
Monocular 3D Object Reconstruction
with GAN Inversion

– Supplementary Material –

Junzhe Zhang1,3 , Daxuan Ren1,3 , Zhongang Cai1,3 ,
Chai Kiat Yeo2 , Bo Dai4 ⋆, and Chen Change Loy1

1 S-Lab, Nanyang Technological University
2 Nanyang Technological University

3 SenseTime Research
4 Shanghai AI Laboratory

{junzhe001,daxuan001,caiz0023}@e.ntu.edu.sg,
{asckyeo,ccloy}@ntu.edu.sg, {daibo}@pjlab.org.cn

1 Implementation Details

Architectures. We follow the same architectures for the generator and the UV
space discriminator as described in ConvMesh [6] for pre-training. ConvMesh
baseline uses a convolutional generator G with two branches, to generate de-
formation map S ∈ R32×32 and texture map T ∈ R512×512 in the UV space
respectively from a latent code z ∈ R64. The UV space discriminator consists of
two sub-discriminators, for discriminating the deformation map and texture map
respectively. In addition, we introduce an image space discriminator to further
enforce the realism of the synthesized texture and shape, following the architec-
ture of PatchGAN [3]. We render the synthesized textured mesh to images with
the DIB-R differentiable renderer [1] following the Kaolin [4] implementation.
Preparation of Pseudo Ground Truths. During pre-training, discrimination
in the UV space requires pseudo ground truth deformation maps and texture
maps of the training images. The pseudo deformation maps are obtained by
training a mesh reconstruction baseline on the training set. It outputs a 3D object
as a deformation map and a texture map as well. Subsequently, the associated
pseudo texture maps are obtained through a form of inverse rendering, i.e.,
projecting the foreground pixels from the natural images onto the UV space.
Since only the visible regions can be projected to the UV space, all the resulting
pseudo texture maps are in fact partial. During training, the generated texture
maps are masked to form partial texture maps as well prior to discrimination.
More details of pseudo ground truths preparation can be found in [6].

Note that the mesh reconstruction baseline model is overfitted for shape esti-
mation to the training set and is not suitable for 3D reconstruction. In particular,
the resulting network generally gives blurry textures, and the shape estimation
does not generalize very well to unseen images. Quantitatively, it gives an IoU
of 0.671 in contrast to our method with an IoU of 0.752.

⋆ Bo Dai completed this work when he was with S-Lab, NTU.

https://orcid.org/0000-0003-1931-8046
https://orcid.org/0000-0002-8449-3038
https://orcid.org/0000-0002-1810-3855
https://orcid.org/0000-0002-7618-1472
https://orcid.org/0000-0003-0777-9232
https://orcid.org/0000-0001-5345-1591

2 Zhang et al.

Pre-training. We pre-train ConvMesh following a class conditional setting for
600 epochs, with a batch size of 128, which takes 15 hours on four Nvidia V100
GPUs. The generator is updated once every three iterations with a learning rate
of 1 × 10−4 whereas the discriminators are updated concurrently twice every
three iterations with a learning rate of 4× 10−4. We use the Adam optimizer [5]
with β1 = 0 and β2 = 0.9. For the objective function LG in the main paper, we
let λuv = 1 and λI = 0.04. We use the same settings for CUB and PASCAL
3D+.

Thanks to the discriminator in the image space, our pre-training results are
better than the baseline with a clear margin, as shown in Tab. 1.

Table 1. Pre-training results on CUB comparing ConvMesh baseline and ours with
the image space discrimination. The Full FID is computed on generated meshes and
generated textures; the Texture FID is computed on the generated texture and mesh
estimated using the differentiable renderer; the Mesh FID is computed on the pseudo
ground truth texture with predicted mesh. We report FID with truncated σ = 0.25.

Full Texture Mesh

ConvMesh baseline 33.6 28.7 19.5
Ours w/ image space discrimination 28.3 27.2 18.7

Inversion. We adapt a multi-stage inversion with different learning rates, with
learning rates of the latent code [1× 10−1, 5× 10−2, 1× 10−2, 5× 10−3], learning
rates of the camera pose [1× 10−2, 5× 10−3, 1× 10−3, 5× 10−4], and iterations
[50, 50, 50, 50]. We use the Adam optimizer with β1 = 0 and β2 = 0.99. For
each testing instance, the inversion process takes around 40 seconds, and our
framework supports distributed inference. For the overall inversion loss Linv, we
set the weights of LpCT , LfCT , LCM , Lsmooth and Lz as 1, 0.05, 10, 0.00005
and 0.05 respectively. For the Chamfer texture losses, we let ϵs = 0.9, ϵa = 1,
and α = 1. In particular, 1 − ϵs corresponds to degree of tolerance to local
misalignment. We show in Tab. 2 that a smaller ϵs gives relatively better results
in the presence of imperfect camera poses and high-frequency details. One can
tighten ϵs if more accurate camera poses are given.

Table 2. Effect of ϵs in Chamfer texture losses.

ϵs IoU ↑ FID1 ↓ FID10 ↓ FID12 ↓
0.999 0.747 38.7 39.8 58.0
0.99 0.746 38.6 40.0 58.3
0.98 0.748 38.7 39.7 57.8
0.95 0.749 37.6 39.0 57.2
0.9 0.752 37.3 38.7 56.8

MeshInversion 3

Test-time Optimization of Baselines. Similar to GAN inversion, a relatively
compact latent space is desirable for efficient optimization during the test time.
Both CMR and UMR have a latent code with a dimension of 200. In contrast,
U-CMR has a latent code with a dimension of 4096, whereas SMR does not
follow an auto-encoder architecture, but directly encodes the 3D attributes from
the image with the associated mask. Therefore, SMR and U-CMR are infeasible
to be adapted for test-time optimization.

We adapt CMR and UMR as follows during the test time: The latent code is
first obtained with a single forward pass by the image encoder, and the camera
pose is then obtained by the camera pose estimator. We then fine-tune the latent
code and the camera pose by minimizing the mask loss and texture loss by
comparing against the estimated mask and the input image respectively, where
the network weights remain fixed. The choices of loss functions and their weights
follow those during the training time. For an equal comparison, we fine-tune with
the same Adam optimizer and for the same number of iterations, 200, for each
testing instance. Since our method uses randomly initialized latent code whereas
the forward pass by the image encoder already provides a good initialization, we
use a smaller learning rate for the latent code, 5 × 10−3. For the camera pose,
we use the same learning rates as our method following the multi-stage setting.
Additional Details for User Study. We conduct a user preference study on
CUB to evaluate our method. This user preference study involves 40 users, 30
objects, and five methods (four baselines and ours). The 40 users are invited
from several different backgrounds, including finance, business, life science, and
information technology. We randomly choose 30 objects from the testing split,
and ensure the following varieties are contained in the selection: complex and
a wide range of texture, with highly articulated shapes, and in the presence of
occlusion, etc. The reconstructed 3D objects are rendered from three different
viewpoints to make sure that the entire object is observable by the user. For
each input image, we give users unlimited time to select the method that gives
the most faithful and realistic result in terms of three separate criteria: texture
quality, shape quality, and overall textured shape reconstruction.

2 Comparison with Shelf-Sup

Unlike mainstream approaches compared in the main paper that directly deform
a category-level template mesh, Shelf-Sup [2] first gives a coarse volumetric pre-
diction, and then converts the coarse volume into a mesh followed by test-time
optimization. This design demonstrates its scalability on significantly more cat-
egories with various topologies (though still category-specific). However, such
scalability is at the sacrifice of categorical semantic consistency without a mesh
template, leading to less compelling reconstructions on birds, as compared in
Tab. 3. Both Shelf-Sup and UMR employ adversarial loss when training the
auto-encoders for reconstruction, whereas the generative adversarial training in
GANs for 3D object synthesis offers richer prior, giving better generalization
and photo-realism as demonstrated in Sec 4.1. In addition, Shelf-Sup also tends

4 Zhang et al.

to suffer from blurry reconstructions with imperfect camera predictions, which
calls for the robustness offered by Chamfer texture loss.

Table 3. Comparison with Shelf-Sup on CUB.

Methods IoU ↑ FID1 ↓ FID10 ↓ FID12 ↓
Shel-Sup 0.707 81.2 140.1 161.0
Ours 0.752 37.3 38.7 56.8

Fig. 1. Sensitivity comparison of various mask losses. Unlike existing mask losses, the
constant slope by Chamfer mask loss implies its high accuracy across a wide range of
shape variation. Each data point is the mean of 100 simulation runs.

3 Sensitivity Comparison of Mask Losses

We quantitatively analyze the sensitivity of various mask losses by measuring
the distance between two 3D shapes at different degrees of shape variations.
Specifically, we utilize the pre-trained ConvMesh to randomly generate 100 3D
shapes. For each shape Oi, we introduce a variation of the shape by jittering its
latent code zi by a step size η at a random direction, giving the deviated shape
O′

i. We then measure the ground truth distance in the 3D space between Oi and
O′

i using Chamfer distance, and compute the distances in the 2D space using
IoU loss, L1 loss, and Chamfer mask loss respectively. Specifically, we vary the
step size η from 1× 10−6 all the way to 1× 10−1, giving 3D Chamfer distances
from 1×10−7 to 1×10−3. Given these generated and jittered 3D shape pairs, we
plot various 2D mask losses against ground truth 3D Chamfer distance in Fig. 1.

MeshInversion 5

As all the four metrics, including Chamfer distances, are L1-like, all the three
2D losses should be linearly correlated to the 3D Chamfer distance, i.e., these
plots should maintain constant slopes. However, due to discretization-induced
information loss, both IoU mask loss and L1 mask loss are not able to accurately
reflect the subtle variation in the 3D shape. Such inaccuracy eventually leads
to insensitive gradients and undermines geometry recovery. In contrast, LCM

intercepts the rasterization process and naturally retains information.

4 Qualitative Results for Texture Loss Ablation

We provide qualitative results for ablation study on texture losses in Fig. 2
(zoom in for details). As inaccurate camera initialization easily leads to repro-
jection misalignment, in the presence of high-frequency texture, conventional
pixel-aligned appearance losses, e.g., L1 loss on RGB images and perceptual loss
on feature maps, would tend to give noisy supervision signal. This often leads to
blurry reconstructions, especially for L1 loss. While earlier attempt to address
the misalignment issue by contextual loss treats feature maps as sets of feature
vectors, it totally ignores the feature locations in the image coordinate, resulting
in unfaithful reconstructions.

Fig. 2. Ablation study on Chamfer texture losses.

5 Additional Qualitative Results

We provide more single-view illustrative examples for CUB in Fig. 3 and Fig. 4.
In addition, we further demonstrate the merit of our method through 360-degree
comparisons with baselines in the supplemental video. The supplemental video
also includes illustration of the inversion process, and 360-degree results for
texture transfer and on PASCAL3D+ Car.

6 Zhang et al.

Fig. 3. Additional qualitative results on CUB.

MeshInversion 7

Fig. 4. Additional qualitative results on CUB (continued).

8 Zhang et al.

References

1. Chen, W., Ling, H., Gao, J., Smith, E., Lehtinen, J., Jacobson, A., Fidler, S.: Learn-
ing to predict 3D objects with an interpolation-based differentiable renderer. In:
NeurIPS (2019) 1

2. et al , Y.: Shelf-supervised mesh prediction in the wild. In: CVPR (2021) 3
3. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-

tional adversarial networks. In: CVPR (2017) 1
4. Jatavallabhula, K.M., Smith, E., Lafleche, J.F., Tsang, C.F., Rozantsev, A., Chen,

W., Xiang, T., Lebaredian, R., Fidler, S.: Kaolin: A PyTorch library for accelerating
3D deep learning research. CoRR abs/1911.05063 (2019) 1

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)
2

6. Pavllo, D., Spinks, G., Hofmann, T., Moens, M.F., Lucchi, A.: Convolutional gen-
eration of textured 3D meshes. In: NeurIPS (2020) 1

	Monocular 3D Object Reconstruction with GAN Inversion – Supplementary Material –

