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1 Implementation Details

Network architectures Here, we describe our network architectures in detail. In
Fig. Sla, the surface normal net Ng(-) uses 8 fully-connected layers with 256
channels. Tt takes positional encoded [11] pixel coordinates v(x),v(y) as input,
directly output the surface normal at that position . = [n,, n,, n,]7. As shown in
Fig. S1b, the material net Mg(-) uses the same structure but with 3 more fully-
connected layers than normal net. It takes the same positional encoded pixel
coordinates input and outputs the diffuse and specular albedos of the surface
point. As shown in Fig. Slc, the lighting network Ly (-) consists of 7 convolutional
ReLU layers and 3 fully connected layers. It takes the image with size H x W x 3
as input, directly outputs the light intensity e and light direction [ of that image.

Early supervision Following previous works [2, 8], we additionally use the surface
smoothness constraints and shape-from-contour priors as the early supervision
in our network. After early-stage training in the first half iterations, we discard
these priors and train the network via photometric loss.
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Fig.S1: The network architectures of our networks.
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2 Visualization of the effectiveness of PSB

Recall that, although the GBR ambiguity can be reduced up to a binary con-
cave/convex ambiguity under our model, there is no guarantee that no local
minima exist during the optimization. To effectively avoid the local minimas
during the optimization, we propose the progressive specular bases (PSB) for
the network. In Fig. S2, we provide the visual comparison between the model
with PSB and the model without PSB. The first row displays the observed
ground truth image under a light source, the ground truth light distribution,
and the ground truth surface normal. The second row and third row display the
reconstructed image, the estimated light distribution, the estimated normal, the
error map of estimated normal, and the estimated shape from our “with PSB
model” and “without PSB model” respectively.

As we can see, the “without PSB” produces a worse light and normal es-
timation. Both the light and normal are “shifted” along the z axis. However,
its reconstructed image still presents a similar quality to the observed ground
truth (PSNR: 40.06dB). This observation coincides with the observation from
Belhumeur [3], where they also observed that the differences in shape are hard
to be discerned from the frontal images given a small scale along the z axis.

The PSB can provide prior information to the network and limit the space
of possible solutions by forcing the network to fit on the shiny specularities first
in the early stage of optimization. Hence, by applying with the PSB, even with
a poor network initialization, our network can still effectively avoid the local
minimas to achieve better results.
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Fig. S2: Visualized comparisons of with/without using the progressive specular
basis (PSB).
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3 Ablation study on lighting model

In this section, we conduct two experiments to showcase the effectiveness of
the lighting network. As shown in Fig. S3: on the first row, we showcase the
observed(GT) image, ground truth lights and normals; on the second row, we
display reconstructed image and estimated result using the model with lighting
network Ly(-); on the third row, we present results using the model without
lighting network and takes randomized lights as initialization.

Without using the lighting network, we take randomized lights as initializa-
tion. Our network may sometimes produce a flipped surface as a result, as shown
in the third row in Fig. S3. As we can see in the second row and third row in
Fig. S3, the estimated lights and normals are flipped in the z,y axis. In the
third row, the mean angular error (MAE) for light direction is 55.47 degrees,
and normal error is 91.07 degrees. However, its reconstructed image is almost
identical to the observed ground truth image.

During the experiments, we observed that this convex/concave ambiguity
can be easily resolved by providing the model with a coarse lighting estimation,
as shown in second row in Fig. S3. Our lighting model Ly (-) can provide a
coarse lighting estimation as the starting point, which is sufficient to for the
followed self-supervised network to further refine the coarse results and produce
the correct lights.
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Fig. S3: Visualization of the effectiveness of lighting model.
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4 Robustness on Sparse Inputs

In this section, we present the results on DiLiGenT [12] dataset with only 16
images at the inputs. Following previous works on sparse inputs for photometric
stereo [9], we selected 16 images as input for our method and others for compar-
ison. The errors are shows in Tab. S1. As we can see from the table, our method
still outperform the state-of-the-art with only 16 images. Besides, with 16 images
as input, our method only drop 0.72 degrees in MAE in normal estimation, while
GCNet[7]+PSFCN[6] drops 2.04 degrees in MAE. It also demonstrate that our
method is robust against sparse input.

Table S1: Quantitative comparison on DiLiGenT with only 16 images at input.

(a) MAE of surface normal.

model ‘All images 16 images
Ours 7.05 7.77
GCNet[7]+PSFCN[6]| 8.70 10.74

(b) Scale-invariant relative error of light intensities.

model ‘All images 16 images

Ours | 0.0365  0.0548
GCNet[7]| 0.0519  0.0550

(c) MAE of light directions.

model ‘All images 16 images

Ours 4.02 5.02
GCNet[7] 3.32 4.04

5 Results on DiLiGenT benchmark

In this section, we present the results on DiLiGenT [12] dataset, as shown in the
following Fig. S6, S7 and S8. For each object, the first row displays the ground
truth lighting, ours estimated lighting, and lighting results from GCNet [7] and
SDPS-Net [5]. The second row displays the ground truth surface normal and
estimated surface normal by ours and competing methods. The last row display
the observed image and the error map of the estimated surface normal. We also
present the quantitative evaluation for lighting and normal below the lighting
and error map. Note that UPS-FCN [6] can not estimate the lighting.
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Results on almost Lambertian surface As we can see from the results, our method
works well for specular objects, as well as objects that appear to be very diffuse,
such as “Cat”. In order to better understand why our method also works well on
objects like “Cat”, we visualized the reconstructed terms pg and p, in Fig. S4.
Figure S4 shows that the “Cat” is not purely diffuse and contains very soft
specularities. Our method is able to capture and use these soft specularities as
clues for estimating the surface normal.

Observed Image

Fig. S4: Visualization of reconstructed p; and ps in object “Cat”.

6 Results on Apple&Gourd dataset

In this section, we present the results on Apple&Gourd [1] dataset. In Fig. S9,
for each object, the first row displays the ground truth lighting, ours estimated
lighting, and lighting results from GCNet [7]. The second row displays the ob-
served image and estimated surface normal by ours and competing methods.
Note that there is no ground truth surface normal available in this dataset, so
we only visualized compare the normal results. As shown in “Gourd?2”, it is clear
that our estimated normal present higher quality than previous state-of-the-art
method GCNet [7]+PSFCN [6].

7 Results on synthetic dataset with 100 MERL BRDF's

To evaluation our method across different surface materials and BRDFs, we
test our method on a publicly available synthetic dataset!: GCNet-Synthetic [7].
The dataset consists of two rendered synthetic objects: Dragon and Armadillo
for testing. This dataset was rendered with 100 MERL [10] BRDFs under 82
random light directions using physically based renderer Mitsuba?.

We showcase the results in Fig. S10 and Fig. S11. As we can see from the
figures, our method produce comparable results to GCNet [7].

! https://github.com/guanyingc/UPS-GCNet
2 http://mitsuba-renderer.org/
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We dive into the MERL dataset and found that our method fails to fit the
materials such as “steel”, “chrome”, and “chrome-steel”, where they generally
present asymmetric highlights as shown in Fig. S5. Prior work [4] believed that
these anomaly asymmetric highlights could be caused by the lens flare. We be-
lieve that using a different BRDF model to account for these effects can improve
the performance on these materials. We are happy to consider this as a future
direction.

Fig.S5: Rendered sphere of “steel”. Left is the data from MERL. Right is our
estimated result.

8 Self-captured images outside of the laboratory

We captured 55 images with a Nikon camera and a handheld flashlight. The
target object is captured in a regular livingroom environment with lights off.
The captured image and our estimated results (normals, shadings, and lights)
are shown in Fig. S12. As we can see from the results, our method still performs
very well in a non-laboratory environment.

9 Future works

We believe that our method, with some adaptations, can be extended to solve
the problem under many other assumptions, such as specularity detection, multi-
view photometric stereo, photometric stereo under multi-light-sources and natu-
ral illumination. Our method inverse renders the object to shapes and materials.
Hence, the specularity detection is also available at output, as shown in Fig. S4.
A possible adaptation for multi-view photometric stereo is to apply our algo-
rithm to each view of the object, and then fuse the normal map from different
views to obtain the full geometry. We can also model the environment map as
Spherical-Gaussians to enable fast integration of BRDF and lighting in natural-
illumination and multi-light-sources.
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Ours GCNet + PS-FCN SDPS-Net UPS-FCN
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Fig. S6: Results for “Buddha” and “Cat” from DiLiGenT dataset.
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GCNet + PS-FCN SDPS-Net UPS-FCN
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Fig. S7: Results for “Cow” , “Goblet”, a

nd “Harvest” from DiLiGenT dataset.
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GCNet + PS-FCN SDPS-Net UPS-FCN
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Fig. S8: Results for “Potl1” | “Pot2”, and “Reading” from DiLiGenT dataset.
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GCNet + PS-FCN
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Fig. S9:

Results for “Apple”
dataset.

, “Gourdl”, and “Gourd2” from Apple&Gourd
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(a) Ground truth of lights and surface normals
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Fig.S11: Comparison on object “Armadillo” rendered with 100 MERL BRDFs.
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Fig.S12: The captured image of “CokeCan” and our estimations.
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