.23 0.24 0.21
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Fig. 5. Map visualization on the test sets of 7-Scenes and Cambridge. Since scene co-
ordinates are predicted in the world frame, we directly show the point clouds generated
by aggregating scene coordinate predictions on test frames. It can be seen that only
predicting scene coordinates results in noisy point clouds, especially in outdoor scenes
where scene coordinate predictions on sky regions are only meaningful in term of their
2D projections. We show good scene coordinates by filtering out samples with a quality
weight lower than 0.9.
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Fig. 6. Translation and rotation errors per testing frame.


