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Fig. 1: DANBO enables learning volumetric body models from scratch, only
requiring a single video as input, yet enable driving by unseen poses (inset) that
are out of the training distribution, showing better robustness than existing
surface-free approaches. Real faces are blurred for anonymity.

Abstract. Deep learning greatly improved the realism of animatable
human models by learning geometry and appearance from collections
of 3D scans, template meshes, and multi-view imagery. High-resolution
models enable photo-realistic avatars but at the cost of requiring stu-
dio settings not available to end users. Our goal is to create avatars
directly from raw images without relying on expensive studio setups and
surface tracking. While a few such approaches exist, those have limited
generalization capabilities and are prone to learning spurious (chance)
correlations between irrelevant body parts, resulting in implausible de-
formations and missing body parts on unseen poses. We introduce a
three-stage method that induces two inductive biases to better disentan-
gled pose-dependent deformation. First, we model correlations of body
parts explicitly with a graph neural network. Second, to further reduce
the effect of chance correlations, we introduce localized per-bone features
that use a factorized volumetric representation and a new aggregation
function. We demonstrate that our model produces realistic body shapes
under challenging unseen poses and shows high-quality image synthesis.
Our proposed representation strikes a better trade-off between model ca-
pacity, expressiveness, and robustness than competing methods. Project
website: https://lemonatsu.github.io/danbo.
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1 Introduction

Animating real-life objects in the digital world is a long-pursued goal in com-
puter vision and graphics, and recent advances already enable 3D free-viewpoint
video, animation, and human performance retargeting [17,41,53]. Nevertheless,
animating high-definition virtual avatars with user-specific appearance and dy-
namic motion still remains a challenge: human body and clothing deformation
are inherently complex, unique, and modeling their intricate effects require ded-
icated approaches. Recent solutions achieve astonishing results [10,29,44,47,48]
when grounding on 3D data capture in designated studio settings, e.g., with
multi-camera capture systems and controlled illumination—inaccessible to the
general public for building personalized models.

Less restrictive are methods relying on parametric body models [31] that
learn plausible body shape, pose, and deformation from a collection of 3D scans.
These methods can thereby adapt to a wide range of body shapes [4,11,36], in
particular when using neural approaches to model details as a dynamic correc-
tive [6,8,14]. Even though subject-specific details such as clothing can be learned,
it remains difficult to generalize to shapes vastly different from the original scans.
Moreover, the most widely used body models have restrictive commercial li-
censes [31] and 3D scan datasets to train these afresh are expensive.

Our goal is to learn a high-quality model with subject-specific details directly
from images. Recent approaches in this class [35,46] use a neural radiance field
(NeRF) that is attached to a human skeleton initialized with an off-the-shelf 3D
human pose estimator. Similar to the original NeRF, the shape and appearance
are modeled implicitly with a neural network that takes as input a query location
and outputs density and radiance, and is only supervised with images through
differentiable volume rendering. However, unlike the original that models static
scenes, articulated NeRFs model time-varying body shape deformations by con-
ditioning on per-frame body pose and representing each frame with the same
underlying body model albeit in a different state. This results in an animatable
full-body model that is trained directly from videos and can then can be driven
with novel skeleton poses.

Not using an explicit surface poses a major difficulty as surface-based so-
lutions exploit surface points to anchor neural features locally as vertex at-
tributes [41], and leverage skinning weights to associate points on or close to the
surface to nearby body parts [29,40]. In absence of such constraints, A-NeRF [46]
uses an overparametrization by encoding 3D position relative to all body parts.
Thereby dependencies between a point and body parts are learned implicitly.
By contrast, NARF [35] explicitly predicts probabilities for the association of
3D points to body parts, similar to NASA [15]. However, this probability pre-
dictor is conditioned on the entire skeleton pose and is itself prone to poor
generalization. Therefore, both approaches rely on large training datasets and
generalization to unseen poses is limited—in particular because unrelated body
parts remain weakly entangled.

In this paper, we introduce Disentangled Articulated Neural BOdy (DANBO),
a surface-free approach that explicitly disentangles independent body parts for
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learning a generalizable personalized human model from unlabelled videos. It
extends the established articulated NeRF-based body modeling with two ad-
ditional stages, a body part-specific volumetric encoding that exploits human
skeleton structure as a prior using Graph Neural Networks (GNN) [23], and a
new aggregation module. Both designs are tailored for learning from few exam-
ples and optimized to be parameter efficient. Our main contributions are the
following:

– A surface-free human body model with better texture detail and improved
generalization when animated.

– GNN-based encoding that disentangles features from different body parts
and relies on factorized per-bone volumes for efficiency.

– A part-based feature aggregation strategy that improves on and is informed
by a detailed evaluation of existing aggregation functions.

We demonstrate that our proposed DANBO results in a generalizable neural
body model, with quality comparable to surface-based approaches.

2 Related Work

We start our review with general-purpose neural fields and then turn to human
body modeling with a focus on animatable neural representations.

Neural fields. Neural fields [34,37,45] have attracted recent attention due to their
ability to capture astonishing levels of detail. Instead of relying on explicit ge-
ometry representations such as triangle meshes or voxel grids, these methods
represent the scene implicitly - as a continuous function - that maps every point
in the 3D space to quantities of interest such as radiance, density, or signed dis-
tance. This approach was popularized with Neural Radiance Fields (NeRF) [34]
demonstrating impressive results on reconstructing static 3D scene presentation
directly from calibrated multi-view images. Various subsequent works focused on
improving performance on static scenes in terms of generalization [59], level of
detail [5,38], camera self-calibration [27,57], and resource efficiency [28,58]. Most
relevant are deformable models that capture non-static scenes with deformation
fields [16,17,43,49,53]. However, general deformation fields are unsuitable for ani-
mation and no one demonstrated that they can generalize to strongly articulated
motion in monocular video.

Template-based body models. The highest level of detail can be attained with
specialized performance capture systems, e.g., with dozens of cameras or a laser
scanner [19]. The resulting template mesh can then be textured and deformed
for capturing high-quality human performances, even from a single video [61].
Neural approaches further enable learning pose-dependent appearance and ge-
ometries [3], predict vertex displacements [20] or local primitive volumes [30]
for creating fine-grained local geometry and appearance including cloth wrinkles
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and freckles. The most recent ones use neural fields to learn implicit body mod-
els with the mesh providing strong supervision signals [2,10,44,51,54]. However,
template creation is limited to expensive controlled studio environments, often
entails manual cleaning, and high-quality ground truth annotations.

Parametric Human Body Models learn common shape and pose properties from
a large corpus of 3D scans [4,11,31,36]. For classical approaches the result are
factorized parameters for controlling pose, shape [11,31,36,55] and even cloth-
ing [47] that can fit to a new subject. Most prevalent is the SMPL [11,31] mesh
model with a linear shape space and pose-dependent deformation. However, most
existing models have restrictive commercial licenses and modeling person-specific
details from images requires additional reconstruction steps.

Personalized Body Models. Learning personalized body models given only videos
of a single actor is particularly challenging. Most existing approaches start from
estimating a parametric surface model such as SMPL and extend it to learn
specifics. For instance, one can anchor neural features spatially by associating
each SMPL vertex with a learnable latent feature, and then either diffuse vertex
features to the 3D space [26,41] or project the 3D query point to the SMPL
surface for feature retrieval. Incorrect shape estimates and missing details can
then be corrected by a subsequent neural rendering step. As texturing improves
classical approaches, neural texture mapping provides additional rendering qual-
ity [29]. Another line of work makes use of SMPL blend skinning weights as
initialization for learning deformation fields [40]. The deformation field maps 3D
points from 3D world space to canonical space, which enables learning a canon-
ical neural body field that predicts the radiance and density for rendering as
for the classical NeRF on static scenes. While the skinning weights in SMPL
provide an initialization, [40] showed that fine-tuning the deformation fields via
self-supervision helps rendering unseen poses. However, relying on body models
imposes the previously discussed limitations.

There are few methods that target learning neural body fields from im-
ages without relying on an explicit surface model. Closest to our method are
NARF [35] and A-NeRF [46], that learn articulated body models directly from
image sequences, leveraging 3D body pose estimates produced by off-the-shelf
approaches [25,24]. These methods encode 3D query points with respect to each
bone on the posed skeleton, and either explicitly predict blending weights [35] to
select the parts of influence or rely on a neural network to learn the assignment
implicitly by feeding it a large stack of all relative positions [46]. However, lacking
a prior for part assignments leads to spurious dependencies between irrelevant
body parts when the training poses are scarce and have low diversity [3,44]. Our
approach follows the same surface-free setting but improves upon these by intro-
ducing body part disentangled representations and a new aggregation function
that achieves better rendering quality and improved generalization on novel body
poses. A concurrent work COAP [33] shares a similar part-disentangle concept,
but differs significantly. COAP models part geometries separately from 3D scans,
whereas DANBO leverages the skeleton structure as a prior to fuse information
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Fig. 2: Overview. The final image is generated via volume rendering by sampling
points x along the ray d as in the original NeRF. Different is the conditioning
on pose. First, pose features are encoded locally to every bone of a skeleton with
a graph neural network using factorized volumes to increase efficiency (green
boxes). Second, these disentangled features are queried and aggregated with
learned weights (red module). Finally, the body shape and appearance are pre-
dicted via density and radiance fields σ and c (blue module).

from neighboring body parts, and learns both appearance and body geometry
from images without 3D supervisions.

3 Method

Our goal is to learn an animatable avatar from a collections of N images [Ik]
N
k=1

and the corresponding body pose in terms of skeleton joint angles [θk]
N
k=1 that

can stem from an off-the-shelf estimator [25,24], without using laser scans or
surface tracking. We represent the human body as a neural field that moves with
the input body pose. The neural field maps each 3D location to color and density
to generate a free-viewpoint synthetic image via volume rendering. See Figure 2
for an overview. Our approach consists of three stages that are trained end-
to-end. The first stage predicts a localized volumetric representation for each
body part with a Graph Neural Network (GNN). GNN has a limited receptive
field and encodes only locally relevant pose information—which naturally leads
to better disentangling between body parts in the absence of surface priors.
This stage is independent of the query locations and is thus executed only once
per frame. Additional performance is gained by using a factorized volume and
encouraging the volume bounds to be compact. The second stage retrieves a
feature code for each query point by sampling volume features for all body parts
that enclose the point and then aggregating the relevant ones using a separate
network that predicts blend weights. Finally, the third stage maps the resulting
per-query feature code to the density and radiance at that location, followed by
the volume rendering as in the original NeRF.

3.1 Stage I: Part-disentangled Feature Computation

Given a pose θ = [ω1, ω2, · · · , ω24], where ωi ∈ R6 [62] defines the rotation of the
bone i = 1, 2, · · · , 24, we represent the body part attached to each bone i with
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a coarse volume V (green boxes in Fig. 2), predicted by a neural network G,

[V1, V2, · · · , V24] = G(θ). (1)

We design G as a GNN operating on the skeleton graph with nodes initialized to
the corresponding joint angles in θ. In practice, we use two graph convolutional
layers followed by per-node 2-layer MLPs. Because the human skeleton is irreg-
ular, we learn individual MLP weights for every node. See the supplemental for
additional details on the graph network.

Factorized volume. A straight-forward way to represent a volume is via a dense
voxel grid, which has cubic complexity with respect to its resolution. Instead,
we propose to factorize each volume Vi = (vxi , v

y
i , v

z
i ) as one vector vi ∈ RH×M

for each 3D axis, where H is the voxel feature channel, and is M the volume
resolution. This is similar to [42] doing a factorization into 2D planes.

Fig. 3: We retrieve the
voxel feature by project-
ing x̂ to the three axes and
linearly interpolating the
feature neighboring the
projected location.

Figure 3 shows how to retrieve a feature for a given
3D point x̂i from the volume by projecting to each axis
and interpolating,

hx
i = vxi [s

x
i x̂i(x)] ∈ RH , (2)

where sxi is a learnable scaling factor to control the
volume size along the x-axis, and vxi [·] returns the in-
terpolated feature when the projected and scaled coor-
dinate falls in [−1, 1], and 0 otherwise. The extraction
for y and z axes follows the same procedure.

The GNN attaches one factorized volume to ev-
ery bone i and is computed only once for every pose.
In Section 4.4, we show that the factorized volumes compare favorably against
full 3D volumes on short video sequences with sparse or single views, while hav-
ing 2x lower parameter counts.

3.2 Stage II: Global Feature Aggregation

Given a query location x ∈ R3 in global coordinates, the corresponding voxel
feature can be retrieved by first mapping the 3D points to the bone-relative
space of i via the world-to-bone coordinates transformation T (ωi),[

x̂i

1

]
= T (ωi)

[
x
1

]
, (3)

and then retrieving the factorized features with equation Eq. 2. However, mul-
tiple volumes can overlap.

Windowed bounds. To facilitate learning volume dimensions sx that adapt to
the body shape and to mitigate seam artifacts, we apply a window function

wi = exp(−α(x̂i(x)
β + x̂i(y)

β + x̂i(z)
β)) (4)



DANBO: Disentangled Articulated Neural Body Representations 7

that attenuates the feature value hi = wi [h
x
i , h

y
i , h

z
i ] for x̂i towards the boundary

of the volume, with α = 2 and β = 6 similar to [30]. Still, multiple volumes will
overlap near joints and when body parts are in contact. Moreover, the overlap
changes with varying skeleton pose, demanding for an explicit aggregation step.

Voxel Aggregation Network. Since an x that is close to the body falls into multiple
volumes, we employ a voxel aggregation network A to decide which per-bone
voxel features to pass on to the downstream neural field for rendering. We explore
several strategies, and conduct ablation studies on each of the options. Our
aggregation network A consists of a graph layer followed by per-node 2-layer
MLPs with a small network width (32 per layer). We predict the weight pi for
the feature retrieved from bone i and compute the aggregated features via

pi = Ai(hi), and aggregated feature ĥ =

24∑
i=1

pihi. (5)

Below, we discuss the three strategies for computing the aggregation weights.

Concatenate. Simply concatenating all features lets the network disentangle in-
dividual factors, which is prone to overfitting as no domain knowledge is used.

Softmax-OOB. Instead of simply using Softmax to obtain sparse and normalized
weights as in [15,35], we can make use of our volume representation to remove
the influence of irrelevant bones

pi =
(1− oi) exp(ai)∑24
j=1(1− oi) exp(aj)

, (6)

where oi is the out-of-bound (OOB) indicator which equals to 1 when x̂i is not
inside of Vi. The potential caveat is that ĥ is still susceptible to features from
irrelevant volumes. For instance, Figure 4 shows that Softmax-OOB produces
artifacts when the hand gets close to the chest.

SoftmaxOOB Soft-softmax

Fig. 4: The influence of
aggregation strategies.

Soft-softmax Due to the design of A, the output logit
ai of bone i is only dependent on itself. We can lever-
age this design to obtain the weight for each Vi inde-
pendently and normalize their range to [0, 1] with a
sigmoid function,

pi = (1− oi) · S(ai), where S =
1

1 + exp(−ai)
. (7)

To nevertheless ensure that aggregated features are in the same range irrespec-
tively of the number of contributors, we introduce a soft-softmax constraint

Ls =
∑
x

(
24∑
i=1

(1− oi)pi − lx

)2

, (8)



8 S.-Y. Su et al.

that acts as a soft normalization factor opposed to the hard normalization in
softmax. By setting lx = 1 if Tx · σx > 0 and 0 otherwise, the loss enforces the
sum of weights of the activated bones to be close to 1 when the downstream
neural field has positive density prediction σ (e.g., when x belong to the human
body), and 0 otherwise. The results is a compromise between an unweighted
sum and softmax that attained the best generalization in our experiments. A
representative improvement on softmax is shown in Figure 4-right.

3.3 Stage III: Neural Field and Volume Rendering

The aggregated features ĥ contain the coarse, pose-dependent body features at
location x. To obtain high-quality human body, we learn a neural field F to
predict the refined radiance c and density σ for x

(c, σ) = F (ĥ,d), (9)

where d ∈ R2 is the view direction. We can then render the image of the human
subject by volume rendering as in the original NeRF [34],

Î(u, v; θ) =

Q∑
q=1

Tq(1− exp(−σqδq))cq, Tq = exp

−
q−1∑
j=1

σjδj

 . (10)

Given the pose θ, the predicted image color at the 2D pixel location Î(u, v; θ) is
computed by integrating the predicted color cq of the Q 3D samples along d. δq
is the distance between neighboring samples, and Tq represents the accumulated
transmittance at sample q.

3.4 Training

Our model is directly supervised with ground truth images via photometric loss

Lp =
∑

(u,v)∈I

|Î(u, v; θ)− I(u, v; θ)|. (11)

We use L1 loss to avoid overfitting to appearance changes that cannot be ex-
plained by pose deformation alone. To prevent the per-bone volumes from grow-
ing too large and taking over other volumes, we employ a volume loss on the
scaling factors as in [30]

Lv =

24∑
i=1

(sx · sy · sz). (12)

For Soft-softmax in Section 3.2, we further regularize the output weights via the
self-supervised loss Ls.

To summarize, the training objective of our approach is

L = Lp + λvLv + λsLs. (13)

We set both λv and λs to 0.001 for all experiments. See the supplemental for
more implementation details.
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Training view NeuralBody Anim-NeRF A-NeRF DANBO (Ours) Ground truth

Fig. 5: Novel-view synthesis results on Human3.6M [21]. DANBO renders
more complete limbs and clearer facial features than the baselines.

4 Experiments

In the following, we evaluate the improvements upon the most recent surface-free
neural body model A-NeRF [46], and compare against recent model-based solu-
tions NeuralBody [41] and Anim-NeRF [40]. An ablation study further quantifies
the improvement of using the proposed aggregation function, local GNN features,
and factorized volumes over simpler and more complex [30] alternatives, includ-
ing the effects on model capacity. The supplemental materials provide additional
quantitative and qualitative results, including videos of retargeting applications.
Metrics and protocols. Our goal is to analyze the quality of synthesizing novel
views and separately the rendering of previously unseen poses. We quantify im-
provements by PSNR, SSIM[52], and perceptual metrics KID [7,39] and LPIPS [60]
that are resilient to slight misalignments. All scores are computed over frames
withheld from training: (1) Novel view synthesis is evaluated on multi-view
datasets by learning the body model from a subset of cameras with the re-
maining ones used as the test set, i.e. rendering the same pose from the unseen
view, and (2) novel pose synthesis quality is measured by training on the first
part of a video and testing on the latter frames, given their corresponding 3D
pose as input. This assumes that only the pose changes as the person moves.
Hence, view-dependent illumination changes in (1) but stays similar in (2).

As the background image is not our focus, we report scores on tight bounding
boxes either provided by the dataset or computed from the 3D poses.
Datasets. We compare our DANBO using the established benchmarks for neural
bodies, covering indoor and outdoor, and single and multi-view settings:
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Table 1: Novel-view synthesis comparisons on Human3.6M [21]. The
disentangled feature enables DANBO to achieve better novel view synthesis.

NeuralBody [41] Anim-NeRF [40] A-NeRF [46] DANBO (Ours)

PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓
S1 22.88 0.897 0.048 0.153 22.74 0.896 0.106 0.156 23.93 0.912 0.042 0.153 23.95 0.916 0.033 0.148
S5 24.61 0.917 0.033 0.146 23.40 0.895 0.087 0.151 24.67 0.919 0.036 0.147 24.86 0.924 0.029 0.142
S6 22.83 0.888 0.050 0.146 22.85 0.871 0.113 0.151 23.78 0.887 0.051 0.164 24.54 0.903 0.035 0.143
S7 23.17 0.915 0.043 0.134 21.97 0.891 0.054 0.140 24.40 0.917 0.025 0.139 24.45 0.920 0.028 0.131
S8 21.72 0.894 0.071 0.177 22.82 0.900 0.095 0.178 22.70 0.907 0.086 0.196 23.36 0.917 0.068 0.173
S9 24.29 0.911 0.035 0.141 24.86 0.911 0.057 0.145 25.58 0.916 0.039 0.150 26.15 0.925 0.040 0.137
S11 23.70 0.896 0.080 0.155 24.76 0.907 0.077 0.158 24.38 0.905 0.057 0.164 25.58 0.917 0.060 0.153

Avg 23.31 0.903 0.051 0.150 23.34 0.896 0.084 0.154 24.21 0.909 0.048 0.159 24.70 0.917 0.042 0.146

Ground
truth

Neural
Body

Anim-
NeRF

A-NeRF DANBO
(Ours)

Ground
truth

Neural
Body

Anim-
NeRF

A-NeRF DANBO
(Ours)

Fig. 6: Unseen pose synthesis on Human3.6M [21] test split. Our dis-
entangled representation enables DANBO to generate plausible geometry and
deformation for held-out testing poses, and achieve better visual quality than
both surface-free and surface-based baselines. Note that, unlike Anim-NeRF [40],
we do not require test-time finetuning for unseen poses.

– Human3.6M3 [21,22]: We follow the same evaluation protocol as in Anim-
NeRF [40], with a total of 7 subjects for evaluation. The foreground maps
are computed using [18].

– MonoPerfCap [56] features multiple outdoor sequences, recorded using a
single high-resolution camera. We use the same two sequences and setting as
in A-NeRF [46]: Weipeng_outdoor and Nadia_outdoor with 1151 and 1635
images, respectively, of resolution 1080 × 1920. Human and camera pose is
estimated by SPIN [25] and refined with [46]. Foreground masks are obtained
by DeepLabv3 [9].

We further include the challenging motion such as dancing and gymnastic poses
from Mixamo [1] and Surreal+CMU-Mocap dataset [50,12] for motion retarget-
ing (detailed in the supplemental). In total, we evaluate on 9 different subjects
and 11 different sequences.

3 Meta did not have access to the Human3.6M dataset.
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Source A-NeRF DANBO (Ours) Source A-NeRF DANBO (Ours)

Fig. 7: Motion retargeting on Mixamo [1] and Surreal [12,50] dataset
with body models trained on various subjects. DANBO shows better robustness
and generalization than the surface-free approach A-NeRF.

4.1 Novel View Synthesis

View synthesis of poses seen during training is simpler as the interplay between
body parts is observable. Hence, our explicit disentanglement of body parts is
less crucial but still beneficial. Compared to the baselines, higher detail is present
and body shape is better preserved, such as visible at facial features and arm
contours in Figure 5. Anim-NeRF shows slightly distorted arms and cloud-like
artifacts, potentially caused by incorrectly estimated deformation fields. Table 1
verifies these improvements on the test set of Anim-NeRF [40].
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Reference A-NeRF Ours Reference A-NeRF Ours

Fig. 8: DANBO better preserves body geometry, showing a less noisy
surface than A-NeRF. We extract the isosurface using Marching cubes [32]
with voxel resolution 256. See the supplemental for more results.

Ground
Truth

w/o
aggregation

w/o volume Softmax Softmax-
OOB

Sum-OOB SlabConv Ours

Fig. 9: Ablation study on Human3.6M [21] test split novel pose (top row)
and novel view (bottom row). Our proposed designs together achieve better
results with less distortion on the body parts, particularly in the limbs and face.

Table 2: Novel-pose synthesis comparisons on Human3.6M [21] (row 1-
8) and MonoPerfCap [56] (row 9-11) . Our part-disentangled design enables
DANBO to generalize better to unseen poses with superior perceptual qualities.

NeuralBody [41] Anim-NeRF [40] A-NeRF [46] DANBO (Ours)

PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓
S1 22.10 0.878 0.110 0.140 21.37 0.868 0.163 0.141 22.67 0.883 0.178 0.143 23.03 0.895 0.081 0.135
S5 23.52 0.897 0.039 0.151 22.29 0.875 0.123 0.155 22.96 0.888 0.081 0.157 23.66 0.903 0.049 0.147
S6 23.42 0.892 0.095 0.165 22.59 0.884 0.131 0.172 22.77 0.869 0.169 0.198 24.57 0.906 0.052 0.158
S7 22.59 0.893 0.046 0.140 22.22 0.878 0.066 0.143 22.80 0.880 0.059 0.152 23.08 0.897 0.036 0.136
S8 20.94 0.876 0.137 0.173 21.78 0.882 0.107 0.172 21.95 0.886 0.142 0.203 22.60 0.904 0.092 0.167
S9 23.05 0.885 0.043 0.141 23.73 0.886 0.068 0.141 24.16 0.889 0.074 0.152 24.79 0.904 0.042 0.136
S11 23.72 0.884 0.060 0.148 23.92 0.889 0.087 0.149 23.40 0.880 0.079 0.164 24.57 0.901 0.040 0.144

Avg 22.76 0.886 0.076 0.151 22.56 0.880 0.106 0.153 22.96 0.882 0.112 0.167 23.76 0.902 0.056 0.146

Nadia - - - - - - - - 24.88 0.931 0.048 0.115 24.44 0.921 0.026 0.111
Weipeng - - - - - - - - 22.45 0.893 0.039 0.125 22.07 0.885 0.024 0.117

Avg - - - - - - - - 23.67 0.912 0.044 0.120 23.25 0.903 0.025 0.114

4.2 Unseen Pose Synthesis and Animation

Rendering of unseen poses tests how well the learned pose-dependent deforma-
tions generalize. Figure 6 shows how differences are most prominent on limbs
and faces. DANBO achieves better rendering quality and retains more consistent
geometric details, generalizing well to both held out poses and out-of-distribution
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Table 3: Ablation on each
of the proposed modules.

Method variant PSNR ↑ SSIM ↑

Ours w/o aggregation 17.08 0.627
Ours w/o volume 24.24 0.892
Ours w/o GNN 23.87 0.896
Ours full 24.38 0.899

Table 4: Ablation on different
aggregation methods.

Aggregation methods PSNR ↑ SSIM ↑

Softmax 23.80 0.896
Softmax-OOB 24.00 0.897
Sum-OOB 23.22 0.890
Sigmoid-OOB 23.75 0.896
Soft-softmax (Ours) 24.38 0.899

Table 5: Ablation study of
different coarse volumes.

Volume type PSNR ↑ SSIM ↑

3D Volume (SlabConv) [30] 24.17 0.892
Factorized Volume (Ours) 24.38 0.899

poses (see Figure 7). Table 2 reports the quantitative results. DANBO consis-
tently outperforms other baselines on Human3.6M. On MonoPerCap, the high-
frequency details generated by DANBO yield lower PSNR and SSIM scores, as
they penalize slightly misaligned details more than the overly smoothed results
by A-NeRF. The perceptual metrics properly capture DANNO’s significant qual-
ity improvement by 43% on KID and 5% on LPIPS. We attribute the boost in
generalization and visual quality to the improved localization via graph neu-
ral networks as well as the Soft-softmax that outperforms the default softmax
baseline as used in [15,35]. The ablation study below provides further insights.

Manual animation and driving of virtual models, e.g., in VR, requires such
pose synthesis, for which Figure 7 provides animation examples. Note that
no quantitative evaluation is possible here as no ground truth reference image
is available in this mode. Note also that the more difficult outdoor sequences
are trained from a monocular video, a setting supported only by few existing
approaches. The qualitative examples validate that DANBO achieves better
rendering quality on most subjects, and the poses generated by DANBO are
sharper, with more consistent body parts, and suffer from less floating artifacts.

4.3 Geometry Comparisons

To further validate that DANBO improves the body shape reconstruction, we
visualize the learned body geometry of DANBO and A-NeRF on unseen poses of
the Human3.6M [21] dataset in Figure 8. DANBO captures better body shapes
and per-part geometry despite also being surface-free. A-NeRF suffers from miss-
ing and shrinking body parts, and predicts noisy density near the body surface.
Besides the improved completeness, DANBO shows a smoother surface, which
we attribute to our coarse per-bone volumetric representation.

4.4 Ablation Study

We conduct the ablation study on S9 of Human3.6M using the same splits as
before. To speed up iteration cycles, we reduce the training iterations to 100k,
and use every other pose in the training set from the default configuration. We
furthermore decreased the factorized volume resolution to M = 10. Figure 9
shows results on both novel pose and novel view for all variants. Proposed Mod-
ules. In Table 3, we report how each of our proposed modules contributes to
the final performance. For Ours w/o learned aggregation, we simply concate-
nate all the retrieved voxel features as inputs to the NeRF network, which is
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similar to A-NeRF but using GNN features. This leads to poor generalization,
and the w/o aggregation model predicts many floating artifacts in empty space.
For Ours w/o volume, the GNN predicts per-bone feature vector instead of fac-
torized volumes. In this variant, the aggregation network takes as input x̂i to
predict per-bone weights. The feature to neural field F is the aggregated GNN
feature and local coordinates. While the w/o volume variant achieves compa-
rable results, the model suffers from overfitting, and produces distorted results
on joints. In sum, both our aggregation network and per-bone volume designs
provide useful inductive biases for learning robust and expressive models.
Aggregation Strategy. In Table 4, we show the evaluation results with different ag-
gregation methods in Section 3.2. Note that the Softmax variant is equivalent to
NARF [35] with our GNN backbone. Strategy with out-of-bound handling shows
better robustness to unseen poses, with our Soft-softmax aggregation works bet-
ter than Softmax-OOB, and the unweighted variant SUM-OOB being the worst.
Choice of Volume Representation. In Table 5, we show the results of using both
our factorized volumes, and full 3D volume predicted using SlabConv [30]. We
observe that SlabConv, while capturing finer texture details as the model is more
expressive, is prone to noises in the empty space. We conclude that more views
and pose data are required for using SlabConv as the volume representation.

5 Limitations and Discussion

GT Anim-NeRF Ours

Fig. 10: Unseen local poses create
artifacts around the joints.

Similar to other neural field-based approaches,
the computation time for DANBO remains
the limiting factor for real-time applications.
While DANBO offers better generalization to
unseen poses, we show in Figure 10 that in
extreme cases it sometimes mixes the parts
around joints together leading to deforma-
tion and blur. Handling such cases remains
an open problem as also the surface-based method Anim-NeRF produces candy
wrap artifacts around the elbow. It is also worth noting that DANBO is a person-
specific model that needs to be trained individually for each person, which is
desirable so long as sufficient training time and data is available.

6 Conclusion

We presented a surface-free approach for learning an animatable human body
model from video. This is practical as it applies to monocular recordings, allevi-
ates the restrictions of template or parametric models, and works in indoor and
outdoor conditions. Our contributions on encoding pose locally with a GNN, fac-
torized volumes, and a soft aggregation function improve upon existing models
in the same class and even rival recent surface-based solutions.
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