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1 Implementation Details

We implemented the projector network using three multi-layer perceptrons (MLP)
followed by Batch Normalization [1] and ReLU activation functions [4]. The fil-
ter sizes were set to 64. The GNN following the stacked MLPs was also ReLU
activated with a filter size of 64. Following [5, 6], we use a relatively small neigh-
borhood size of k=7 nearest neighbors as the input graph connectivity. The
initial point of FPS is randomly selected since we did not observe any influence
on the performance. We selected 15 neighbours for each cluster center selected
by FPS, as suggested in . The filter size of the attention-based refinement layer
was set to 3, mapping the (64+3) features of the selected points to (x, y, z) co-
ordinates. We trained our model for 150 epochs with learning rate of 0.001 and
a weight decay of 0.99 on every epoch using the Adam optimizer [2].

2 Experiments

2.1 Additional Simplification ratios

During this section we report quantitative results for simplification ratios bellow
0.3. Table 1 includes the simplification performance of the proposed and the
baseline methods on TOSCA, ModelNet and MeIn3D datasets. Note that the
method of [3] run out of time when attempted to simplify meshes for large
simplification ratios (over 0.4). Importantly, the proposed method outperforms
almost all baselines under the perceptual metrics (NC, RE, SDM) and exhibits
comparable CD measures with FPS method.

It is also important to note that the performance of the proposed method
degrades linearly as the simplification ratio increases, compared to baseline meth-
ods such as TCP and Qi et al. [8]. Additionally, the proposed method achieves
to be the best or the second best performing method under all measures.

Figure 1 shows simplified point clouds at different scales, comparing QEM
and the proposed method, where the point clouds are visualized on top of the
mesh surfaces to highlight the salient regions. The proposed method favours
point selection at the horse’s nape and face in contrast to points at smooth
areas, such as the thigh, to preserve salient features of the input point cloud.
Given that highly detailed and sharp 3D regions require many planes to be
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TOSCA
Ns/Norg = 0.8 Ns/Norg = 0.5 Ns/Norg = 0.3

Method CD NC RE(×10−4) SDM(×10−3) CD NC RE(×10−4) SDM(×10−3) CD NC RE(×10−4) SDM(×10−3)

Random 0.14 0.093 2.87 2.43 0.49 0.106 3.04 3.03 1.04 0.225 3.65 4.33
TCP 1.11 0.147 2.86 2.61 10.0 0.272 3.36 4.05 30.8 0.357 4.19 6.57
FPS 0.09 0.103 2.85 2.32 0.29 0.245 2.97 2.92 0.67 0.255 3.52 4.22
QEM 0.09 0.103 2.81 2.33 0.29 0.214 2.96 2.91 0.84 0.248 3.54 4.27
Liu et al. [3] - - - - - - - - 1.56 0.384 3.86 4.52
Qi et al. [8] 0.10 0.104 2.87 2.47 0.54 0.209 2.98 3.54 1.71 0.253 3.58 5.32
Yan et al. [10] 0.28 0.103 2.58 2.51 0.42 0.208 2.98 2.90 0.71 0.250 3.57 4.20

Proposed-MeIn3D 0.05 0.104 2.88 2.30 0.25 0.244 3.06 2.87 0.65 0.255 3.54 4.07
Proposed-ModelNet 0.03 0.103 2.87 2.29 0.23 0.211 3.05 2.83 0.64 0.259 3.51 4.08
Proposed-TOSCA 0.03 0.102 2.86 2.21 0.23 0.193 3.03 2.79 0.63 0.254 3.55 4.04

ModelNet
Method CD(×10−4) NC RE(×10−4) SDM(×10−3) CD(×10−4) NC RE(×10−4) SDM(×10−3) CD(×10−4) NC RE(×10−4) SDM(×10−3)

Random 1.74 0.181 4.91 1.14 3.13 0.201 5.16 1.53 6.01 0.333 5.37 1.99
CP 14.01 0.288 5.01 1.12 55.12 0.371 5.98 1.68 117.11 0.527 6.63 2.71
FPS 0.89 0.195 4.71 1.01 1.93 0.213 4.89 1.35 3.02 0.352 5.57 2.08
QEM 1.35 0.211 4.98 1.14 2.84 0.224 5.12 1.48 3.05 0.382 5.57 2.44
Liu et al. [3] - - - - - - - -
Qi et al. [8] 1.37 0.210 4.97 1.04 3.31 2.31 5.14 1.54 7.04 0.357 5.31 2.17
Yan et al. [10] 2.71 0.209 4.31 1.05 3.37 0.235 5.12 1.43 4.64 0.346 5.28 2.11

Proposed-MeIn3D 2.32 0.353 5.12 1.11 2.81 0.365 5.23 1.50 3.72 0.473 5.53 2.15
Proposed-ModelNet 0.91 0.207 4.61 0.99 1.12 0.216 4.72 1.28 2.74 0.371 5.01 1.87
Proposed TOSCA 2.12 0.270 4.82 1.07 2.98 0.283 4.86 1.42 4.11 0.401 5.26 2.03

MeIn3D
Method CD(×10−4) NC RE(×10−4) SDM(×10−3) CD(×10−4) NC RE(×10−4) SDM(×10−3) CD(×10−4) NC RE(×10−4) SDM(×10−3)

Random 0.74 0.108 2.46 0.99 1.12 0.120 2.74 1.24 1.26 0.169 3.43 2.31
TCP 12.35 0.211 2.41 0.97 43.06 0.327 2.52 1.54 89.24 0.571 2.89 2.91
FPS 0.59 0.103 2.32 0.86 0.97 0.105 2.53 1.15 1.05 0.108 3.21 2.28
QEM 0.94 0.112 2.52 1.06 1.36 0.139 2.76 1.44 1.94 0.150 3.53 2.54
Liu et al. [3] - - - - - - - - 1.99 0.159 3.91 2.83
Qi et al. [8] 1.22 0.110 2.77 4.14 1.97 0.131 2.77 1.40 2.15 0.144 3.55 2.44
Yan et al. [10] 1.34 0.178 2.45 1.23 1.84 0.129 2.74 1.31 2.07 0.127 3.21 2.19

Proposed MeIn3D 0.61 0.104 2.29 0.90 0.98 0.105 2.46 1.07 1.15 0.105 2.89 1.76
Proposed ModelNet 1.15 0.111 2.41 1.02 1.28 0.123 2.68 1.43 1.59 0.165 2.99 2.09
Proposed TOSCA 1.04 0.106 2.41 1.08 1.21 0.1171 2.63 1.33 1.41 0.149 2.96 1.85

Table 1. Simplification performance tested on TOSCA, ModelNet and MeIn3D
datasets. Best approaches highlighted are highlighted in bold and second best in red.
We refer to the dataset used for training as “Proposed-Dataset”

accurately described, the proposed method can be directly used to simplify large-
scale point cloud scans by retaining only the salient points of the input. This
enforces applications such as meshing that require many points around highly
detailed regions to better describe object characteristics.

2.2 Ablation Studies

Loss function: As mentioned in Section 3.3 of the main manuscript, an impor-
tant component of the proposed simplification framework is engineered of the
curvature guided loss function. In particular, Chamfer Distance (CD) assigns
an equal importance weight to each point set, neglecting important points of
the point cloud. Thus, semantically meaningful points will be assigned with the
same penalty as with points at flat smooth areas. In such way, CD will drive the
model to generate smooth results that minimize shape reconstruction without
taking into account critical identity details of the object. To break this unifor-
mity, we modified the first term of the CD to assign a different weight to each
point according to its curvature. In Table 2, we report the performance of the
proposed method trained only with regular CD (Proposed-CD), with adaptive
CD (Proposed-ACD), and with both adaptive CD and curvature preservation
loss (Proposed-Full). Results reveal that the modified CD exhibits lower percep-
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Fig. 1. Qualitative comparison between QEM (top row) and the proposed (bottom
row) methods, at different simplification ratios. Point clouds are rendered on top of the
original mesh surfaces to better visualize high-curvature areas.

tual error (CE, RE, SDM) compared to simple CD, while adding a curvature
preserving loss (Proposed-Full) further boosts the performance of the model.

Model architecture: Additionally, we examined the importance of the
GNN-based point projector and the attention refinement network in the pro-
posed architecture. As shown in Table 2, a performance similar to the FPS
method is observed when the proposed method is trained without the GNN
module (Proposed w/o GNN), with a significant increase taking place in per-
ceptual error measures (RE, SDM). This certifies the importance of the GNN-
based point projector that, in contrast to linear layers, enables message passing
through neighboring points. Finally, an increase in SMD error is also observed to
the model trained without the attention refinement module. As expected the use
of attention refinement module further improves perceptual preservation since
it weights points within the same cluster and moves the cluster centers closer to
salient regions to minimize the curvature error.

2.3 Classification of simplified point clouds

To further assess the simplification quality of the simplified point clouds, we
used a pretrained shape classification model and measured its classification ac-
curacy on the simplified point clouds. In such setting we can assess the preser-
vation of high level semantics using an external objective judge such as a neural
network. In particular, we trained a PointNet [7] model on the train split of
TOSCA dataset. We used the proposed and the baseline methods to simplify
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Ns/Norg = 0.2 Ns/Norg =0.1 Ns/Norg =0.05
Method CD CE RE(×10−4) SDM(×10−4) CD CE RE(×10−4) SDM(×10−4) CD CE RE(×10−4) SDM(×10−4)

Proposed-CD 1.12 0.40 3.96 5.52 2.41 0.47 4.43 9.64 4.91 0.58 4.99 18.3
Proposed-ACD 1.15 0.39 4.01 5.51 2.54 0.46 4.42 9.61 4.97 0.56 4.96 17.9

Proposed-w/o GNN 0.86 0.32 4.67 5.11 2.15 0.35 4.76 9.12 4.15 0.36 5.32 18.1
Proposed-w/o AttRef 0.95 0.31 4.21 5.05 2.29 0.31 4.52 8.54 4.51 0.34 5.16 17.3

Proposed-Full 1.12 0.29 3.91 5.01 2.45 0.30 4.41 7.84 4.93 0.33 4.93 16.5

Table 2. Ablation study on loss function and model architecture. Proposed-CD denotes
the model trained with CD, Proposed-ACD denotes model trained with adaptive CD
and Proposed-Full denotes the model trained with the loss functions introduced in
Section 3.3. Proposed-w/o GNN refers to the model trained without the GNN layer in
point projector module and Proposed-w/o AttRef refers to the model trained without
the attention refinement module.

the remaining test split. In Figure 2 we show the classification performance, in
terms of accuracy, of the compared methods at different simplification ratios.
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Fig. 2. Classification accuracy of the pre-
trained PointNet++ on simplified point
clouds at different ratios.

It is important to note that the scope
of this experiment is to demonstrate
that the simplified point clouds pro-
duced by the proposed method can
be better identified, by a pretrained
classifier, compared to the ones pro-
duced by the baselines. Boosting the
point cloud classification performance
remains out of the scope of this pa-
per since category indicative points
are not always correlated with the vi-
sual appearance of the model. We re-
port results of the original test set per-
formance at simplification ratio equal
to 1. It can be easily seen that the pro-
posed model degrades with a smaller
slope at extreme simplification ratios,
compared to the baseline models. This
strengthen our argument that the pro-
posed method retains the salient fea-
tures that characterise each object and indicate its identity. We argue that the
performance drop of the baseline models could be attributed to the uniform way
of sampling points that may drive to decimation of salient points that character-
ize the point cloud. In contrast, the perceptually influenced simplification of the
proposed method selects points according to their visual importance, ensuring
that the salient features will be decimated last.

2.4 Simplification under noisy conditions

As discussed in Section 5.3 of the main paper, several raw scans contain noise.
Thus, a point simplification module should be not be extremely affected by
noise. As can be observed in Figure 3, the proposed method preserves most
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of the structural characteristics of the input, without being affected from the
outlier noisy points as much as the baseline methods. In contrast, sampling
points directly from the xyz-space using the FPS method produces noisy outputs
following the noisy patterns of the inputs. Similarly, QEM selects noisy points
in order to minimize the quadric error of the input planes, such as the outliers
in cat’s foot and human hand (shown in zoomed areas).

 
 

 
 

 
 

Fig. 3. Qualitative comparison between the baseline and the proposed methods for
point clouds with Gaussian noise addition.

2.5 Simplification of Real-World Point Clouds

A significant application of point cloud simplification methods is to sub-sample
points of real-world scanners that generate million of points from the representa-
tive surface. To test the performance of the proposed method on such scenario, we
utilized Torronto3D dataset [9], that contain outdoor point clouds acquired with
LIDAR sensors. Again, we utilized the pretrained model on TOSCA dataset,
without further training or tuning. Quantitative results summarized in Table 3
demonstrate that the proposed method outperforms baseline methods in per-
ceptual quality measures (CE, RE, SDM).

Torronto3D
Ns/Norg = 0.2 Ns/Norg = 0.1 Ns/Norg = 0.05

Method CD NC CE(×10−2) RE(×10−4) SDM(×10−4) CD NC CE(×10−2) RE(×10−4) SDM(×10−4) CD NC CE(×10−2) RE(×10−4) SDM(×10−4)

Random 0.31 0.577 8.15 11.27 0.47 0.62 0.634 8.89 11.56 0.48 1.27 0.679 9.15 11.91 0.48
TCP 5.90 0.894 15.64 14.47 0.58 7.40 0.912 12.41 12.95 0.53 9.58 0.912 13.02 12.61 0.53
FPS 0.17 0.509 6.42 11.22 0.46 0.34 0.565 7.01 11.32 0.46 0.70 0.619 7.51 11.37 0.47

Proposed 0.18 0.512 5.67 11.02 0.34 0.37 0.595 6.35 11.10 0.38 0.75 0.644 6.88 11.15 0.41

Table 3. Simplification performance tested on outdoor point cloud from Torronto3D
dataset. Best approaches highlighted are highlighted in bold. The proposed method
model is trained with TOSCA dataset.

Although FPS achieves the lower CD and NC errors and produces smooth
results that minimize the overall shape loss, it fails to preserve essential details
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of the object. Figure 4 shows examples of the simplified lidar point clouds at
different simplification ratios generated by the proposed method.

Fig. 4. Simplification of real-world scans using the proposed method. Figure better
viewed in zoom.
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