
1

Supplementary Material

A More results

ShapeNetPart In Table 1, we compare the categorical mIoU on ShapeNetPart
with other methods. With a PointViT backbone, we get the highest class mIoU
at 84.4% and the highest instance mIoU at 86.0%, outperforming previous self-
supervised learning approaches (OcCo [12] and Point-BERT [16]). It also out-
performs standard train-from-scratch point cloud backbones like PointNet++ [9]
and DGCNN [13]. For all categories, our method either has the highest accuracy
or is among the best. Thanks to our dense discriminative pretraining objective,
in which we densely classify points over the 3D space, we are able to obtain good
performance when scaling to dense prediction tasks like part segmentation.

Methods cls. ins. aero bag cap car chair earp. guit. knif. lamp lapt. mot. mug pist. rock. skt. table

PointNet [8] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PN++ [9] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN [13] 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

PointViT 83.4 85.1 82.9 85.4 87.7 78.8 90.5 80.8 91.1 87.7 85.3 95.6 73.9 94.9 83.5 61.2 74.9 80.6
OcCo [12] 83.4 85.1 83.3 85.2 88.3 79.9 90.7 74.1 91.9 87.6 84.7 95.4 75.5 94.4 84.1 63.1 75.7 80.8
PN-BERT [16] 84.1 85.6 84.3 84.8 88.0 79.8 91.0 81.7 91.6 87.9 85.2 95.6 75.6 94.7 84.3 63.4 76.3 81.5
MaskPoint (Ours) 84.4 86.0 84.2 85.6 88.1 80.3 91.2 79.5 91.9 87.8 86.2 95.3 76.9 95.0 85.3 64.4 76.9 81.8

Table 1: Part segmentation results on ShapeNetPart [15]. Bold and underline
numbers denote best and second best performance, respectively.

ScanNet Table 2 reports per-class average precision on 18 classes of Scan-
NetV2 with a 0.25 box IoU threshold. Relying on purely geometric information,
our method exceeds 3DETR [7] in detecting objects like curtain, garbagebin,
table, desk, etc, where geometry is a strong cue for recognition. These results
indicate that our mask based discriminative pretraining framework is effective
in learning strong geometric representations. More importantly, our model out-
performs 3DETR on classes where it has relatively low AP, e.g., picture, door,
curtain, refrigerator, etc, which demonstrates the usefulness of pretraining: with
the pretrained knowledge relevant to those hard classes, the model is able to
make more accurate predictions than the training from the scratch baseline.

Model AP25 cab. bed cha. sofa tab. door win. boo. pic. cou. desk cur. ref. sho. toi. sink bat. gar.

3DETR [7] 62.2 50.2 87.0 86.0 87.1 61.6 46.6 40.1 54.5 9.1 62.8 69.5 48.4 50.9 68.4 97.9 67.6 85.9 45.8
Ours 63.4 51.8 82.5 85.9 86.8 69.8 50.9 36.9 47.3 10.7 59.6 76.3 65.9 55.6 66.4 99.1 61.5 83.7 49.8
Ours (12×) 64.2 49.5 81.0 87.2 86.3 65.2 51.3 42.6 56.7 16.2 56.8 73.8 59.6 56.0 77.0 97.8 66.6 85.0 47.7

Table 2: 3D object detection scores per category on the ScanNetV2 dataset,
evaluated with bbox mIoU 0.25. Ours (12×): 12 encoder blocks.

2

Original Masked p>0.01 p>0.025 p>0.05 p>0.075 p>0.10 p>0.20 p>0.30 p>0.40 p>0.50

low high

Fig. 1: Reconstruction results. We densely perform the discriminative occu-
pancy classification task in 3D space, and visualize the predicted occupancy
probability. By varying the confidence threshold p̂, we show that our model is
able to predict a continuous probability distribution of the occupancy function.

Original ReconMasked

low

high

Fig. 2: A closer look at occupancy distribution. Although there are no
points present in both red and purple regions of the masked point cloud, the
reconstructed probability distribution correctly reflects that of the original point
cloud: a lower occupancy in red region, and a higher occupancy in purple region.

More reconstruction visualizations We densely perform the discriminative
occupancy classification task in 3D space, and visualize in Fig. 1 the predicted
occupancy probability. In different columns, we vary the occupancy threshold τ ,
and only show the points with occupancy probability prediction that is higher
than the given threshold. We can see that our model is able to output a continu-
ous probability distribution of the occupancy function, even if it is only trained
with discrete occupancy values from the sampled points.

When we take a closer look at the occupancy distribution, we find several
interesting clues on how the model is modeling the probability distribution im-
pressively well. We show our findings in Fig. 2. There are no points present in
both red and purple regions of the masked point cloud, while in the original point
cloud, there are points present in the purple region, and no points are in the red

3

region. In the reconstructed probability distribution, the model predicts a low
occupancy probability in the red region, and a high occupancy in the purple
region.

We find such predictions align with how a human might understand the
scene. First, although there are no points in the purple region of the masked
point cloud, given the partial view of the top-left region of the desk top, and
the regions where the desk legs are present, it is very likely that there are points
present in the purple region (top-right region of the desk top). As for the red
region, the model’s prediction can be interpreted as follows: usually desk tops
are rectangle-shaped; however, there do exist desks whose surface shrinks inside
the region where the person sits. Given that there is not a decisive evidence
that indicates how this particular desk instance is shaped, the model produces
predictions with probability around 0.7, which is lower than other regions that
are more certain (yellow points in Fig. 2 “Recon”, with p>0.9).

These two intriguing and encouraging visualizations suggest that our pre-
trained model is capable of modeling a continuous occupancy probability distri-
bution, and it has learned a deep understanding of the input scene.

(a) Training from scratch (b) Pretrained on ShapeNet (c) Finetuned on Model-
Net40

Fig. 3: t-SNE visualization of the encoder features for ModelNet40 under three
settings: (a) training from scratch, (b) pretrained on ShapeNet, and (c) finetuned
on ModelNet40.

t-SNE visualizations We show the t-SNE visualizations of the extracted fea-
ture vectors from our approach in Fig. 3. We use the class token from the encoder
output as the high dimensional feature representation for t-SNE. Three setting
are adopted here: (a) training from scratch, (b) pretraining on ShapeNet [1], and
(c) finetuning on ModelNet40 [14].

When training the ModelNet40 classification model from scratch, the result-
ing features from different categories become heavily entangled, which can leads
to less interpretable and robust predictions for new test-time inputs. In con-
trast, when pretraining the model on ShapeNet using our proposed MaskPoint,
the features are much more distinguishable from each other. Furthermore, after
finetuning on ModelNet40, the projected features from different classes become

4

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4: Qualitative results of 3D object detection on ScanNetV2 [2]. We
show ground truth in green and predictions in red bounding boxes.

clearly separable from each other, which indicates the effectiveness of our ap-
proach. Interestingly, the feature clusters in our approach are quite tight. Such
feature layout indicates that we can learn a more compact and disjoint decision
boundary, which has been evaluated to be critical in machine learning applica-
tions such mixup [17,10] and uncertainty estimation in deep learning [3].

3D object detection visualizations We show 3D object detection visualiza-
tions of ScanNetV2 in Figure 4 with green ground truth bounding boxes and red
predicted bounding boxes. Our model is capable of precisely localizing the obe-
jct (Fig. 4b and Fig. 4j). Results indicate that our masked based discriminative
pretraining can not only produce high-quality bounding boxes for the previously
annotated objects, but also discover objects that are not annotated. For exam-
ple, in Fig. 4c, our model produces the a bounding box for the bookshelf in the
lower region; in Fig. 4f, it correctly locates the sofa in the center of the room.

B Additional Implementation Details

B.1 Pretraining

Transformer Encoder. We follow the standard Transformer design in [11,16]
to construct our point cloud Transformer backbone, PointViT. It consists of a
linear stack of 12 Transformer blocks, where each Transformer block contains
a multi-head self-attention (MHSA) layer and a feed-forward network (FFN).
LayerNorm (LN) is adopted in both layers. Following [16], we use the MLP-
based positional embedding. We set the Transformer hidden dimension to 384,
MHSA head number to 6, expansion rate of FFN to 4, stochastic drop path [5]
rate to 0.1.

5

Module Block Cin Cout k Nout Cmiddle

Positional Embed. MLP 3 384 128

Point Classify Head MLP 384 2 64

Classification Head MLP 768 Ncls 512, 256

Segmentation Head

MLP 387 384 384×4
DGCNN 384 512 4 128
DGCNN 512 384 4 128
DGCNN 384 512 4 256
DGCNN 512 384 4 256
DGCNN 384 512 4 512
DGCNN 512 384 4 512
DGCNN 384 512 4 2048
DGCNN 512 384 4 2048

Table 3: Detailed module design of MaskPoint. Cin/Cout denotes the in-
put/output channels, Cmiddle denotes the hidden channels of MLP modules,
Nout denotes the cardinality of the output point/feature set, k is the number of
neighbors used in the k-NN operator.

Feed-forward network (FFN). Following [16], we use a two-layer MLP with
ReLU and dropout as the feed-forward network. Dropout rate is set to 0.1.

Positional Embeddings. Following [16], we use a two-layer MLP with GELU [4]
as the positional embedding module. All Transformer modules share the same
positional embedding MLP module. Detailed configuration is shown in Table 3.

Point Classification Head. We use a simple two-layer MLP with GELU [4]
for the point classification pretext task in pretraining. We use the binary focal
loss [6] to balance the information from positive and negative samples. Detailed
configuration is shown in Table 3.

ScanNet-Medium Pretraining Note that for ScanNet-Medium pretraining,
we use the encoder with 3 Transformer blocks, where each block still consists
of a MHSA layer and a FFN layer. LN and MLP positional embedding are also
utilized in the encoder. Following the downstream architecture of 3DETR [7],
we set the hidden dimension to be 256, the number of MHSA heads to be 4, and
Dropout rate to be 0.1 for the Transformer. The hidden dimension is set to be
128 for the FFN layer.

For other settings such as positional embedding and classification head, the
setting is exactly the same as the ShapeNet pretraining setting.

B.2 Finetuning

Classification We use a three-layer MLP with dropout for the classification
head. The input feature to the classification head consists of two parts from the
Transformer encoder: (1) the CLS token; (2) the max-pooled feature of other

6

config value

epochs 300
optimizer AdamW
learning rate 5e-4
weight decay 5e-2
LR schedule cosine decay
warmup epochs 3
augmentation Scale/Translate
batch size 128
points 1024
patches 64
patch size 32
mask ratio 0.90
mask type random

Table 4: Pretraining setting on
ShapeNet [1].

config value

epochs 300
optimizer AdamW
learning rate 5e-4
weight decay 5e-2
LR schedule cosine decay
warmup epochs 10
augmentation Scale/Translate
batch size 32(cls), 16(seg)
points 1024(cls), 2048(seg)
patches 64(cls), 128(seg)
patch size 32

Table 5: Finetuning setting on clas-
sification (cls) and segmentation
(seg).

output features. These two features are concatenated together and fed into the
classification head. Detailed configuration is shown in Table 3.

Part Segmentation The standard Transformer only has a single-scale fea-
ture output, which is not suitable for common head designs for dense prediction
tasks like segmentation. Following [16], after getting the feature outputs from
the Transformer encoder, we perform segmentation in two steps: (1) generating
a multi-scale feature pyramid from the Transformer encoder outputs; (2) apply-
ing a standard feature propagation head for point cloud segmentation on the
generated multi-scale feature maps to generate dense predictions.

We obtain the feature maps f{4,8,12} ∈ RN3×d from the 4th, 8th, 12th layer,
and our goal is to convert them to a feature pyramid with different cardinality
N{0,1,2,3}, where N0 is the cardinality of the original point cloud P, and N{1,2,3}
are the desired cardinality of the feature maps at different scales; in our case,
N{0,1,2,3} = {2048, 512, 256, 128}.

First, we use furthest point sampling (FPS) to downsample the original point
cloud P0 to different resolutions: P{1,2,3} ∈ RN{1,2,3}×3, then a feature propaga-
tion module is used to upsample the feature maps f{4,8,12} to the corresponding

cardinality fup
{4,8,12} ∈ RN{1,2,3}×d.

After obtaining the multi-scale feature maps, we then apply the DGCNN
module to propagate the features through different scales, f̂4 = DGCNN(fup

{4,8,12}).

Another feature propagation layer is then applied on f̂4 for upsampling to the
highest resolution f̂0 ∈ RN0×d.

Finally, we apply a pointwise MLP classifier on the features at the highest
resolution f̂0 to obtain the segmentation results. Detailed configuration is shown
in Table 3.

3D Object Detection We strictly follow the setting of the original 3DETR [7]
model as the downstream 3D object detector. The points are first donwsampled

7

to 2048 points using a Set-Aggregation (SA) layer. The encoder is composed
of 3 standard Transformer blocks. The decoder is comprised of 8 Transformer
blocks using cross attention. During finetuning, only the weights of the SA layer
and the encoder are transferred to the downstream tasks. The finetuning epoch
number is 1080, the optimizer is AdamW with learning rate of 5 × 10−4 and
weight decay of 0.1, the batch size is 8.

References

1. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

2. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5828–5839 (2017)

3. Du, X., Wang, X., Gozum, G., Li, Y.: Unknown-aware object detection: Learning
what you don’t know from videos in the wild. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2022)

4. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

5. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with
stochastic depth. In: European conference on computer vision. pp. 646–661.
Springer (2016)

6. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. In: ICCV (2017)

7. Misra, I., Girdhar, R., Joulin, A.: An End-to-End Transformer Model for 3D Object
Detection. In: ICCV (2021)

8. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets
for 3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 652–660 (2017)

9. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

10. Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.: On
mixup training: Improved calibration and predictive uncertainty for deep neural
networks. Advances in Neural Information Processing Systems 32 (2019)

11. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(eds.) Advances in Neural Information Processing Systems. vol. 30. Curran
Associates, Inc. (2017), https://proceedings.neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

12. Wang, H., Liu, Q., Yue, X., Lasenby, J., Kusner, M.J.: Unsupervised point cloud
pre-training via occlusion completion. In: ICCV (2021)

13. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38(5),
1–12 (2019)

14. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A
deep representation for volumetric shapes. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 1912–1920 (2015)

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

8

15. Yi, L., Kim, V.G., Ceylan, D., Shen, I.C., Yan, M., Su, H., Lu, C., Huang, Q.,
Sheffer, A., Guibas, L.: A scalable active framework for region annotation in 3d
shape collections. ACM Transactions on Graphics (ToG) 35(6), 1–12 (2016)

16. Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., Lu, J.: Point-bert: Pre-
training 3d point cloud transformers with masked point modeling. arXiv preprint
arXiv:2111.14819 (2021)

17. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization
strategy to train strong classifiers with localizable features. In: ICCV (2019)

