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Abstract. In this supplementary material, we provide more implemen-
tation details and additional results.

A More Implementation Details

A.1 Architecture of Encoder
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Fig.A.1: Architecture of the PointNet-based [6] geometry encoder, where N
denotes the number of input points.

Fig. A.1 depicts the detailed architecture of our employed PointNet-based [6]
geometry encoder as mentioned in Sec. 3.3 of the main text. In specific, the en-
coder first maps each point from R3 into a high-dimensional space, and generates
an additional global feature by aggregating features from all points. The global
feature is then repeated N times and concatenated to each point-wise feature,
where N denotes the number of input points.

A.2 Instance-level Pose Refinement

As shown in Fig. A.2, since the instance-level refiner (see Sec. 4.4 of the main
text) only estimates 6DoF pose transformation, we make some modification
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Fig.A.2: Network architecture of the instance-level refiner, notice that sinit
and s∆ related components are removed compared to the category-level refiner
CATRE.

based on our CATRE network. Specifically, the initial size information sinit
is removed in both the focalization operation and the original TS-Head, and the
output FC layer for relative size prediction is also discarded, making TS-Head
into T-Head. Accordingly, the loss function is changed to

L = Lpm + LR + Lt, (1)

thereby 
Lpm = avg

x∈P
∥(Rgtx+ tgt)− (Restx+ test)∥1,

LR =
3−Tr(RgtR

T
est)

4 ,

Lt = ∥tgt − test∥1.

(2)

B Additional Results

B.1 Accuracy on NOCS vs. Iterations

Apart from the results in Sec. 4.2 of our paper, in Table B.1, we show the addi-
tional results for accuracy w.r.t. iterations, where the initial poses are provided
by our reproduced results from NOCS [9]. Since the initial predictions from
NOCS are poor, more iterations of refinement improve the results substantially.
Considering the trade-off between performance and speed, we empirically set 4
as the maximum number of iteration in all the refine experiments.

B.2 Category-level Refinements on Each Category

Table B.2 evinces category-level pose refinement results for each category. No-
tably, our method achieves consistent enhancement on 6 categories w.r.t. each
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Table B.1: Accuracy w.r.t. iterations. We initialize the predictions with the re-
produced results from NOCS [9].

Iteration 0 1 2 3 4

IoU75 9.0 21.8 30.2 39.9 42.6

5° 2 cm 7.3 29.0 34.2 39.1 40.7

5° 5 cm 9.9 30.7 36.9 44.2 47.8

5° 10.8 31.9 38.6 46.1 49.7

2 cm 37.8 71.6 74.5 74.2 74.8

Table B.2: Detailed results of category-level pose refinement for each category
on REAL275. ∗ denote our re-implementation of the method.

Method NOCS∗ w/ Ours SPD∗ w/ Ours DualPoseNet∗ w/ Ours

bottle
IoU75 8.8 25.9 12.2 24.5 12.7 16.4
5° 2 cm 2.6 42.9 21.6 57.0 27.8 43.1
5° 5 cm 2.6 49.2 23.2 61.6 33.4 56.7

bowl
IoU75 42.8 88.0 76.1 88.2 80.8 92.6
5° 2 cm 40.2 84.5 50.5 87.1 72.0 91.4
5° 5 cm 49.8 85.8 54.0 91.1 78.8 97.4

camera
IoU75 0.8 4.1 3.4 5.9 1.4 4.1
5° 2 cm 0.0 0.5 0.0 0.8 0.0 0.1
5° 5 cm 0.0 0.6 0.0 0.9 0.0 0.1

can
IoU75 1.5 14.4 29.6 33.5 5.3 16.2
5° 2 cm 0.3 62.4 37.9 66.0 32.3 49.1
5° 5 cm 0.3 70.7 42.7 79.3 47.2 67.4

laptop
IoU75 0.4 78.7 32.7 71.6 66.3 71.3
5° 2 cm 0.6 39.5 4.6 51.8 36.7 56.8
5° 5 cm 6.5 65.8 7.0 81.1 48.8 83.8

mug
IoU75 0.0 44.3 8.0 37.6 21.6 65.9
5° 2 cm 0.0 14.4 0.3 11.8 7.0 23.0
5° 5 cm 0.0 14.7 0.3 12.6 7.1 23.5

overall
IoU75 9.0 42.6 27.0 43.6 31.4 44.4
5° 2 cm 7.3 40.7 19.1 45.8 29.3 43.9
5° 5 cm 9.9 47.8 21.2 54.4 35.9 54.8

metric. However, the refined pose for camera is still poor and the reasons are
twofold. First, the initial pose prediction is far from ground truth, making the
refinement procedure extremely hard. Moreover, the shape variance among the
camera category is huge, so that the categorical mean shape is not certainly
reliable.

Since CATRE is meant for real-time applications, it is vital whether the
model is able to scale with different sizes and resolutions. The resolution and
size have minimal impact on the inference speed because we uniformly sample a
fixed number of points (i.e., 1024) from the input point cloud. This strategy is
applied vastly [1,7,10,2] and scales well with CATRE. Concretely, there is about
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Fig. B.3: Qualitative comparison, where white, red and green contours demon-
strate ground-truth, initial (SPD [7]) and refined (Ours) poses, respectively. The
axis length reflects predicted scale meanwhile.

ten times the difference between the resolution of “laptop” and “bottle”, but
CATRE can refine their poses with one model (Table B.2).

B.3 Qualitative Results of Category-level Pose Refinement on
REAL275

Fig. B.3 presents the qualitative examples of category-level pose refinement on
REAL275.

B.4 More Ablation Studies on REAL275

More ablation studies on category-level pose refinement are presented in Ta-
ble B.3.

We conduct refinement on the initial poses obtained by perturbing the ground
truth with Gaussian noise to explore the sensitivity of CATRE w.r.t. large noise.
As shown in Table B.3a, thanks to the iterative testing strategy, even with harsh
noise existing in initial poses, CATRE can still achieve satisfying results.

Table B.3b shows some additional results. By removing T-Net in PointNet-
based [6] geometry encoder, the accuracy w.r.t. rotation and translation de-
creases. Since rare occlusion exists in REAL275 dataset, we cropped a 25% block
around a random corner of predicted bounding boxes to imitate occlusion. We
find that CATRE can exceed the baseline (Table B.3b C1 vs. A0), but occlusion
still has a side effect on performance (Table B.3b C1 vs. B0).

B.5 BOP Results on LM

In the main text, we evaluate our method on LM by traditional protocol following
the compared methods [8,3,5]. Recently, BOP metric [4] proves to be more suited
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Table B.3: Additional ablation studies on REAL275. (a) Accuracy w.r.t. addi-
tional noises, where ×m means adding m times of training noise to grund-truth
poses during inference. (b) Quantitative results, where SPD∗ denotes our re-
implementation of SPD [7].

x1 x2 x3
noise level

0

10

20

30

40

50

60

m
AP

 o
f 5

°,
5 

cm
 (%

)

init
w/ Ours

(a)

Row Method IoU75 5° 2 cm 5° 5 cm 5° 2 cm

A0 SPD∗ 27.0 19.1 21.2 23.8 68.6

B0 SPD∗+Ours 43.6 45.8 54.4 58.0 75.1

C0 B0: w/o T-Net in PointNet 43.7 41.8 50.0 55.3 74.1

C1 B0: w/ occlusion 36.5 33.4 38.6 43.8 67.3

(b)

Table B.4: Results on LM referring to the Average Recall (%) of BOP metric.
∗ denotes symmetric objects. Ours(B) and Ours(F) use 8 bounding box corners
and 128 FPS model points as shape priors respectively.

Method ARMSPD ARMSSD ARVSD AR

PoseCNN [11] 86.1 73.5 59.3 73.0

w/ Ours(B) 74.7 88.4 91.4 84.8

w/ Ours(F) 84.2 95.1 96.4 91.9

for the evaluation of pose estimation, specifically for symmetric objects. It report
an average recall (AR) by calculating the mean score of three metrics: AR =
(ARMSPD +ARMSSD +ARVSD)/3. Details of these metrics can be referred to [4].

As shown in Table B.4, our method still achieve distinct enhancement w.r.t.
AR against the initial prediction provided by PoseCNN [11].

B.6 Failure Cases Analyses

As shown in Fig. B.4, failure conditions can be generally grouped into 4 cate-
gories: (a) severe occlusion or truncation, (b) poor initial prediction, (c) inaccu-
rate ground-truth label, and (d) ambiguity of symmetry (especially for mug and
camera).
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(a) severe occlusion or truncation (b) poor initial prediction (c) inaccurate ground-truth label (d) ambiguity of symmetry

Fig. B.4: Several failure cases, where white, red and green contours demonstrate
ground-truth, initial (SPD [7]) and refined (Ours) poses, respectively.
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