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In this supplementary document, we first present the details of our network
architecture (Section 1) and then provide additional experiments: analysis for
number of depth planes (Section 2), robustness to noisy input (Section 3), stereo
matching framework for depth completion (Section 4), and additional qualitative
results (Section 5). Please refer to the supplementary video for results of depth
sequences.

1 Network Architecture

Our framework is composed of three networks: 2D and 3D encoders, and a
3D UNet. All three networks are based on convolutional neural networks. The
2D encoder consists of 2D convolutional layers. For computational efficiency,
we apply sparse 3D convolutions [4] and pseudo-3D convolutions [7] to the 3D
encoder and 3D UNet, respectively. The network architectures are illustrated in
Figure 1.

2 Analysis on Number of Depth Planes

We measured RMSE, runtime, and memory footprint according to the number
of depth planes K (Table 1). While the memory footprint and runtime increase
as K increases, RMSE does not improve anymore when K is larger than 16.
Therefore, we set K to 16.

3 Robustness to Noisy Input

We compare our methods (Types A and C) and NLSPN [6] (2D CNN-based
SOTA) on robustness to input depth noise. We simulate noisy inputs by adding
zero-mean Gaussian noise to the input depth samples (the higher the sigma
value σ, the stronger the noise). When the input noise increases, our methods
show better performance compared to NLSPN (Table 2). This result indicates
that our 3D CNN-based approach is more robust to noise. In addition, Type
A achieves better performance than Type C on noisy inputs, because Type C
assigns image features only to noisy input depth positions.
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(b) 3D Encoder
(c) 3D UNet
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: Skip Connection (Concat)
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(a) 2D Encoder
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Fig. 1. Detailed network architectures for individual components (2D and 3D encoders,
and the 3D UNet). Each ResBlock [5] and P3D-A Block [7] are characterized by channel
dimensions, and each convolutional layer is characterized by kernel size and channel
dimensions.

Table 1. Analysis on the number of depth planes on NYUv2 dataset.

K 4 8 16 32 64 96

RMSE (m) 0.104 0.098 0.096 0.097 0.097 0.097
Runtime (ms) 14 14 15 17 22 32
Memory (MiB) 16 20 26 54 79 104

4 Stereo Matching Framework for Depth Completion

Our CostDCNet infers the cost volume before determining the final completed
depth. Therefore, we can näıvely think of direct adaptation of the existing stereo
matching frameworks for depth completion task. To be specific, we can remove
the building cost volume part of a stereo matching framework and replace it with
cost-volume construction of our CostDCNet. To compare the merged framework
and CostDCNet, we chose the BGNet [9] among several stereo matching frame-
works because this is one of the most efficient state-of-the-art frameworks.

We initialize our CostDCNet part with pre-trained weights, then train the
merged framework. Table 3 shows the quantitative results of the merged frame-
work and ours. The merged framework shows improvements on both RMSE and
REL metrics. However, these performance gains seem marginal, considering both
considerable increase in network parameters and inference time. Consequently,
we do not adopt the merged framework as our final model because we focus on
designing a fast and lightweight architecture.
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Table 2. Robustness comparison on NYUv2 dataset (Measure: RMSE(m)).

Method
σ (m)

0 0.1 0.2 0.3 0.4 0.5

NLSPN [6] 0.092 0.132 0.202 0.273 0.345 0.416
Ours (Type A) 0.097 0.134 0.197 0.265 0.333 0.405
Ours (Type C) 0.096 0.133 0.198 0.269 0.338 0.407

Table 3. Quantitative comparisons with the merged framework for sparse depth com-
pletion on the NYUv2 dataset.

Method #params↓ Infer. time↓ RMSE(m) ↓ Rel(m)↓ δ1.25 ↑ δ1.252 ↑ δ1.053 ↑
Ours 1.8M 16ms 0.96 0.013 99.5 99.9 100

Merged 5.4M 30ms 0.93 0.012 99.5 99.9 100

5 Additional Qualitative Results

We present additional qualitative results on the NYUv2 dataset [8] (Figure 2)
and the Matterport3D dataset [2] (Figure 3). For the NYUv2 dataset, we use the
sparse depth setting while the semi-dense one is used for the Matterport dataset.
As shown in Figures 2 and 3, our CostDCNet overall shows better reconstruct
structures from input RGB-D images on various scenes.
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(a) RGB (b) CSPN [3] (c) NLSPN [6] (d) Ours (e) GT

Fig. 2. Additional qualitative comparisons with other methods on the NYUv2 dataset.
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(a) RGB (b) Raw Depth (c) Cao [1] (d) Ours (e) GT

Fig. 3. Additional qualitative comparisons with Cao et al. [1] on the Matterport3D
dataset.
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