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In this document, we provide more experimental results, analyses, and visu-
alizations.

1 Backbone Networks

In the main paper, we utilize the ViT-Base as the backbone network. Here, we
verify the performance of other Transformer-based backbones, including ViT-
Tiny and ViT-Small [1,5]. We train the models from scratch on the ModelNet40
dataset. The classification results in Table 1 indicate that ViT-Tiny and ViT-
Small are able to perform well while ViT-Base yields higher scores.

Table 1: Classification results of several Transformer-based backbones.
Model Layers Width MLP Heads Acc (%)

ViT-Tiny 12 192 768 3 90.2
ViT-Small 12 384 1536 6 90.8
ViT-Base 12 768 3072 12 91.5

2 Masking Strategy

In the main paper, we mask the patches randomly, while there is another common
masking strategy, i.e., block-wise masking. As shown in Figures 1 and 2, block-
wise masking removes a very large continuous block. Here, we further investigate
the effectiveness of the block-wise masking strategy and make comparison against
the random masking under different masking ratios. The results are provided in
Table 2. The classification results of random masking are always better than
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that of block-wise masking, demonstrating that random masking could obtain
a better pre-training model, which is consistent with the conclusion in MAE
[2]. Besides, we also illustrate the reconstruction results of random masking and
block masking in Figures 1 and 2. We can find that the models are able to
reconstruct the original shape well for both masking strategies.
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Fig. 1: Reconstruction results of random sampling and block-wise sampling when
the masking ratio is 50%.
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Fig. 2: Reconstruction results of random sampling and block-wise sampling when
the masking ratio is 80%.
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Table 2: Comparison of different mask strategies, where the pre-training, fine-
tuning, and linear probing experiments are all conducted on ModelNet40. ‘Fine’
indicates the results of fine-tuning, while ‘Line’ indicates the results of linear
probing.

Strategy Mask Fine (%) Line (%)

Random 0.5 91.7 91.1
Block 0.5 91.3 90.6

Random 0.7 91.1 90.6
Block 0.7 90.8 89.2

Random 0.8 91.0 90.2
Block 0.8 90.7 86.3

3 Visualization

3.1 Visualization of Feature Distributions

Here, we visualize the learned features via t-SNE [3] as shown in Figure 3. Figures
3 (a) and (c) show the features obtained by the models pre-trained on Model-
Net40 and ShapeNet, respectively. Both of them are visualized on ModelNet40.
It is noted that there is no label information during the pre-training process,
while the proposed pre-training strategy could already guide the Transformer to
learn some semantic information, demonstrating the effectiveness of the proposed
pre-training strategy. Then, we finetune these two pre-trained models on Model-
Net40, and illustrate the extracted features in Figures 3 (b) and (d), respectively.
Through finetuning, the features from different categories are separated better.

3.2 Visualization of Segmentation

In the main paper, we list the comparison of segmentation results quantitatively.
Here, we illustrate some visualization examples of the segmentation results in
Figure 4. The proposed method could obtain a comparable segmentation per-
formance.
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(c) (d)

Fig. 3: Visualization of feature distributions. We show the t-SNE visualization
of feature vectors learned by MeshMAE. (a) Pre-trained model on ModelNet40;
(b) Fine-tuned model (pre-trained on ModelNet40) on ModelNet40; (c) Pre-
trained model on ShapeNet; (d) Fine-tuned model (pre-trained on ShapeNet)
on ModelNet40. It is noted that different colors indicate different classes.
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Ground Truth MeshMAESubdivNet

Ground Truth MeshMAESubdivNet

Fig. 4: The comparison of segmentation results. The first two lines are from the
Human Body dataset [4], while the last two lines are from the COSEG-aliens
dataset [6].
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