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In this supplementary document, we first provide details on the derivation
of the Scaled Symmetric Dirichlet Energy, and how we improve its numerical
stability in practice (Sec. A). Next, we present implementation details of the
proposed surface representation and baselines used in the experiments (Sec. B).
Lastly, we provide additional quantitative and qualitative results on the surface
reconstruction experiment (Sec. C).

A Scaled Symmetric Dirichlet Energy

A.1 Detailed Derivation

When the surface parameterization φθk of each chart preserves the metric of the
parametric domain up to a specific common scale of L, the two singular values of
its Jacobian Jk, σk,1 and σk,2 are equal to L at every point u in the parametric
domain, i.e. :

σk,1(u) = σk,2(u) = L . (15)

By the definition of the metric tensor gk, its two singular values and eigenvalues
are also equal to L2 everywhere.

Consequently, it is clear that the Symmetric Dirichlet Energy (SDE) [12,13,10]
given by:
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quantifies the isometric distortion, since a global minimum value of 4 is attained
if and only if both σk,1 and σk,2 equal to 1 everywhere. The former and latter
terms of the SDE correspond to the Dirichlet energy of φθk and φ−1

θk
, respectively.
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The proposed Scaled Symmetric Dirichlet Energy (SSDE) generalizes the
SDE to quantify metric distortion up to a specific common scale of L. This is
simply done by incorporating a scale factor of L as follows:
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such that a global minimum value of 4 is attained if and only if both σk,1 and
σk,2 equal to L everywhere.

Furthermore, the SSDE can be employed to quantify metric distortion up
to an arbitrary common scale by finding an optimal scale L∗ that minimizes it.
Since SSDE is a convex function of L, L∗ is simply given by the critical point:

∂ SSDE

∂L

∣∣∣∣
L=L∗

= 0 , (18)

which evaluates to:
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By substituting Eq. 19 into Eq. 17 with L = L∗, we can simplify the SSDE at
the optimal scale L∗ as:
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A.2 Improving Numerical Stability

In general, the SSDE at the optimal scale L∗ is numerically stable since it is
given by the geometric mean of the Dirichlet energies of φθk and φ−1

θk
, which are

roughly inversely proportional to each other. Although it is rare in practice, the
existence of a singular gk leads to instability in the Dirichlet energy of φ−1

θk
, and

hence the SSDE at the optimal scale L∗ as well as the SSDE in general.
To improve numerical stability of the SSDE under such a scenario, we aug-

ment it with a small positive ϵ value as follows:
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where:
ĝk(u) = gk(u) + ϵI (22)

is the ϵ-conditioned metric tensor with singular values and eigenvalues σk,i(u)
2+

ϵ. This introduces a lower and upper bound on the ϵ-conditioned Dirichlet energy
of φθk and φ−1

θk
, respectively, given by:

meanW(trace ◦ ĝk) ≥ 2ϵ , meanW(trace ◦ ĝ−1
k ) ≤ 2

ϵ
. (23)

The ϵ-conditioned SSDE at L preserves the global minimum value of 4 when
both σk,1 and σk,2 equal to L everywhere. Following the exact same steps in

Sec. A.1, it can also be shown that the ϵ-conditioned optimal scale L̂∗ is given
by:
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√
meanW(trace ◦ ĝk)
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k )
− ϵ ≥ 0 (24)

and the ϵ-conditioned SSDE at L̂∗ is similarly given by:
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k ) . (25)

In practice, we find ϵ = 1×10−8 to be sufficient for quantifying metric distortion
up to an arbitrary common scale with the ϵ-conditioned SSDE at L̂∗.

B Implementation Details

B.1 Minimal Neural Atlas

Architecture. For all experiments, we employ a minimal neural atlas condi-
tioned on an 1024-dimensional latent code z ∈ R1024 to reconstruct the family
of surfaces described in the CLOTH3D++ and ShapeNet datasets. The encoder
architecture adopted for extracting the latent code of a surface depends on the
task, or more precisely the form of input. For surface reconstruction where the
input is a point cloud, we employ PointNet [2] with all Batch Normalization [6]
layers removed for better training stability and convergence. On the other hand,
we adopt an ImageNet[3]-pretrained ResNet-18 [5] for single-view reconstruction,
where the input is an image.

In contrast to the encoder, we employ the same architecture for the condi-
tional minimal neural atlas in all experiments. The architectures adopted for
the conditional φθk and l̃θk of each chart k are almost identical and are heavily
based on the architecture of the IDR neural scene representation [14], which in
turn is based on the DeepSDF [8] implicit neural surface representation.

Particularly, the conditional φθk maps the concatenated inputs of z and u
to a 3D point on the reconstructed surface via a 4-layer Multi-Layer Percep-
tron (MLP), where each layer comprises 512 hidden units applied with Weight
Normalization [11]. Each hidden layer except for the last is followed by a Soft-
Plus activation with hyperparameter β = 100. In contrast to ReLU, SoftPlus



4 W. F. Low and G. H. Lee

is infinitely-differentiable everywhere. This enables the computation of differ-
entiable geometric properties [1] and facilitates slightly lower distortion, as ob-
served empirically. The inputs are also concatenated with the activations of the
second hidden layer to form the next hidden layer inputs. In terms of the model
size, this architecture is comparable to that of AtlasNet and DSP, but more
lightweight than that of TearingNet.

The conditional l̃θk adopts the same architecture as the conditional φθk ,
except for some subtle differences. Specifically, a positional encoding with 6
octaves is applied on maximal point coordinates x̃ before being concatenated
with z to form the input of the network. As shown in the ablation studies,
this is important for l̃θk to capture high frequency details for more accurate
reconstructions. Moreover, ReLU and sigmoid are also used for the intermediate
and output activations respectively.

Training. The training loss weights used in all experiments are given by λrec =
1.0, λocc = 1.0 and λdist = 0.00001. Apart from the encoder, note that training
with equal importance on Lrec and Locc works because they solely supervise
φθk and l̃θk , respectively. For surface reconstruction, we adopt the exact same
training procedure as AtlasNet. In particular, we adopt the Adam optimizer
[7] with a learning rate of 0.001 and PyTorch[9]-default hyperparameters. The
network is trained for 150 epochs with a learning rate decay of 0.1 at 120, 140
and 145 epochs. The same training procedure is also employed for single-view
reconstruction, except that we also adopt a surface reconstruction-pretrained
conditional φθk and l̃θk .

Inference. For the evaluation of all experiments, the label frequency c is es-
timated with a minimum interior rate η = 40%. We also adopt the default
occupancy probability threshold τ = 0.5 to define the parametric domain of
each chart. Furthermore, a reconstructed surface point cloud with approximately
25,000 points is extracted with the proposed two-step batch rejection sampling
strategy using an initial UV sample size of 16,667 (i.e. 2/3 of 25,000).

B.2 Baselines

To provide a fair comparison, we train all baselines on the exact same datasets
using their official implementations. The AtlasNet training procedure is used
for AtlasNet++ and DSP in all experiments. In contrary to all other works, we
train DSP without the overlap loss since it requires access to target surface areas.
Furthermore, a relatively larger epsilon value of 0.01 is added to the denominator
of the deformation loss to significantly improve its numerical stability. Similar
to [4], we train AtlasNet++ with Point Cloud CD, Mesh CD and SSDE at the
optimal scale weighted by 1.0, 1.0 and 0.00001, respectively.

TearingNet is trained according to its two-step strategy in both experiments,
which requires approximately 6 to 7 times the number of epochs compared to
other works. Moreover, we omit the optional graph filter as it unnecessarily
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constrains the UV sampling density during inference to that of training. This is
attributed to its dependence on tearing or graph weight hyperparameters ϵ and r
on the UV sampling density. For single-view reconstruction with TearingNet, we
adopt the same ResNet-18 encoder and surface reconstruction-pretrained F-Net
in the first step of the training. The optimal graph weight hyperparameter ϵ,
which defines the parametric domain of the chart and hence the topology of the
reconstructed surface, is tuned with respect to the Mesh CD and F-score @ 1%
on the validation split of ShapeNet since it contains a wide range of surfaces with
complex topologies. Consequently, ϵ = 0.025 is used throughout the experiments
for evaluation.

C Additional Results

In this section, we first present a qualitative analysis of distortion (Sec. C.1)
and visualizations of SCAR violation artifacts (Sec. C.2) before looking into the
occupancy rates of minimal neural atlas (Sec. C.3). Next, we investigate the
effect of training with different UV sample sizes (Sec. C.4). Lastly, we examine
the sensitivity of our representation on hyperparameters such as the number of
positional encoding octaves in l̃θk and minimum interior rate η (Sec. C.5). Unless
otherwise stated, results involving only minimal neural atlas are obtained using
3 charts with metric distortion loss from the surface reconstruction experiment
on ShapeNet.

C.1 Qualitative Distortion Analysis

Fig. 3 and Fig. 4 illustrate the distortion of the reconstructed chart parameteriza-
tions in the surface reconstruction experiment on CLOTH3D++ and ShapeNet,
respectively. We employ 2 charts on CLOTH3D++ and 3 charts on ShapeNet
for all surface representations with the exception of TearingNet where 1 chart
is used. The relative level of distortion observed reflect the quantitative metrics
previously reported, where DSP and minimal neural atlas exhibit significantly
lower distortion compared to other baselines.

C.2 Artifacts of SCAR Violation

As depicted in Fig. 5, minimal neural atlas suffers from unintended holes on
the reconstructed surface. We attribute such artifacts to the severe violation of
the SCAR assumption, which is mainly caused by imperfect modeling of the
target surface and non-matching sampling distribution between the target and
maximal surface.

C.3 Occupancy Rate

Table 5 shows the mean parametric domain occupancy rates of minimal neural
atlas in the surface reconstruction experiment. In general, the occupancy rates
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Fig. 3: Distortion of Surface Reconstructions on CLOTH3D++.
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Fig. 4: Distortion of Surface Reconstructions on ShapeNet.
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Ours Target Input

Fig. 5: Artifacts of SCAR Violation.

Table 5: Occupancy Rates in Surface Reconstruction Experiment.

Surface
Representation

CLOTH3D++ ShapeNet

1 Chart 3 Charts 25 Charts 1 Chart 3 Charts 25 Charts

Ours w/o Ldist 94.51 96.78 94.82 81.84 85.31 84.51
Ours 91.47 96.37 98.20 69.50 77.48 86.50

are fairly high, which allows for the efficient extraction of the reconstructed
surface point cloud and mesh. Furthermore, it can also be observed that the
occupancy rate generally increases as the number of charts increases, especially
when metric distortion is regularized. This may be attributed to the increased
flexibility in forming a cover of the target surface as the number of charts in-
creases.

C.4 Ablation on Training UV Sample Size

While the UV sample size used for training is typically chosen to be the same
as the target point cloud size (2,500 in our experiments), we show in Table 6
that a larger sample size favors our proposed representation since it leads to
better reconstructions and lower distortions when explicitly regularized. It is
also important to note that DSP is rather invariant to the increase in training
UV sample size. We attribute this to the added influence of occupancy rate to
the training, which is absent in other works.
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Table 6: Effect of Training UV Sample Size.

Surface
Representation

Training UV
Sample Size

Point Cloud Mesh
Metric

Distortion
↓ Occupancy

Rate
↑

CD, 10−4 ↓ F@1% ↑ CD, 10−4 ↓ F@1% ↑

DSP
2500 10.85 76.29 12.41 74.60 0.3044 -
3333 10.71 76.50 12.53 74.70 0.3189 -
5000 10.79 76.39 11.98 74.85 0.4130 -

Ours w/o Ldist

2500 6.603 82.89 7.153 81.07 11.55 91.38
3333 6.405 83.68 6.996 81.75 9.516 89.22
5000 6.266 84.04 6.875 82.22 10.23 85.31

Ours
2500 6.866 82.15 7.412 80.39 2.441 87.85
3333 6.607 82.87 7.131 81.15 2.403 83.43
5000 6.311 83.63 6.761 82.23 2.189 77.48

Table 7: Sensitivity of the Number of Positional Encoding Octaves.

No. of
Octaves

Point Cloud Mesh Distortion
Occupancy

Rate
↑

CD, 10−4 ↓ F@1% ↑ CD, 10−4 ↓ F@1% ↑ Metric ↓ Conformal ↓ Area ↓

4 6.381 83.34 6.935 81.68 2.100 0.7014 0.2295 79.07
6 6.311 83.63 6.761 82.23 2.189 0.7094 0.2521 77.48
8 6.394 83.46 6.882 81.96 2.154 0.7056 0.2425 77.55

Table 8: Sensitivity of Minimum Interior Rate, η.

η
Point Cloud Mesh Distortion

Occupancy
Rate

↑
CD, 10−4 ↓ F@1% ↑ CD, 10−4 ↓ F@1% ↑ Metric ↓ Conformal ↓ Area ↓

30 6.318 83.67 6.787 82.26 2.187 0.7807 0.2517 76.94
40 6.311 83.63 6.761 82.23 2.189 0.7094 0.2521 77.48
50 6.326 83.55 6.764 82.17 2.193 0.7099 0.2525 77.96

C.5 Hyperparameter Sensitivity Analysis

Number of Positional Encoding Octaves. While we have demonstrated
that it is critical to apply positional encoding on the input maximal point coor-
dinates of lθk , Table 7 shows that the specific number of octaves adopted in the
encoding does not significantly affect the overall performance of our representa-
tion.

Minimum Interior Rate. As observed in Table 8, minimal neural atlas is
also not overly sensitive to the specific minimum interior rate η employed for
estimating the label frequency c and hence extracting the reconstructed surface.
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