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Abstract. Recovering a textured 3D mesh from a monocular image
is highly challenging, particularly for in-the-wild objects that lack 3D
ground truths. In this work, we present MeshInversion, a novel frame-
work to improve the reconstruction by exploiting the generative prior
of a 3D GAN pre-trained for 3D textured mesh synthesis. Reconstruc-
tion is achieved by searching for a latent space in the 3D GAN that
best resembles the target mesh in accordance with the single view ob-
servation. Since the pre-trained GAN encapsulates rich 3D semantics in
terms of mesh geometry and texture, searching within the GAN man-
ifold thus naturally regularizes the realness and fidelity of the recon-
struction. Importantly, such regularization is directly applied in the 3D
space, providing crucial guidance of mesh parts that are unobserved
in the 2D space. Experiments on standard benchmarks show that our
framework obtains faithful 3D reconstructions with consistent geom-
etry and texture across both observed and unobserved parts. More-
over, it generalizes well to meshes that are less commonly seen, such
as the extended articulation of deformable objects. Code is released at
https://github.com/junzhezhang/mesh-inversion.

1 Introduction

We consider the task of recovering the 3D shape and texture of an object from
its monocular observation. A key challenge in this task is the lack of 3D or multi-
view supervision due to the prohibitive cost of data collection and annotation
for object instances in the wild.

Prior attempts resort to weak supervision based on 2D silhouette annotations
of monocular images to solve this task. For instance, Kanazawa et al . [19] pro-
pose the use of more readily available 2D supervisions including keypoints as the
supervision. To further relax the supervision constraint, several follow-up stud-
ies propose to learn the 3D manifold in a self-supervised manner, only requiring
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Fig. 1. We propose an alternative approach to monocular 3D reconstruction by ex-
ploiting generative prior encapsulated in a pre-trained GAN. Our method has three
major advantages: 1) It reconstructs highly faithful and realistic 3D objects, even when
observed from novel views; 2) The reconstruction is robust against occlusion in (b); 3)
The method generalizes reasonably well to less common shapes, such as birds with (c)
extended tails or (d) open wings.

single-view images and their corresponding masks for training [24,10,4,15]. Min-
imizing the reconstruction error in the 2D domain tends to ignore the overall 3D
geometry and back-side appearance, leading to a shortcut solution that may look
plausible only from the input viewpoint, e.g., SMR [15] in Fig. 1 (a)(c). While
these methods compensate the relaxed supervision by exploiting various forms
of prior information, e.g., categorical semantic invariance [24] and interpolated
consistency of the predicted 3D attributes [15], this task remains challenging.

In this work, we propose a new approach,MeshInversion, that is built upon
generative prior possessed by Generative Adversarial Networks (GANs) [11].
GANs are typically known for their exceptional ability to capture comprehen-
sive knowledge [5,21,41], empowering the success of GAN inversion in image
restoration [12,37] and point cloud completion [52]. We believe that by training
a GAN to synthesize 3D shapes in the form of a topology-aligned texture and
deformation map, one could enable the generator to capture rich prior knowledge
of a certain object category, including high-level semantics, object geometries,
and texture details.

We propose to exploit the appealing generative prior through GAN inversion.
Specifically, our framework finds the latent code of the pre-trained 3D GAN
that best recovers the 3D object in accordance with the single-view observation.
Given the RGB image and its associated silhouette mask estimated by an off-
the-shelf segmentation model, the latent code is optimized towards minimizing
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2D reconstruction losses by rendering the 3D object onto the 2D image plane.
Hence, the latent manifold of the 3D GAN implicitly constrains the reconstructed
3D shape within the realistic boundaries, whereas minimization of 2D losses
explicitly drives the 3D shape towards a faithful reflection of the input image.

Searching for the optimal latent code in the GAN manifold for single-view
3D object reconstruction is non-trivial due to following challenges: 1) Accurate
camera poses are not always available for real-world applications. Inaccurate
camera poses easily lead to reprojection misalignment and thus erroneous re-
construction. 2) Existing geometric losses that are computed between 2D masks
inevitably discretize mesh vertices into a grid of pixels during rasterization. Such
discretization typically makes the losses less sensitive in reflecting the subtle geo-
metric variations in the 3D space. To address the misalignment issue, we propose
a Chamfer Texture Loss, which relaxes the one-to-one pixel correspondences
in existing losses and allows the match to be found within a local region. By
jointly considering the appearance and positions of image pixels or feature vec-
tors, it provides a robust texture distance despite inaccurate camera poses and
in the presence of high-frequency textures. To improve the geometric sensitivity,
we propose a Chamfer Mask Loss, which intercepts the rasterization process
and computes the Chamfer distance between the projected vertices before dis-
cretization to retain information, with the foreground pixels of the input image
projected to the same continuous space. Hence, it is more sensitive to small
variations in shape and offers a more accurate gradient for geometric learning.

MeshInversion demonstrates compelling performance for 3D reconstruction
from real-world monocular images. Even with the assumption of inaccurate
masks and camera poses, our method still gives highly plausible and faithful
3D reconstruction in terms of both appearance and 3D shape, as depicted in
Fig. 1. It achieves state-of-the-art results on the perceptual metric, i.e., FID,
when evaluating the textured mesh from various viewpoints, and is on-par with
the existing CMR-based frameworks in terms of geometric accuracy. In addition,
while its holistic understanding of the objects benefits from the generative prior,
it not only gives a realistic recovery of the back-side texture but also generalizes
well in the presence of occlusion, e.g., Fig. 1 (b). Furthermore, MeshInversion
also demonstrates significantly better generalization for 3D shapes that are less
commonly seen, such as birds with open wings and long tails, as shown in Fig. 1
(d) and (c) respectively.

2 Related Work

Single-view 3D Reconstruction. Many methods have been proposed to re-
cover the 3D information of an object, such as its shape and texture, from a
single-view observation. Some methods use image-3D object pairs [46,35,32,39]
or multi-view images [33,28,51,47,34] for training, which limit the scenarios to
synthetic data. Another line of work fits the parameters of a 3D prior morphable
model, e.g., SMPL for humans and 3DMM for faces [8,40,18], which are typically
expensive to build and difficult to extend to various natural object categories.
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To relax the constraints on supervision, CMR [19] reconstructs category-
specific textured mesh by training with a collection of monocular images and
associated 2D supervisions, i.e., 2D key-points, camera poses, and silhouette
masks. Thereafter, several follow-up studies further relax the supervision, e.g.,
masks only, and improves the reconstruction results by exploiting different forms
of prior. Specifically, they incorporate the prior by enforcing various types of cy-
cle consistencies, such as texture cycle consistency [24,4], rotation adversarial
cycle consistency [4], and interpolated consistency [15]. Some of these methods
also leverage external information, e.g., category-level mesh templates [10,4], and
semantic parts provided by an external SCOPS model [24]. In parallel, Shelf-
Sup [7] first gives a coarse volumetric prediction, and then converts the coarse
volume into a mesh followed by test-time optimization. Without categorical mesh
templates in existing approaches, this design demonstrates its scalability to cat-
egories with high-genus meshes, e.g., chairs and backpacks.

For texture modeling, direct regression of pixel values in the UV texture
map often leads to blurry images [10]. Therefore, the mainstream approach is to
regress pixel coordinates, i.e., learning texture flow from the input image to the
texture map. Although texture flow is easier to regress and usually provides a
vivid front view result, it often fails to generalize well to novel views or occluded
regions. Our approach directly predicts the texture pixel values by incorporating
a pre-trained GAN. In contrast to the texture flow approach, it benefits from a
holistic understanding of the objects given the generative prior and offers high
plausibility and fidelity at the same time.

GAN Inversion. A well-trained GAN usually captures useful statistics and
semantics underlying the training data. In the 2D domain, GAN prior has been
explored extensively in various image restoration and editing tasks [3,12,37].
GAN inversion, the common method in this line of work, finds a latent code that
best reconstructs the given image using the pre-trained generator. Typically, the
target latent code can be obtained via gradient descent [29,27], projected by an
additive encoder that learns the inverse mapping of a GAN [2], or a combination
of them [53]. There are recent attempts to apply GAN inversion in the 3D
domain. Zhang et al . [52] use a pre-trained point cloud GAN to address shape
completion in the canonical pose, giving remarkable generalization for out-of-
domain data such as real-world partial scans. Pan et al . [36] recover the geometric
cues from pre-trained 2D GANs and achieve exceptional reconstruction results,
but the reconstructed shapes are limited to 2.5D due to limited poses that 2D
GANs can synthesize. In this work, we directly exploit the prior from a 3D GAN
to reconstruct the shape and texture of complete 3D objects.

Textured Mesh Generation. 3D object generation approaches that use vox-
els [48,9,43,54,50] or point clouds [1,41] typically require some form of 3D super-
vision and are unfriendly for modeling texture. Chen et al . [6] propose DIB-R,
a GAN framework for textured mesh generation, where 3D meshes are differ-
entiably rendered into 2D images and discriminated with multi-view images of
synthetic objects. Later on, Henderson et al . [13] relax the multi-view restriction
and propose a VAE framework [22] that leverages a collection of single-view nat-
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Fig. 2. Overview of the MeshInversion framework. We reconstruct a 3D object
from its monocular observation by incorporating a pre-trained textured 3D GAN G.
We search for the latent code z and fine-tune the imperfect camera π that minimizes 2D
reconstruction losses via gradient descent. To address the intrinsic challenges associated
with 3D-to-2D degradation, we propose two Chamfer-based losses: 1) Chamfer Tex-
ture Loss (Sec 3.2) relaxes the pixel-wise correspondences between two RGB images
or feature maps, and factorizes the pairwise distance into spatial and textural distance
terms. We illustrate the distance maps between one anchor point from the rendered
image to the input image, where brighter regions correspond to smaller distances. 2)
Chamfer Mask Loss (Sec 3.3) intercepts the discretization process and computes the
Chamfer distance between the projected vertices and the foreground pixels projected
to the same continuous space. No labeled data is assumed during inference: the mask
and camera are estimated by off-the-shelf pre-trained models.

ural images. The appearance is parameterized by face colors instead of texture
maps, limiting the visual detail of generated objects. Under the same setting,
ConvMesh [38] achieves more realistic 3D generations by generating 3D objects
in the form of topology-aligned texture maps and deformation maps in the UV
space, where discrimination directly takes place in the UV space against pseudo
ground truths. Pseudo deformation maps are obtained by overfitting a mesh re-
construction baseline on the training set. Subsequently, the associated pseudo
texture maps can then be obtained by projecting natural images on the UV
space. Our proposed method is built upon a pre-trained ConvMesh model to
incorporate its generative prior in 3D reconstruction.

3 Approach

Preliminaries. We represent a 3D object as a textured triangle mesh O ≡
(V,F,T), where V ∈ R|v|×3 represents the location of the vertices, F repre-
sents the faces that define the fixed connectivity of vertices in the mesh, and
T represents the texture map. An individual mesh is iso-morphic to a 2-pole
sphere, and thus we model the deformation ∆V from the initial sphere tem-
plate, and then obtain the final vertex positions by V = Vsphere+∆V. Previous
methods [19,24,10] mostly regress deformation of individual vertices via a fully
connected network (MLP). In contrast, recent studies have found that using a
2D convolutional neural network (CNN) to learn a deformation map in the UV
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space would benefit from consistent semantics across the entire category [38,4].
In addition, the deformation map S and the texture map T are topologically
aligned, so both the values can be mapped to the mesh via the same predefined
mapping function.

We assume a weak-perspective camera projection, where the camera pose
π is parameterized by scale s ∈ R, translation t ∈ R2, and rotation in the
form of quaternion r ∈ R4. We use DIB-R [6] as our differentiable renderer.
We denote I = R(S,T, π) as the image rendering process. Similar to previous
baselines [19,24,15,10], we enforce reflectional symmetry along the x axis, which
both benefits geometric performance and reduces computation cost.

3.1 Reconstruction with Generative Prior

Our study presents the first attempt to explore the effectiveness of generative
prior in monocular 3D construction. Our framework assumes a pre-trained tex-
tured 3D GAN. In this study, we adopt ConvMesh [38], which is purely trained
with 2D supervisions from single-view natural images. With the help of GAN
prior, our goal is to recover the geometry and appearance of a 3D object from
a monocular image and its associated mask. Unlike SMR [15] that uses ground
truth masks, our method takes silhouettes estimated by an off-the-shelf segmen-
tation model [23].

Next, we will detail the proposed approach to harness the meaningful prior,
such as high-level semantics, object geometries, and texture details, from this
pre-trained GAN to achieve plausible and faithful recovery of 3D shape and
appearance. Note that our method is not limited to ConvMesh, and other pre-
trained GANs that generate textured meshes are also applicable. More details
of ConvMesh can be found in the supplementary materials.
Pre-training Stage. Prior to GAN inversion, we first pre-train the textured
GAN on the training split to capture desirable prior knowledge for 3D recon-
struction. As discussed in Sec. 2, the adversarial training of ConvMesh takes
place in the UV space, where generated deformation maps and texture maps are
discriminated against their corresponding pseudo ground truth. In addition to
the UV space discrimination, we further enhance the photorealism of the gen-
erated 3D objects by introducing a discriminator in the image space, following
the architecture of PatchGAN as in [16]. The loss functions for the pre-training
stage are shown as follows, where Duv and DI refer to the discriminators in the
UV space and image space respectively, and λuv and λI are the corresponding
weights. We use least-squares losses following [30]. An ablation study on image
space discrimination can be found in the supplementary materials.

LG = λuvEz∼Pz [(Duv(G(z))− 1)2] + λIEz∼Pz(z)[(DI(R(G(z)), π)− 1)2]. (1)

LDuv
= ES,T∼Ppseudo

[(Duv(S,T)− 1)2] + Ez∼Pz(z)[(Duv(G(z)))2]. (2)

LDI
= EI∼Pdata

[(DI(I)− 1)2] + Ez∼Pz(z)[(DI(R(G(z)), π)2]. (3)
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Inversion Stage. We now formally introduce GAN inversion for single-view 3D
reconstruction. Given a pre-trained ConvMesh that generates a textured mesh
from a latent code, S,T = G(z), we aim to find the z that best recovers the
3D object from the input image Iin and its silhouette mask Min. Specifically,
we search for such z via gradient descent towards minimizing the overall recon-
struction loss Linv, which can be denoted by

z∗ = arg min
z

Linv(R(G(z), π), Iin). (4)

Given the single-view image and the associated mask, we would need to
project the reconstructed 3D object to the observation space for computing Linv.
However, such 3D-to-2D degradation is non-trivial. Unlike existing image-based
GAN inversion tasks where we can always assume pixel-wise image correspon-
dence in the observation space, rendering 3D objects in the canonical frame onto
the image space is explicitly controlled via camera poses. For real-world applica-
tions, unfortunately, perfect camera poses are not always available to guarantee
such pixel-wise image correspondence. While concurrently optimizing the latent
code and the camera pose from scratch seems a plausible approach, this often
suffers from camera-shape ambiguity [24] and leads to erroneous reconstruction.
To this end, we initialize the camera with a camera pose estimator (CMR [19]),
which can be potentially inaccurate, and jointly optimize it in the course of GAN
inversion, for which we have:

z∗, π∗ = arg min
z,π

Linv(R(G(z), π), Iin). (5)

As the 3D object and cameras are constantly optimized throughout the in-
version stage, it is infeasible to assume perfect image alignment. In addition, the
presence of high-frequency textures, e.g., complex bird feathers, often leads to
blurry appearance even with slight discrepancies in pose. Consequently, it calls
for a robust form of texture loss in Sec 3.2.

3.2 Chamfer Texture Loss

To facilitate searching in the GAN manifold without worrying about blurry
reconstructions, we reconsider the appearance loss by relaxing the pixel-aligned
assumption in existing low-level losses. Taking inspiration from the point cloud
data structure, we treat a 2D image as a set of 2D colored points, which have
both appearance attributes, i.e., RGB values, and spatial attributes, the values of
which relate to their coordinates in the image grid. Thereafter, we aim to measure
the dissimilarity between the two colored point sets via Chamfer distance,

LCD(S1,S2) =
1

|S1|
∑
x∈S1

min
y∈S2

Dxy +
1

|S2|
∑
y∈S2

min
x∈S1

Dyx. (6)

Intuitively, defining the pairwise distance between pixel x and pixel y in the two
respective images should jointly consider their appearance and location. In this



8 Zhang et al.

regard, we factorize the overall pairwise distance Dxy into an appearance term
Da

xy and a spatial term Ds
xy, both of which are L2 distance. Like conventional

Chamfer distance, single-sided pixel correspondences are determined by column-
wise or row-wise minimum in the distance matrix D.

Importantly, we desire the loss to be tolerant and only tolerant of local mis-
alignment, as large misalignment will potentially introduce noisy pixel corre-
spondences that may jeopardize appearance learning. Inspired by the focal loss
for detection [25], we introduce an exponential operation in the spatial term
to penalize those spatially distant pixel pairs. Therefore, we define the overall
distance matrix D ∈ R|S1|×|S2| as follows

D = max((Ds + ϵs)
α, 1)⊗ (Da + ϵa), (7)

where Da and Ds are the appearance distance matrix and spatial distance ma-
trix respectively; ⊗ denotes element-wise product; ϵs and ϵa are residual terms
to avoid incorrect matches with identical location or identical pixel value respec-
tively; α is the scaling factor for flexibility. Specifically, we let ϵs < 1 so that
the spatial term remains one when two pixels are slightly misaligned. Note that
the spatial term is not differentiable and it only serves as a weight matrix for
appearance learning. By substituting the resulting D into Eq. 6, we thus have
the final formulation of our proposed Chamfer Texture Loss, denoted as LCT .

The proposed relaxed formulation provides a robust measure of texture dis-
tance, which effectively eases searching of the target latent code while preventing
blurry reconstructions; in return, although LCT only concerns about local patch
statistics but not photorealism, the use of GAN prior is sufficient to give realistic
predictions. Besides, the GAN prior also allows computing LCT with a down-
sampled size of colored points. In practice, we randomly select 8096 pixels from
each image as a point set.

The proposed formulation additionally gives flexible control between appear-
ance and spatial attributes. The appearance term is readily extendable to accept
misaligned feature maps to achieve more semantically faithful 3D reconstruction.
Specifically, we apply the Chamfer texture loss between the (foreground) feature
maps extracted with a pre-trained VGG-19 network [42] from the rendered image
and the input image. It is worth noting that the feature-level Chamfer texture
loss is somewhat related to the contextual loss [31], which addresses the misalign-
ment issue for image transfer. The key difference is that the contextual loss only
considers the feature distances but ignores their locations. We compare against
the contextual loss in the experiment.

3.3 Chamfer Mask Loss

Conventionally, the geometric distance is usually computed between two binary
masks in terms of L1 or IoU loss [19,10,24,15]. However, obtaining the mask of
the reconstructed mesh usually involves rasterization that discretizes the mesh
into a grid of pixels. This operation inevitably introduces information loss and
thus inaccurate supervision signals. This is particularly harmful to a well-trained
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ConvMesh, the shape manifold of which is typically smooth. Specifically, a small
perturbation in z usually corresponds to a slight variation in the 3D shape,
which may translate to an unchanged binary mask. This usually leads to an
insensitive gradient for back-propagation, which undermines geometric learning.
We analyze the sensitivity of existing losses in the experiment.

To this end, we propose a Chamfer Mask Loss, or LCM , to compute the
geometric distance in an unquantized 2D space. Instead of rendering the mesh
into a binary mask, we directly project the 3D vertices of the mesh onto the image
plane, Sv = P (S,T, π). For the foreground mask, we obtain the positions of the
foreground pixels by normalizing their pixel coordinates in the range of [−1, 1],
denoted as Sf . Thereafter, we compute the Chamfer distance between Sv and
Sf as the Chamfer mask loss. Note that one does not need to distinguish visible
and occluded vertices, as eventually they all fall within the rendered silhouette.
The bidirectional Chamfer distance between the sparse set Sv and dense set Sf
would regularize the vertices from highly uneven deformation.

3.4 Overall Objective Function

We apply the pixel-level Chamfer texture loss LpCT and the feature-level one
LfCT as our appearance losses, and the Chamfer mask loss LCM as our geometric
loss. Besides, we also introduce two regularizers: the smooth loss Lsmooth that
encourages neighboring faces to have similar normals, i.e., low cosine; the latent
space loss Lz that regularizes the L2 norm of z to ensure Gaussian distribution.
In summary, the overall objective function is shown in Eq. 8.

Linv = LpCT + LfCT + LCM + Lsmooth + Lz. (8)

4 Experiments

Datasets and Experimental Setting. We primarily evaluate MeshInversion
on CUB-200-2011 dataset [45]. It consists of 200 species of birds with a wide
range of shapes and feathers, making it an ideal benchmark to evaluate 3D
reconstruction in terms of both geometric and texture fidelity. Apart from the
organic shapes like birds, we also validate our method on 11 man-made rigid car
categories from PASCAL3D+ [49].

We use the same train-validation-test split as provided by CMR [19]. The
images in both datasets are annotated with foreground masks and camera poses.
Specifically, we pre-train ConvMesh on the pseudo ground truths derived from
the training split following a class conditional setting [38]. During inference, we
conduct GAN inversion on the test split without assuming additional labeled
data compared to existing methods. We use the silhouette masks predicted by
an off-the-shelf instance segmentation method PointRend [23] pre-trained on
COCO [26], which gives an IoU of 0.886 against ground truth masks. We use
camera poses predicted by CMR [19], which can be inaccurate. In particular, the
poses estimated yields 6.03 degree of azimuth error and 4.33 degree of elevation
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Table 1. Quantitative results on CUB show the effectiveness of applying generative
prior in 3D reconstruction. As all the baseline methods are regression-based whereas
our method involves optimization during inference, we report both baselines and test-
time optimization (TTO) results for existing methods, if applicable, with access to
masks estimated by PointRend [23]. SMR baseline uses ground truth mask, and it
shows noticeable IoU drop with estimated mask. †: We report results from [4] since no
implementation released; the results are based on ground truth cameras, whereas our
method optimizes from imperfect cameras.

Methods TTO input mask IoU ↑ FID1 ↓ FID10 ↓ FID12 ↓
CMR [19] - 0.703 140.9 176.2 180.1
UMR [24] - 0.734 40.0 72.8 86.9
U-CMR [10] - 0.701 65.0 314.9 315.2

View-gen [4] † - 0.629 - - 70.3
SMR [15] estimated 0.751 55.9 65.7 85.6
SMR ground truth 0.800 52.9 63.2 79.3

CMR ✓ estimated 0.717 121.6 150.5 158.4
UMR ✓ estimated 0.739 38.8 78.2 91.3
Ours ✓ estimated 0.752 37.3 38.7 56.8

error compared to the ground truth cameras via structure-from-motion (SfM).
During evaluation, we report quantitative results based on ground truth masks.
Evaluation Strategy. Since there are no 3D ground truths available for CUB,
we evaluate MeshInversion against various baselines from three aspects: 1) We
evaluate the geometry accuracy in the 2D domain by IoU between the rendered
masks and the ground truths. 2) We evaluate the appearance quality by the
image synthesis metric FID [14], which compares the distribution of test set
images and the render of reconstruction. Since a plausible 3D shape should look
photo-realistic observed from multiple viewpoints, we report both single-view
FID (FID1) and multi-view FIDs. Following SMR [15] and View-gen [4], we
render our reconstructed 3D shape from 12 different views (FID12), which covers
azimuth from 0◦ to 360◦ at an interval of 30◦. We additionally report FID10

since the exact front view (90◦) and the exact back view (270◦) are rarely seen in
CUB. Note that this is in favour of existing methods that do not use any GAN
prior as ours. 3) Apart from extensive qualitative results, we conduct a user
study to evaluate human preferences in terms of both shape and appearance.
For PASCAL3D+, it provides approximated 3D shapes using a set of 10 CAD
models, which allows us to evaluate geometric performance in terms of 3D IoU.

4.1 Comparison with Baselines

We compare MeshInversion with various existing methods on the CUB dataset,
and report quantitative results in Tab. 1. Overall, MeshInversion achieves state-
of-the-art results on perceptual metrics, particularly multi-view FIDs, and is on
par with existing methods in terms of IoU. The qualitative results in Fig. 1,
Fig. 3 and Fig. 4 show that MeshInversion achieves highly faithful and realistic
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Fig. 3. Qualitative results on CUB. Our method achieves highly faithful and realistic
3D reconstruction. In particular, it exhibits superior generalization under various chal-
lenging scenarios, including with occlusion (b, c) and extended articulation (d, e).

3D reconstruction, particularly when observed from novel views. Moreover, our
method generalizes reasonably well to highly articulated shapes, such as birds
with long tails and open wings, where many of the existing methods fail to give
satisfactory reconstructions, as Fig. 1 (c)(d) and Fig. 3 (d)(e) show. We note
that although SMR gives the competitive IoU with estimated mask, it lacks fine
geometric details and looks less realistic, e.g., the beak in Fig. 1 (c) and Fig. 3.

Texture Flow vs. Texture Regression. Texture flow is extensively adopted
in existing methods, except for U-CMR. Although texture flow-based methods
are typically easier to learn and give superior texture reconstruction for visi-
ble regions, they tend to give incorrect predictions for invisible regions, e.g.,
abdomen or back as shown in Fig. 1. In contrast, MeshInversion, which per-
forms direct regression of textures, benefits from a holistic understanding of the
objects and gives remarkable performance in the presence of occlusion, while tex-
ture flow-based methods only learn to copy from the foreground pixels including
the obstacles, e.g., twig, from the bird, as shown in Fig. 1 (a) and Fig. 3 (b)(c).
Due to the same reason, these methods also tend to copy background pixels onto
the reconstructed object when the shape prediction is inaccurate, as shown in
Fig. 1 (d) and Fig. 3 (d). More qualitative results and multi-view comparisons
can be found in the supplementary materials.

Test-time Optimization.While existing methods mostly adopt an auto-encoder
framework and perform inference with a single forward pass, MeshInversion is
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Fig. 4. Novel-view rendering results on CUB. Our method gives realistic and faithful
3D reconstruction in terms of both 3D shape and appearance. It generalizes fairly well
to invisible regions and challenging articulations.

optimization-based. For a fair comparison, we also introduce test-time optimiza-
tion (TTO) for baseline methods, if applicable, with access to predicted masks as
well. Specifically, CMR and UMR have a compact latent code with a dimension
of 200, which is desirable for efficient fine-tuning. As shown in Tab. 1, TTO of
existing methods overall yields higher fidelity, but our proposed method remains
highly competitive in terms of perceptual and geometric performance. Inter-
estingly, UMR with TTO achieves marginal improvement in terms of IoU and
single-view FID at the cost of worsening novel-view FID. This further shows the
superiority of generative prior captured through adversarial training over that
captured in an auto-encoder, including UMR that is coupled with adversarial
training, and its effectiveness of such appealing prior in 3D reconstruction.

Table 2. User preference study on CUB in
terms of the quality and faithfulness of texture,
shape, and overall 3D reconstruction.
Criterion CMR U-CMR UMR SMR Ours

Texture 2.7% 15.7% 13.2% 6.6% 61.8%
Shape 2.7% 19.6% 14.6% 4.2% 58.9%
Overall 2.5% 19.8% 12.8% 3.3% 61.5%

User Study. We further conduct
a user preference study on multi-
view renderings of 30 randomly
selected birds, and ask 40 users
to choose the most realistic and
faithful reconstruction in terms of
texture, shape, and overall 3D re-
construction. Tab. 2 shows that
MeshInversion gives the the most
preferred results, whereas all texture flow-based methods give poor results mainly
due to their incorrect prediction for unseen regions.

Fig. 5. Our method en-
ables faithful and re-
alistic texture transfer
between bird instances
even with highly artic-
ulated shapes.
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4.2 Texture Transfer

As the shape and texture are topologically and semantically aligned in the UV
space, it allows us to modify the surface appearance across bird instances. In
Fig. 5, we sample pairs of instances and swap their texture maps. Thanks to the
categorical semantic consistency, the resulting new 3D objects remain highly
realistic even for extended articulations like open wings and long tails.

Fig. 6. Qualitative results on PASCAL3D+ Car. Our method gives reasonably good
performance across different car models and appearances.

4.3 Evaluation on PASCAL3D+ Car

Table 3. 3D IoU on PASCAL3D+ Car. Both
the deformable model fitting-based method
CSDM [20] and volume-based method
DRC [44] do not predict object texture.

CSDM DRC CMR Ours
3D IoU 0.60 0.67 0.64 0.66

We also evaluate MeshInversion on
the man-made rigid car category.
As demonstrated in Fig. 6, it per-
forms reasonably well across differ-
ent car models and appearances.
Unlike [4] and [10] that explicitly use
one or multiple mesh templates pro-
vided by PASCAL3D+, the appeal-
ing GAN prior implicitly provides a
rich number of templates that makes it possible to reconstruct cars of various
models. Given the approximated 3D ground truths in PASCAL3D+, we show in
Tab 3 that MeshInversion performs comparably to baselines in terms of 3D IoU.

4.4 Ablation Study

Effectiveness of Chamfer Mask Loss. As compared to Chamfer mask loss
in Tab. 4, both conventional mask losses give significantly worse reconstruction
results. As existing mask losses are obtained through rasterization, the induced
information loss often makes them less accurate in capturing subtle shape varia-
tions, which undermines geometry recovery. A detailed sensitivity study of var-
ious mask losses can be found in the supplementary materials.
Effectiveness of Chamfer Texture Loss. In the presence of imperfect poses
and high-frequency details in textures, we show in Tab. 4 that our proposed pixel-
and feature-level Chamfer texture losses are highly effective compared to existing
losses. In particular, pixel-to-pixel L1 loss tends to give blurry reconstructions.
Feature-based losses, perceptual loss [17] and contextual loss [31], are generally
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Table 4. Ablation study. Compared to conventional texture and mask losses, our
proposed pixel-level Chamfer texture losses LpCT and feature-level one LfCT , and
Chamfer mask loss LCM are effective to address the challenges due to misalignment
and quantization during rendering. Despite using not-so-accurate camera poses, our
method gives compelling geometric and perceptual performance by jointly optimizing
3D shape and camera during GAN inversion.

Mask loss Texture loss Camera IoU ↑ FID1 ↓ FID10 ↓ FID12 ↓
IoU loss L1 + perceptual loss fine-tuned 0.580 82.8 78.3 92.01

LCM L1 loss fine-tuned 0.732 58.9 78.3 74.7
LCM L1 + perceptual loss fine-tuned 0.741 56.3 44.0 64.9
LCM contextual loss fine-tuned 0.718 69.0 57.7 75.5

L1 loss LpCT + LfCT fine-tuned 0.589 71.8 73.2 74.1
IoU loss LpCT + LfCT fine-tuned 0.604 72.1 71.8 70.5

LCM LpCT + LfCT fixed 0.695 40.9 41.38 60.0

LCM LpCT + LfCT fine-tuned 0.752 37.3 38.7 56.8

more robust to misalignment, but they are usually not discriminative enough to
reflect the appearance details between two images. Although the contextual loss
is designed to address the misalignment issue for image-to-image translation, it
only considers feature distances while ignoring their positions in the image.
Effectiveness of Optimizing Camera Poses. In Tab. 4, we show that com-
pared to only optimizing latent code, jointly fine-tuning imperfect camera poses
effectively improves geometric performance.

5 Discussion

We have presented a new approach for monocular 3D object reconstruction. It
exploits generative prior encapsulated in a pre-trained GAN and reconstructs
textured shapes through GAN inversion. To address reprojection misalignment
and discretization-induced information loss due to 3D-to-2D degradation, we
propose two Chamfer-based losses in the 2D space, i.e., Chamfer texture loss and
Chamfer mask loss. By efficiently incorporating the GAN prior, MeshInversion
achieves highly realistic and faithful 3D reconstruction, and exhibits superior
generalization power for challenging cases, such as in the presence of occlusion
or extended articulations. However, this challenging problem is far from being
solved. In particular, although we can faithfully reconstruct flying birds with
open wings, the wings are only represented by a few vertices due to semantic
consistency across the entire category, which strictly limits the representation
power in terms of geometry and texture details. Therefore, future work may
explore more flexible solutions, for instance, an adaptive number of vertices can
be assigned to articulated regions to accommodate richer details.
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