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Abstract. We propose to utilize self-supervised techniques in the 2D
domain for fine-grained 3D shape segmentation tasks. This is inspired by
the observation that view-based surface representations are more effec-
tive at modeling high-resolution surface details and texture than their 3D
counterparts based on point clouds or voxel occupancy. Specifically, given
a 3D shape, we render it from multiple views, and set up a dense corre-
spondence learning task within the contrastive learning framework. As a
result, the learned 2D representations are view-invariant and geometri-
cally consistent, leading to better generalization when trained on a lim-
ited number of labeled shapes than alternatives based on self-supervision
in 2D or 3D alone. Experiments on textured (RenderPeople) and untex-
tured (PartNet) 3D datasets show that our method outperforms state-of-
the-art alternatives in fine-grained part segmentation. The improvements
over baselines are greater when only a sparse set of views is available for
training or when shapes are textured, indicating that MvDeCor bene-
fits from both 2D processing and 3D geometric reasoning. Project page:
https://nv-tlabs.github.io/MvDeCor/

1 Introduction

Part-level interpretation of 3D shapes is critical for many applications in com-
puter graphics and vision, including 3D content editing, animation, simulation
and synthesizing virtual datasets for visual perception, just to name a few. Specif-
ically, our goal in this work is to perform fine-grained shape segmentation from
limited available data. This poses two main challenges. First, training deep net-
works relies on large-scale labeled datasets that require tremendous annotation
effort. For this reason, previous methods have proposed self-supervised feature
extraction, however these mostly rely on point cloud or voxel-based networks.
This brings us to the second challenge – these 3D networks have a limited ability
to capture fine-grained surface details in their input points or voxels due to the
limits on the sampling density.

⋆ The work was mainly done during Gopal’s internship at NVIDIA
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Fig. 1. The MvDeCor pipeline. (a) Dense 2D representations are learned using
pixel-level correspondences guided by 3D shapes. (b) The 2D representations can be
fine-tuned using a few labels for 3D shape segmentation tasks in a multi-view setting.

We present MvDeCor, a self-supervised technique for learning dense 3D
shape representations based on the task of learning correspondences across views
of a 3D shape (Fig. 1). At training time we render 3D shapes from multiple views
with known correspondences and setup a contrastive learning task to train 2D
CNNs. In doing so, we take advantage of the excellent abilities of 2D networks to
capture fine details. The learned 2D representations can be directly used for part
segmentation on images, or projected onto the shape surface to produce a 3D
representation for 3D tasks (Fig. 1 & 2). The approach works well in standard
few-shot fine-grained 3D part segmentation benchmarks, outperforming prior
work based on 2D and 3D self-supervised learning (§3, Tab. 1 & 2).

Many previous representation learning methods for 3D shapes are based on
self-reconstruction loss [2,42,15,10,6] or contrastive learning [41,44,20] where
point clouds and voxels are the main choices of 3D data formats. In contrast, our
work is motivated from the observation that view-based surface representations
are more effective at modeling high-resolution surface details and texture than
their 3D counterparts based on point clouds or voxel occupancy. We also benefit
from recent advances in network architectures and self-supervised learning for 2D
CNNs. In addition, our approach allows training the network using 2D labeled
views rather than fully labeled 3D shapes. This is particularly beneficial because
annotating 3D shapes for fine-grained semantic segmentation is often done using
2D projections of the shape to avoid laborious 3D manipulation operations [43].

Compared to techniques based on 3D self-supervision, MvDeCor demon-
strates significant advantages. On the PartNet dataset [28] with fine-grained
(Level-3) parts, our method achieves 32.6% mIOU compared to a PointCon-
trast [41], a self-supervised learning technique that achieves 31.0% mIOU (Tab. 1).
While some of the benefit comes from the advantages of view-based represen-
tations, e.g., off-the-self 2D CNNs trained from scratch outperform their 3D
counterparts, this alone does not explain the performance gains. MvDeCor
outperforms both ImageNet pretrained models (29.3% mIOU) and dense con-
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trastive learning [39] (30.8% mIOU), suggesting that our correspondence-driven
self-supervision is beneficial. These improvements over baselines are even larger
when sparse view supervision is provided — MvDeCor generalizes to novel
views as it has learned a view invariant local representations of shapes (Tab. 2).

We also present experiments on the RenderPeople [1] dataset consisting of
textured 3D shapes of humans, which we label with 13 parts (§4). We observe
that 2D self-supervised techniques performs better than their 3D counterparts,
while MvDeCor offers larger gains over both 2D and 3D baselines (Tab. 4).
Surprisingly on this dataset we find that when texture is available, the view-based
representations do not require the use of depth and normal information, and in
fact the models generalize better without those, as explained in §4.6. MvDeCor
gives 17.3% mIOU improvement over training a network from scratch when only
a few labeled examples are provided for supervision.

To summarize, we show that multi-view dense correspondence learning in-
duces view-invariant local representations that generalize well on few-shot 3D
part segmentation tasks. Our approach MvDeCor outperforms state-of-the art
2D contrastive learning methods, as well as 3D contrastive learning methods that
operate on point cloud representations. After a discussion of prior work on 2D
and 3D self-supervised learning in §2, we describe our method and experiments
in §3 and §4 respectively.

2 Related Works

Our work lies at the intersection of 3D self-supervision, 2D self-supervision, and
multi-view representations.

3D self-supervision. Many self-supervised approaches in 3D shape are based
on training an autoencoder with a reconstruction loss. For example, Achlioptas
et al. [2] train a PointNet [30] with a Chamfer or EMD loss. FoldingNet [42]
deforms a 2D grid using a deep network conditioned on the shape encoding to
match the output shape. AtlasNet [15] uses multiple decoders to reconstruct
the surface as a collection of patches. BAE-NET [6] splits reconstruction across
decoding branches, but adopted an implicit field shape representation instead
of point clouds. Once trained the representations from the encoder can be used
for downstream tasks. Alternatives to reconstruction include prediction based
on k-means [18], convex decomposition [9,26], primitive fitting [33,24,36] and
3D jigsaw puzzles [32,3]. Unsupervised learning for recovering dense correspon-
dences between non-rigid shapes has been studied in [16,12], however it relies on
a near-isometry assumption that does not fit clothed people and furniture parts,
used in our work. We instead use partial correspondences from the 3D models
to supervise 2D networks. Wang et al. [37] proposed a deep deformation ap-
proach that aligns a labeled template shape to unlabeled target shapes to trans-
fer labels. However this method is not effective for fine-grained segmentation of
shapes as shown in §4, since deformation often distorts surface details. A few
recent works [41,38,44] have learned per-point representations for point clouds
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Fig. 2. Overview of MvDeCor. Top left: Our self-supervision approach takes two
overlapping views (RGB image, with optional normal and depth maps) of a 3D shape
and passes it through a network that produces per-pixel embeddings. We define a
dense contrastive loss promoting similarity between matched pixels and minimizing
similarity between un-matched pixels. Bottom left: Once the network is trained we add
a segmentation head and fine-tune the entire architecture on a few labeled examples to
predict per-pixel semantic labels. Right: Labels predicted by the 2D network for each
view are back-projected to the 3D surface and aggregated using a voting scheme.

under a contrastive learning framework. Networks pre-trained in this way are
further fine-tuned for 3D downstream tasks. However, point cloud based shape
representations limit the ability to capture fine-grained details and texture.

2D self-supervision. While early work focused on training networks based on
proxy tasks such as image colorization, rotation prediction, and jigsaw puzzles,
contrastive learning [40,19,5,14] has emerged as a popular technique. Most of
these representations are based on variants of InfoNCE loss [29], where the mu-
tual information between two views of an image obtained by applying synthetic
transformations is maximized. DenseCL [39] modifies the contrastive approach
to include information across locations within an image to learn dense represen-
tations. We use this method as the representative 2D self-supervised baseline.
However, the above methods work on the 2D domain and lack any 3D priors in-
corporated either in the network or in the training losses. Correspondence learn-
ing has been used as self-supervision task to learn local descriptors for geometric
matching in structure from motion applications [31,39,21,27]. However, much of
this work has focused on instance matching, while our goal is to generalize across
part instances within a category. The most related work to ours is Pri3D [21]
that also proposes to learns geometry-aware embedding with a contrastive loss
based on pixel correspondences across views. Their work focuses on improving
2D representations using 3D supervision for 2D tasks such as scene segmentation
and object detection, while we deal with fine-grained 3D segmentation.

Multi-view representation. Our method is motivated by earlier multi-view
approaches for 3D shape recognition and segmentation [22,23,34,8,25]. In these
approaches, multiple views of the shapes are processed by a 2D network to obtain
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pixel-level representations. These are back-projected to the 3D shape to produce
3D surface representations. More recently, Kundu et al.[25] applies multi-view
fusion for 3D semantic segmentation of scenes. Genova et al. [11] leverage a pre-
trained 2D segmentation network to synthesize pseudo-labels for training a 3D
segmentation network. The above approaches benefit from large-scale pretraining
on image dataset, and the ability of 2D CNNs to handle higher image resolu-
tions compared to voxel grids and point clouds. They continue to outperform
3D deep networks on many 3D tasks (e.g., [35,13]). Semantic-NeRF [45] jointly
reconstructs geometry and semantics of a 3D scene from multi-view images with
partial or noisy labels. All the above view-based methods are trained in a super-
vised or weakly supervised manner, while ours is based on self-supervision.

3 Method

Our goal is to learn a multi-view representation for 3D shapes for the task of
fine-grained 3D shape segmentation. For this task, we assume a large dataset of
unlabeled 3D shapes and a small number of labeled examples. For the latter, we
consider two settings (1) when labels are provided on the surface of the 3D shape,
and (2) labels are provided on the images (projections) of the 3D shape. To that
end, we use multi-view dense correspondence learning for pre-training, followed
by a feature fine-tuning stage on the downstream segmentation task. In the pre-
training stage described in §3.1, we have a set of unlabeled 3D shapes (either with
or w/o textures) from which we render 2D views, and build ground-truth dense
correspondences between them. After pre-training on the dense correspondence
learning task, the network learns pixel-level features that are robust to view
changes and is aware of fine-grained details.

In the fine-tuning stage (§3.2), we train a simple convolutional head on top of
the pixel-level embeddings, supervised by a small number of annotated examples,
to segment the multi-view renderings of the 3D shapes. The network pre-trained
in this fashion produces better segmentation results under the few-shot seman-
tic segmentation regime in comparison to baselines. We aggregate multi-view
segmentation maps onto 3D surface via an entropy-based voting scheme (§3.3).
Figure 2 shows the overview of our approach.

3.1 Multi-view dense correspondence learning

Let us denote the set of unlabeled shapes as Xu. Each shape instance X ∈ Xu

can be rendered from a viewpoint i into color, normal and depth images denoted
as V i. We use a 2D CNN backbone Φ which maps each view into pixel-wise
embeddings {Φ(V i)p} ∈ RD, where p is an index of a pixel and D is the dimen-
sionality of the embedding space. We pre-train the network Φ using the following
self-supervised loss:

Lssl = E
V i,V j∼R(X)

X∼Xu

[
ℓssl

(
Φ(V i),Φ(V j)

)]
(1)
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where R(X) is the set of 2D renderings of shape X, and V i and V j are sampled
renderings in different views from R(X). The self-supervision loss ℓssl is applied
to the pair of sampled views V i and V j .

Since V i and V j originate from the 3D mesh, each foreground pixel in the
rendered images corresponds to a 3D point on the surface of a 3D object. We
find matching pixels from V i and V j when their corresponding points in 3D
lie within a small threshold radius. We use the obtained dense correspondences
in the self-supervision task. Specifically, we train the network to minimize the
distance between pixel embeddings that correspond to the same points in 3D
space and maximize the distance between unmatched pixel embeddings. This
encourages the network to learn pixel embeddings to be invariant to views, which
is a non-trivial task, as two rendered views of the same shape may look quite
different, consisting of different contexts and scales. We use InfoNCE [29] as the
self-supervision loss. Given two rendered images (V i and V j) from the same
shape X and pairs of matching pixels p and q, the InfoNCE loss is defined as:

ℓssl
(
Φ(V i),Φ(V j)

)
= −

∑
(p,q)∈M

log
exp

(
Φ(V i)p ·Φ(V j)q/τ

)∑
(.,k)∈M exp

(
Φ(V i)p ·Φ(V j)k/τ

) , (2)

where Φ(V i)p is the embedding of pixel p in view i, M is the set of paired pixels
between two views that correspond to the same points in 3D space, and the
temperature is set to τ = 0.07 in our experiments. We use two views that have
at least 15% overlap. The output Φ(V i)p and Φ(V j)q of the embedding module
are normalized to a unit hyper-sphere. Pairs of matching pixels are treated as
positive pairs. The above loss also requires sampling of negative pairs. Given the
matching pixels (p, q) ∈ M from V i and V j respectively, for each pixel p from
the first view, the rest of the pixels k ̸= q appearing in M and belonging to the
second view, yield the negative pixel pairs (p, k).

3.2 Semantic segmentation of 3D shapes

In the fine-grained shape segmentation stage, the network learns to predict pixel
level segmentation labels. Once the embedding module is pre-trained using the
self-supervised approach, it is further fine-tuned in the segmentation stage, using
a small labeled shape set Xl to compute a supervised loss, as follows:

min
Φ,Θ

λLssl + Lsl, where Lsl = E
(X,Y )∼Xl

[
E

(V i,Li)∈R(X,Y )
ℓsl
(
Li,Θ ◦Φ(V i)

)]
, (3)

and Θ is the segmentation module, λ is a hyper-parameter set to 0.001, and ℓsl
is the semantic segmentation loss implemented using cross-entropy loss applied
to each view of the shape separately. R(X,Y ) is the set of renderings for shape
X and its 3D label map Y . Li represents the projected labels from the 3D shape
for view V i. Since the labeled set is much smaller than the unlabeled set, the
network could overfit to the small set. To avoid this over-fitting during the fine-
tuning stage, we use the self-supervision loss Lssl as an auxiliary loss along with
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supervision loss Lsl as is shown in Eq. 3. In Table 5 we show that incorporating
this regularization improves the performance.

During inference we render multiple overlapping views of the 3D shape and
segment each view. The per-pixel labels are then projected onto the surface.
We use ray-tracing to encode the triangle index of the mesh for each pixel.
To aggregate labels from different views for each triangle, one option is to use
majority-voting. An illustration of the process is shown in Fig. 2. However, not
all views should contribute equally towards the final label for each triangle as
some views may not be suitable to recognize a particular part of the shape.
We instead define a weighted voting scheme based on the average entropy of
the probability distribution predicted by the network for a view. Specifically,
a weight W (i) = (1−

∑
p∈F (i) H(i,p)/|F (i)|)γ is given to the view i, where F (i)

is its set of foreground pixels, H(i,p) is the entropy of the probability distribu-
tion predicted by the network at pixel p, and γ is a hyperparameter set to 20
in our experiments. More weight is given to the view with less entropy. Conse-
quently, for each triangle t on the mesh of the 3D shape, the label is predicted
as: lt = argmaxc∈C

∑
i∈I,p∈t W

(i)P (i,p), where I is the set of views where the

triangle t is visible, P (i,p) is the probability distribution of classes at a pixel
p ∈ t in view i, and C is the set of segmentation classes. In cases where no labels
are projected to a triangle due to occlusion, we assign a label to the triangle by
nearest neighbor search.

3.3 Implementation details

The embedding Φ is implemented as the DeepLabV3+ network [4] originally
proposed for image segmentation with ResNet-50 backbone. We add extra chan-
nels in the first layer to incorporate depth and normal maps. Specifically, it takes
a K-channel image (V i) as input of size H×W ×K and outputs Φ(V i) per pixel
features of size H×W×64, where the size of pixel embedding is 64. In the second
stage, we add a segmentation head (a 2D convolutional layer with a softmax)
on top of the pixel embedding network to produce per-pixel semantic labels.
Additional architecture details are provided in the supplementary material.

To generate the dataset for the self-supervision stage, we start by placing a
virtual camera at 2 unit radius around the origin-centered and unit normalized
mesh. We then render a fixed number of images by placing the camera at uniform
positions and adding random small perturbations in the viewing angle and scale.
In practice, we use approximately 90 rendered images per shape to cover most
of the surface area of the shapes. We also render depth and normal maps for
each view. Normal maps are represented in a global coordinate system. Depth
maps are normalized within each view. We use ray tracing to record the triangle
index to which each pixel corresponds to and also the point-of-hit for each pixel.
This helps in identifying correspondences between two views of the same shape.
More information is provided in the supplementary material.
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4 Experiments and results

4.1 Dataset

We use the following datasets in our experiments, samples from which are visual-
ized in the Supplement. The license information is provided in the Supplement.

PartNet [28]. This dataset provides fine-grained semantic segmentation anno-
tation for various 3D shape categories, unlike the more coarse-level shape parts
in the ShapeNet-Part dataset. We use 17 categories from “level-3”, which de-
notes the finest level of segmentation. On average the categories contain 16 parts,
ranging from 4 for the Display category, to 51 for Table category. For training
in the few-shot framework, we use the entire training and validation set as the
self-supervision dataset Xu, and select k shapes from the train set as labeled
dataset Xl for the fine-tuning stage.

RenderPeople [1]. This dataset contains 1000 human textured models rep-
resented as triangle meshes in two poses. We use 936 shapes of them for self-
supervision. We label the remaining 64 shapes with 13 different labels, while
focusing more on facial semantic parts. The 64 labeled shapes consist of 32 dif-
ferent identities in 2 poses. We randomly split the 32 identities into 16 and 16,
so that we get 32 shapes as the labeled training set, and 32 shapes as the test
set for evaluation. More details of the labeling and individual semantic parts are
provided in the Supplement.

ShapeNet-Part [43]. We also show experiments on ShapeNet-Part dataset in
the Supplementary material where we outperform previous works according to
the class-average mIOU metric.

4.2 Experiment settings

Segmentation using limited labeled shapes. We pre-train our 2D embed-
ding network and fine-tune it with a segmentation head using k labeled shapes.
During fine-tuning, each shape is rendered from 86 different views. We render
extra 10 images for the RenderPeople dataset that focuses more on details of
facial regions. Each view consists of a grayscale image for PartNet dataset and
textured image for RenderPeople dataset, a normal and a depth map for both
datasets. For PartNet dataset, pre-training is done using all shape categories
and fine-tuning is done on individual category specific manner. All experiments
in this few-shot setting are run 5 times on randomly selected k labeled training
shapes and the average part mIOU is reported.

Segmentation using limited labeled views per shape. In this setting su-
pervision is available in 2D domain in the form of sparse set of labeled views
per shape. Specifically, a small number of k shapes are provided with a small
number of v labeled views per shape. For training 3D baselines, labeled views
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are projected to 3D mesh and corresponding points are used for supervision.
Similar to the first setting, all experiments are run 5 times on randomly selected
k labeled training shapes and the average part mIOU is reported.

4.3 Baselines

We compare our method against the following baselines:

– (2D) Scratch. In this baseline, we train our 2D networks (Φ and segmen-
tation head Θ) directly using the small set of labeled examples, without
pre-training, and apply the same multi-view aggregation.

– (2D) ImageNet. We create a baseline in which the backbone ResNet in our
embedding network Φ is initialized with ImageNet pre-trained weights and
the entire network is fine-tuned using few-labeled examples. The first layer
of ResNet trained on Imagenet is adapted to take the extra channels (normal
and depth maps) following the method proposed in ShapePFCN [23].

– (2D) DenseCL. To compare with the 2D dense contrastive learning method
we also create a baseline using DenseCL [39]. We pre-train this method on
our unlabeled dataset Xu using their original codebase. Once this network
is trained, we initialize the backbone network with the pre-trained weights
and fine-tune the entire architecture using the available labeled set. Further
details about training these baselines are in the Supplement.

– (3D) Scratch. In this baseline, we train a 3D ResNet based on sparse
convolutions (Minkowski Engine [7]) that takes uniformly sampled points
and their normals from the surface and predicts semantic labels for each
point. We train this network directly using the small set of labeled examples.

– (3D) PointContrast. To compare with the 3D self-supervision methods, we
pre-train the above 3D ResNet (Minkowski Engine) on Xu using the approach
proposed in PointContrast [41]. The pre-trained network is later fine-tuned
by adding a segmentation head (a 3D convolution layer and softmax) on
top to predict per-point semantic labels. We use the codebase provided by
authors to train the network. Details are provided in the Supplement.

– (3D) Weak supervision via learned deformation. We use the approach
by Wang et al. [37], which uses learning-based deformation and transfer of
labels from the labeled set to unlabeled shapes. We use our labeled and
unlabeled set to train this method using the code provided by the authors.

4.4 Visualization of learned embeddings.

Our self-supervision is based on enforcing consistency in pixel embeddings across
views for pixels that corresponds to the same point in 3D. In Figure 3 we visualize
correspondences using our learned embeddings between human subjects from
the RenderPeople dataset in different costumes and poses. The smoothness and
consistency in correspondences implies that the network can be fine-tuned with
few labeled examples and still perform well on unseen examples.
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Fig. 3. Visualization of learned embeddings. Given a pair of images in (a) and
(b), our network produces per-pixel embedding for each image. We map pixels from
(b) to (a) according to feature similarity, resulting in (c). Similarly (d) is generated by
transferring texture from (a) to (b). For pixels which have similarity below a thresh-
old are colored red. We visualize the smoothness of our learned correspondence in the
second and forth row. Our method learns to produce correct correspondences between
human subject in different clothing and same human subject in different camera poses
(left). Our approach also finds correct correspondences between different human sub-
jects in different poses (right). Mistakes are highlighted using black boxes.

4.5 Few-shot segmentation on PartNet

k fully labeled shapes. Table 1 shows results using the part mIOU met-
ric on few-shot semantic segmentation on PartNet dataset using k = 10 fully
labeled shapes. Our method performs better than the network trained from
scratch by 4% (part mIOU) showing the effectiveness of our self-supervision
approach. Our architecture initialized with ImageNet pre-trained weights, im-
proves performance over training from scratch, implying pre-training on large
labeled datasets is helpful even when the domain is different. The DenseCL
baseline, which is trained on our dataset, improves performance over ImageNet
pre-trained weights, owing to the effectiveness of contrastive learning at instance
level and at dense level. Interestingly, 2D training from scratch performs bet-
ter than 3D training from scratch. The learned deformation based alignment
approach [37] performs worse because aligning shapes of different topology and
structure does not align semantic parts well. Furthermore, alignment is agnos-
tic to the difference in the set of fine-grained semantic parts between shapes.
The 3D sparse convolution network pre-trained using point contrastive learning
on our dataset and fine-tuned with few labeled shapes performs better than all
previous baselines. Finally our approach, that uses dense contrastive learning at
pixel level outperforms all baselines.
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Methods Mean Fau. Vase Earph. Knife Bed Bot. Dishw. Clock Door Micro. Fridge Stor.F. Trash Dis
# semantic parts 12 6 10 10 15 9 7 11 5 6 7 24 11 4

(2D) Scratch 32.0 29.9 31.5 32.4 25.0 27.3 30.5 34.1 19.2 26.7 35.1 26.8 19.3 33.6 76.4
(2D) ImageNet 32.8 30.1 34.5 33.1 23.8 29.2 30.8 32.9 20.1 28.1 36.1 27.5 19.6 34.7 78.7
(2D) DenseCL [39] 34.2 31.4 35.4 33.6 22.7 30.8 33.7 36.7 19.7 28.9 41.9 30.2 21.2 34.7 78.3

(3D) Scratch 30.3 27.7 28.8 28.4 19.8 24.5 25.8 39.4 15.9 24.3 37.7 30.9 23.5 30.0 67.8
(3D) Deformation [37] 27.5 28.4 27.2 24.7 20.6 12.4 34.7 30.9 17.4 26.1 38.8 24.6 14.2 21.0 63.8
(3D) PointContrast [41] 34.1 29.0 35.8 31.0 25.6 27.8 32.5 39.9 22.8 29.1 41.3 32.5 25.2 31.1 73.4

(2D+3D) MvDeCor 35.9 31.1 39.1 34.8 25.2 32.4 39.2 40.0 20.7 28.7 44.3 29.8 22.6 36.3 78.2

Table 1. Few-shot segmentation on the Partnet dataset with limited labeled
shapes. 10 fully labeled shapes are provided for training. Evaluation is done on the
test set of PartNet using the mean part-iou metric (%). Training is done per category
separately. Results are reported by averaging over 5 random runs.

Methods Mean Fau. Vase Earph. Knife Bed Bot. Dishw. Clock Door Micro. Fridge Stor.F. Trash Dis
# semantic parts 12 6 10 10 15 9 7 11 5 6 7 24 11 4

(2D) Scratch 25.9 21.7 25.2 26.1 19.3 19.8 25.0 27.3 16.6 25.0 27.9 22.3 13.2 24.2 68.7
(2D) ImageNet 27.1 23.2 27.9 28.1 20.1 21.2 25.4 28.2 16.6 25.6 29.3 23.4 12.6 27.4 70.1
(2D) DenseCL [39] 28.9 23.9 31.3 29.0 21.3 22.4 28.9 29.6 16.4 27.4 33.6 25.0 15.9 28.4 71.9

(3D) Scratch 17.1 14.8 17.6 16.4 12.1 8.2 15.7 19.0 7.7 20.7 20.9 15.8 6.8 10.6 52.9
(3D) PointContrast [41] 28.4 22.3 32.5 28.6 21.2 18.9 25.9 31.3 18.9 28.5 31.4 24.8 15.5 25.8 72.1

(2D+3D) MvDeCor 30.3 25.5 33.7 31.6 22.4 24.9 31.7 31.0 16.2 25.8 35.7 25.6 17.0 31.4 71.2

Table 2. Few-shot segmentation on the PartNet dataset with limited labeled
2D views. 10 shapes, each containing v = 5 random labeled views, are used for
training. Evaluation is done on the test set of PartNet using the mean part-iou metric
(%). Training is done per category separately. Results are averaged over 5 random runs.

Sparse labeled 2D views. Table 2 shows the results on few-shot semantic seg-
mentation on PartNet dataset using sparse 2D views for supervision. Here, the
DenseCL baseline outperforms training from scratch and the ImageNet initial-
ized network. DenseCL also outperforms the 3D PointContrast baseline, show-
ing the effectiveness of 2D architectures and 2D self-supervision. Finally, our
approach outperforms all baselines. Note that evaluation on Chairs, Lamps and
Tables categories is shown separately in Table 3 with k = 30, because our ran-
domly selected k = 10 shapes do not cover all the part labels of these classes. In
this setting our approach outperforms the baselines.

4.6 Few-shot segmentation on RenderPeople

To evaluate our method on the textured dataset, we use the RenderPeople
dataset. We use the same set of 2D and 3D baselines as described in §4.3. Note
that, we provide color and normal with point cloud input to 3D Scratch and 3D
PointContrast. In addition to the settings described in §4.2, we analyze the effect
of different inputs given to the network, i.e. when only RGB images are used
as input for self-supervision and fine-tuning, and when both RGB images and
geometry information (normal + depth maps) are available for self-supervision
and fine-tuning. We train all baselines in these two settings, except 3D baselines
that take geometry by construction. The results are shown in Table 4.

RGB+Geom. In the first setting when RGB is used as input along with geom-
etry information (normal + depth), our approach outperforms all the baselines,
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Methods k=30, v=all k=30, v=5

Mean Chair Table Lamp Mean Chair Table Lamp
# semantic labels 39 51 41 39 51 41

(2D) Scratch 13.7 20.8 10.1 10.3 10.6 15.2 7.3 9.2
(2D) Imagenet 13.7 20.4 9.9 10.8 11.4 16.4 7.7 10.1
(2D) DenseCL [39] 15.7 22.6 11.7 12.6 12.0 17.1 8.5 10.4

(3D) Scratch 3d 11.5 17.8 8.0 8.7 6.3 10.1 4.5 4.3
(3D) Deformation [37] 6.5 8.4 4.9 6.1 - - - -
(3D) Pointcontrast [41] 14.5 23.0 10.8 9.8 11.8 20.4 7.8 7.1

(2D+3D) Ours 16.6 25.3 12.9 11.7 12.8 19.3 9.8 9.3

Table 3. Few-shot segmentation on the PartNet dataset. Left: 30 fully labeled
shapes are used for training. Right: 30 shapes are used for training, each containing
v = 5 random labeled views. Evaluation is done on the test set of PartNet with the
mean part-iou metric (%). Results are reported by averaging over 5 random runs.

Methods RGB RGB+Geom.
k=5, v=all k=10, v=all k=5,v=3 k=10,v=3 k=5, v=all k=10, v=all k=5,v=3 k=10,v=3

(2D) Scratch 50.2 60.5 38.7 46.3 55.3 62.6 40.6 50.4
(2D) ImageNet 58.8 67.6 48.9 58.1 55.3 63.7 44.3 51.9

(2D) DenseCL [39] 58.3 66.8 46.5 55.5 56.0 64.0 31.0 41.5

(3D) Scratch - 48.1 - 26.1 35.0 - 14.5 -
(3D) PointContrast [41] - 61.3 - 56.7 53.0 - 48.5 -

(2D+3D) MvDeCor 67.5 73.8 59.6 67.4 58.8 65.0 50.3 55.1

Table 4. Few-shot segmentation on the RenderPeople dataset. We evaluate
the segmentation performance using the part mIOU metric. We experiment with two
kinds of input, 1) when both RGB+Geom. (depth and normal maps) are input, and 2)
when only RGB is input to the network. We evaluate all methods when k = 5, 10 fully
labeled shapes are used for supervision and when k = 5, 10 shapes with 3 2D views are
available for supervision. MvDeCor consistently outperform baselines on all settings.

with 3.5% and 9.7% improvement on training from scratch when only k = 5
labeled shapes are given and when k = 5 shapes with v = 3 views are given for
supervision respectively. We use only 3 views for RenderPeople dataset because
of its simpler topology in comparison to 5 views for PartNet. The ImageNet
pre-trained model, which is modified to take depth and normal maps as input
performs similar to training from scratch, that implies that the domain shift is
too large between ImageNet and our dataset. DenseCL applies dense correspon-
dence learning at a coarse grid and hence does not perform well in the dense
prediction task when only a few labeled examples are given.

RGB only. In the second setting, when only RGB image is input to the net-
work,MvDeCor gives 17.3% and 20.9% improvement over training from scratch
when only k = 5 labeled shapes are given, and when k = 5 shapes with v = 3
views are given for supervision respectively. The ImageNet and DenseCL both
perform better than training from scratch, including their counterpart which
takes both RGB+geometry as input. MvDeCor with only RGB as input also
performs significantly better than its RGB+geometry counterpart. We expect
this behaviour is due to the following reasons: first when geometry is also used as
input to the network, the pre-training task focuses more on geometry to produce
consistent embeddings, as is shown in Figure 3, where consistent embeddings are
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Input GTScratch 2D Imagenet DenseCL Scratch 3D PointContrast Ours

Fig. 4. Visualization of predicted semantic labels on the Renderpeople
dataset in the few-shot setting when k = 5 fully labeled shapes are used
for fine-tuning. We visualize the predictions of all baselines. Our method produces
accurate semantic labels for 3D shapes even for small parts, such as ears and eyebrows.

Method RGB+Geom. RGB

MvDeCor w/o closeup views 51.6 57.4
MvDeCor w/o reg. 58.0 67.2
MvDeCor 58.8 67.5

Table 5. Effect of renderings and regularization on the RenderPeople
dataset. MvDeCor without closeup views for pre-training and fine-tuning performs
worse compared to using closeup views. Our regularization term in the loss also shows
improvement.

produced between the same human subject in two different costumes. However,
when only RGB is input to the network, the pretraining task focuses on RGB
color only to learn correspondences. Second, the semantic segmentation of hu-
man models requires high reliance on RGB features compared to geometry, and
the additional geometry input tends to confuse the pre-trained network.

Figure 4 shows qualitative results of different methods. MvDeCor consis-
tently outperforms all baselines and can segment tiny parts such as eyes, ears
and nose. We also refer to the Supplement for more qualitative visualization.
Figure 5 shows the effect of multi-view aggregation on 3D segmentation.

Regularization. During the fine-tuning stage, we use an extra regularization
term λLssl applied on shapes from Xu, to prevent the network from overfitting
on the small training set Xl as described in §3.2. In Table 5, we show that this
regularization improves our performance on the RenderPeople dataset.
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a db c

Fig. 5. View aggregation. Given the input in (a), MvDeCor produces 2D labels
(b) which can further be improved by multi-view aggregation (c) as is highlighted in
boxes and produces segmentation close to the ground truth (d).

Effect of view selection. We also analyze the effect of view selection. In our
previous experiment, we select views by placing camera farther away from the
shape to obtain a full context along with placing the camera close to the shape
to obtain finer details. The case of removing close-up views during pre-training
and fine-tuning stage is examined in Table 5. We observe that closeup views are
important for accurate segmentation of small parts. Finally, we also observe that
on the RenderPeople dataset, the segmentation performance improves as more
views are provided during inference. As the number of views are increased from
5 to 96, the segmentation performance improves from 54.7% to 58.8%.

5 Conclusion

In this paper, we present MvDeCor, a self-supervision method that learns a
multi-view representation for 3D shapes with geometric consistency enforced
across different views. We pre-train our network with a multi-view dense corre-
spondence learning task, and show that the learned representation outperforms
state-of-art methods in our experiments of few-shot fine-grained part segmenta-
tion, giving most benefits for textured 3D shapes.

Limitations. Our method relies on 2D renderings of 3D shapes, thus a few
surface regions may not be covered due to self-occlusion. In this case, the la-
bel predictions in these regions are unreliable. Our self-supervision also requires
rendering several views of shapes to make the representations view invariant,
which increases the computational cost. Our view selection during pre-training
and fine-tuning stage is heuristic-based and can be improved by a learnable
approach [17]. A useful future avenue is to combine our approach of 2D corre-
spondence learning with 3D correspondence learning [41] to obtain the best of
both worlds. MvDeCor may also open up other potential supervision sources,
such as reusing existing image segmentation datasets to segment 3D shapes, ex-
ploiting motion in videos to provide correspondence supervision for pre-training.
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