
Object Wake-up: 3D Object Rigging from a
Single Image

Supplementary

1 Network Implementation Details
In this section, we describe missing details of our proposed network for 3D object
wake-up. For the reconstruction stage, as shown in Fig. 1, taking a single RGB image
as input, and going through the Transformer based image encoder, the network predicts
the occupancy probability for the sampled points from the deep implicit function. In
addition, following the common encoder-decoder design for occupancy prediction, we
also incorporate an auxiliary voxel prediction branch with a 3D CNN decoder to further
improve the performance.

1.1 Transformer Encoder
A Vision Transformer takes image In as input by splitting the image into P 2 patches.
At each time step, the corresponding patch is embedded by converting it into a fixed-
size vector then summed with positional embedding. The Transformer model takes
the embedded feature as input and outputs a dense image feature vector for each of the
input patch as well as a global dense image feature vector extracted from all the patches.
For single-view reconstruction, we only use the global dense image vector as the input.
In our implementation, we use the Data-efficient image Transformer (DeiT) [10] as the
backbone encoder.
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Figure 1: An overview of our reconstruction method from single RGB image.
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Figure 2: The residual block in occupancy decoder.

1.2 3D CNN Voxel Decoder
The input of the 3D CNN decoder is the image embedding outputted by the Trans-
former encoder. To make it feasible for a 3D convolutional network, we transform the
1D feature vector of length N to a 13 × N volume. Here, we use a relatively simple
architecture for the CNN Decoder in order to motivate the encoder to encode more in-
formation, where we follow the design of 3D-UNet [3] by applying 3D convolutional
layers along with upsampling layers for the 3D feature volume iteratively until the final
desired resolution is obtained. In our work, a voxel grid with a resolution of 643 is in
use.

1.3 Occupancy Decoder
To reconstruct the 3D mesh, 3D points are uniformly sampled from the object space,
and the proposed framework predicts the occupancy value for each of the sampled
points conditioned on the extracted image feature from the encoder. The occupancy
decoder consists of 5 residual blocks and each of them has two conditional batch nor-
malization layers followed by a 1D convolutional layer. The conditional latent feature
comes from the Transformer encoder, (i.e., the image feature) where the input latent
feature is the embedded positional feature for each of the sampled points.

A simple illustration of the residual block can be found in Fig. 2.

1.4 3D Channel Activation Module for 3D-UNet
As described in our main manuscript, we adopt the popular SE block in 2D image
classification to 3D-UNet. A 3D adaptive channel activation module here is developed
as a plug-in module, to be attached after each of the encoder and decoder blocks of the
3D UNet. A clear visual illustration of the 3D adaptive channel activation module is
presented in Fig. 3.
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Figure 3: The 3D adaptive channel activation module.

2 Datasets

2.1 Our ShapeRR dataset
ShapeNet [1] is a large-scale 3D object dataset consisting of 55 object categories with
over 50K 3D models. In this work, we focus on 4 categories that can be applied for
animation, namely chair, table, airplane and lamp.

Our rendering system is designed using Unreal Engine 4 where we have multiple
cameras placed in the scene with a group of spotlights and skylights. The setup of our
ShapeRR image capturing system is shown in Fig. 4. Basically, the object is placed at
the origin in the scene, and a randomly generated transformation is applied to the object
to enhance the diversity of object orientation and position. Specifically, we have used 6
cameras to capture the image and 8 different lighting sources where they are randomly
turned on and off in the rendering process. Our rendering system is able to generate
realistic images with customized setting in terms of adaptive output image resolution,
multiple materials for objects, varied lighting sources and conditions.

For each object, we generate 4 random transformations. The rendered images have
the resolution of 256× 256 with 24 random views. For a better comparison with previ-
ous work, R2N2 [2], here we provide sample rendered images in Fig. reffig:compare.
The top row contains the original rendered image where the bottom row provides a
zoom-in view. It is worth noting that our rendering results provide fine-grained details
and realistic shadow created by adaptive lighting sources. In particular, in the original
R2N2 dataset, the material of 3D objects cannot be correctly loaded and rendered (in
the table example) where we have successfully fixed this issue.

2.2 Our SSkel dataset
As there is no existing dataset of general 3D objects with ground-truth skeletons, we
collect such a dataset (named SSkel for ShapeNet skeleton) by designing an annotation
tool to place joints and build kinematic trees for the 3D shapes. To ensure consistency,
a predefined protocol is used for each object category.

Annotation Tool. In order to place joints, bones and eventually build a kinematic
tree annotation, we need to be able to interact and manipulate the 3D object in a given
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Figure 4: An overview of our realistic rendering image capturing system. In (a) and
(b) we provide a glance on our system configuration. In (c), different camera positions
that simulate common photo capture viewpoint are shown in a closer view.

Figure 5: A comparison of rendered images between our developed system and the
R2N2 dataset. Our rendering provides significantly better visual results.
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Figure 6: The developed annotation tool for skeleton annotation to build our SSkel
dataset.

scene. We used modern web graphic libraries including three.js and WebGL to develop
a web-based annotation interface. The interface can process commonly used 3D object
format, such as OBJ, FBX and PLY.

Once the object is loaded to the scene, we can view the object in different modes,
namely meshed, wire frame, and point cloud. We will automatically generate candidate
joints by using the part segmentation information [6, 9]. Furthermore, the interface
allows the user to manually place joints. Basically, the annotator can adjust the spatial
position of the joint, label the type of the joint (root, or other types). A screenshot of
the developed annotation tool is shown in Fig. 6.

Visualization of Sample Data. We show some sampled annotation results from
different categories in Fig. 7.

3 Experiments
In this section, we demonstrate supplementary experiments for our work.

3.1 Training
The 3D reconstruction network is trained in a 2-stage fashion: we first train the Trans-
former encoder and voxel 3D CNN decoder for 10000 iteration with a batch size of 32,
learning rate 0.00001 using Adam optimizer. Then, we freeze the 3D voxel branch and
fine-tune the warmed-up Transformer encoder with the occupancy decoder, using the
same batch size but a learning rate of 0.0001 and train it with an end-to-end fashion
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Figure 7: Sampled annotation models in our SSkel dataset. The root joint is marked in
red.

ResNet DeiT Vox. Dice CD (↓) Vol. IoU (↑)

✓ 2.1504 0.5014
✓ 1.9801 0.5217
✓ ✓ 1.9723 0.5268
✓ ✓ ✓ 1.9301 0.5339

Table 1: Ablation study on the ShapeRR dataset to validate the effectiveness of each
component in our image-based reconstruction step. Chamfer Distance (CD) and Volu-
metric IoU (Vol. IoU) are used as metrics.

for another 10000 iteration. We use the exact same training scheme for experiments on
both the ShapeRR dataset and R2N2 dataset.

3.2 Ablation study
For the sake of completeness, we conduct a group of ablative studies on the components
we have in the reconstruction model. First, we test different backbone architectures
(i.e., ResNet and DeiT-Tiny) used in our method. We then perform a warm-up training
by including the voxel prediction branch, after the warm-up training, the voxel branch
is discarded. Lastly, we compare training with Dice loss and the ordinary binary cross-
entropy loss. Brief quantitative results are demonstrated in Table 1.

We progressively incorporate different module and loss function
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Volumetric IoU (↑)
Method Chair Table Lamp Airplane Avg.
OccNet [5] 0.501 0.506 0.371 0.571 0.487
DVR [7] - - - - -
D2IM-Net [4] 0.561 0.536 0.421 0.558 0.519
Ours 0.555 0.539 0.407 0.626 0.531

Chamfer Distance (↓)
Method Chair Table Lamp Airplane Avg.
OccNet [5] 0.228 0.189 0.479 0.147 0.260
DVR [7] 0.264 0.280 0.413 0.190 0.286
D2IM-Net [4] 0.329 0.356 0.557 0.358 0.401
Ours 0.224 0.176 0.356 0.112 0.217

Table 2: Image-based 3D mesh reconstruction on R2N2. Metrics are Chamfer-L1
Distance (the smaller the better) and Volumetric IoU (the larger the better). Best results
are in bold face.

3.3 3D reconstruction on R2N2
For the sake of completeness, we also performed quantitative and qualitative evaluation
of our proposed 3D reconstruction method with the originally proposed R2N2 dataset
[2]. The R2N2 dataset is consisted of rendered images based on ShapeNet dataset. It
is widely used by the literature therefore used by methods [5, 7, 4] where our proposed
framework compared with. To make sure the quantitative comparison is fair and valid,
we always follow the data split used by OccNet [5] and we also borrow the evaluation
code from it.

The evaluation follows the previous works [5], we use volumetric IoU and Chamfer-
L1 distance. State-of-the-art methods are compared, namely, OccNet [5], DVR [7], and
D2IM-Net [4]. Where D2IM-Net is the most recent and best performing methods for
3D reconstruction task on R2N2, DVR and OccNet are also recent methods that per-
form well with real images.

The quantitative result is demonstrated in Table 2. Our proposed method outper-
form all existing methods according to the Chamfer-L1 metric, where we are slightly
behind D2IM-Net on two categories (Lamp and Chair) but still have advantage on over-
all performance in terms of volumetric IoU.

3.4 Failure Cases
To achieve the goal of object wake-up and manipulate the object in the image with
articulated motions, it is critical to have a well reconstructed and rigged 3D model
from the input image. In Fig. 8 we show some failure cases where the quality of the
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Figure 8: A failure case.

rigged 3D model cannot meet the requirements for animation purposes.

4 More visual results

4.1 Visual comparison on reconstruction
In Fig. 9, we provide extra visualization results of the reconstructed models when eval-
uated on our ShapeRR dataset. We have compared with several existing approaches,
namely OccNet [5], DVR [8], and D2IM-Net [4].
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Figure 9: Visualizations of image-based 3D reconstruction on our ShapeRR dataset.
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