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A Datasets and Metircs

The two datasets used in this work are introduced in detail as follows:

– KITTI [4] contains the rectified stereo image pairs captured from a driving
car. We use the Eigen split [2] to train and evaluate the proposed network
(called SDFA-Net), which consists of 22600 stereo image pairs for training
and 697 images for testing. Additionally, we also evaluate SDFA-Net on the
improved Eigen test set, which consists of 652 images and adopts the high-
quality ground-truth depth maps generated with the method in [8]. The
images are resized into the resolution of 1280× 384 at both the training and
inference stages, while we assume that the intrinsics of all the images are
identical.

– Cityscapes [1] contains the stereo pairs of urban driving scenes, and we take
22972 stereo pairs from it for jointly training SDFA-Net. When SDFA-Net is
trained on both the KITTI and Cityscapes datasets, we crop and resize the
images from Cityscapes into the resolution of 1280 × 384. Considering that
the baseline length in Cityscapes is different from that in KITTI, we scale
the predicted disparities on Cityscapes by the rough ratio of the baseline
lengths in the two datasets.

For the evaluation on both the raw and improved KITTI Eigen test set [2],
we use the center crop proposed in [3] and the standard depth cap of 80m. The
following metrics are used:
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where {D̂i, D
gt
i } are the predicted depth and the ground-truth depth at pixel i,

and N denotes the total number of the pixels with the ground truth. In practice,
we use aj = 1.25, 1.252, 1.253, which are denoted as A1, A2, and A3 in all the
tables.

B Ablation studies on the self-distilled training strategy

We conduct more ablation studies on the KITTI dataset [4] for verifying the effec-
tiveness of the proposed self-distilled training strategy. We firstly train a model
that uses the Offset-based Aggregation (OA) modules in the decoder with a
straightforward Self-Distilled training strategy (‘Swin†+OA (SD)’). Specifically,
since the OA module does not have the ‘Distilled data path’ (described in Sec-
tion 3.2), this model is trained under the self-distillation manner by using the
‘Raw data path’ twice in the two steps of each training iteation (described in
Section 3.3). The corresponding results are shown in Lines 1-3 of Table A1. The
results predicted by the ‘Swin†+OA’ (without the self-distillation) and the full
model ‘SDFA-Net’ are also reported for comparison. It can be seen that there
are only slight improvements under four metrics when the straightforward self-
distilled strategy is used. Our full model performs best under all the metrics,
which indicates that the proposed self-distilled training strategy with the two
data paths is more helpful for predicting accurate depths.

To verify the effectiveness of the principle masks and feature flipping strat-
egy defined under the self-distilled training strategy, we conduct further abla-
tion studies by omitting the visible principle mask (‘w/o. M l

v’), the photometric
principle mask (‘w/o. M l

p’), both of the masks (‘w/o. Masks’), and the feature
flipping (‘w/p. Flip’), respectively. The results shown in Lines 4-7 of Table A1
demonstrate that both of the masks could improve the accuracy, and the prin-
ciple mask has a stronger influence than the visible mask. It also can be seen
that the flipped features are more helpful for improving the accuracy. Since the
weights of ‘Raw & distilled data path’ (described in Section 3.2) in SDFA are
shared at the self-supervised and self-distilled forward propagation steps, they
are trained by minimizing both the image synthesis loss and self-distilled loss.
Therefore, the distilled depths predicted in the Self-distilled Forward Propaga-
tion are still suffer from occlusions to some extent. Specifically, the model trained
with left images of stereo pairs under a self-supervised manner always predicts
inaccurate depths on the left side of objects, whether the input features are
flipped or not. The feature flipping strategy could alleviate the occlusion prob-
lem because the inaccurate depths would occur on the right side of objects in
the distilled depth maps when the input features are flipped, which are not on
the real occluded regions and could be corrected by the reliable pseudo depths.
The visualization results of the depths predicted by the model trained with and



SDFA-Net 3

without feature flipping shown in Figure A1 also illustrate that our full model
predicts sharper and more accurate depths on occluded regions compared to
‘SDFA-Net w/o. Flip’. It demonstrates the effectiveness of the feature flipping
strategy.

C Ablation study on the backbone

To further explore the effectiveness of the proposed SDFA module on differ-
ent backbones, we train a new baseline model comprises a ResNet18 [6] as the
encoder and a raw decoder proposed in [5] (Res18+Raw). Then we use the
ResNet18 [6] to replace the modified Swin-transformer [7] in SDFA-Net (SDFA-
Net (Res18)). The corresponding results are reported in Lines 8-9 of Table A1.
It can be seen that SDFA also could improve the performance of the ResNet18-
based model.

Table A1. Additional quantitative results on the raw KITTI Eigen test set in the
ablation study.

Method Abs Rel↓ Sq Rel↓ RMSE↓ logRMSE↓ A1↑ A2↑ A3↑
Swin†+OA 0.091 0.554 4.082 0.174 0.899 0.967 0.984

Swin†+OA (SD) 0.092 0.549 4.003 0.174 0.900 0.967 0.985
SDFA-Net 0.090 0.538 3.896 0.169 0.906 0.969 0.985

SDFA-Net w/o. M l
v 0.090 0.544 3.928 0.169 0.905 0.969 0.985

SDFA-Net w/o. M l
p 0.096 0.566 4.013 0.173 0.902 0.968 0.985

SDFA-Net w/o. Masks 0.095 0.583 4.039 0.175 0.899 0.967 0.985
SDFA-Net w/o. Flip 0.097 0.583 4.078 0.177 0.897 0.966 0.984
Res18+Raw 0.102 0.644 4.341 0.187 0.880 0.960 0.982
SDFA-Net (Res18) 0.101 0.636 4.226 0.180 0.891 0.964 0.984

Input Images SDFA-Net w/o. Flip SDFA-Net

Fig.A1. Visualization results of the SDFA-Net trained without/with the feature flip-
ping strategy on KITTI.
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