
Supplementary Material of
Autoregressive 3D Shape Generation via

Canonical Mapping

1 Overview

This supplementary material provides more details about the implementation,
model efficiency, and additional results of our work. We start by introducing
implementation details in Section 2, followed by model size and computational
time discussion in Section 3. We then show ablation studies on different shape
composition serialization methods in Section 4. In Section 5, Section 6 and Sec-
tion 7, we demonstrate more qualitative results on auto-encoding, unconditional
generation and conditional generation. We further show the visualization of
latent space in Section 8 and provide additional experiments on the full ShapeNet
collection in Section 9. Finally, we discuss limitations of our method in Section 10.

2 Implementation Details

2.1 Model Architecture

We use the same model architecture for all encoders and decoders used in our
method. Specifically, we adopt the encoder structure from DGCNN [11], which
contains 3 EdgeConv layers using neighborhood size 20. Our decoder follows the
two branch structure as in SP-GAN [7]. Given a matrix that consists of sphere
points and features, the decoder first feeds sphere points to a graph attention
module to extract point-wise spatial features. On the other branch, we use a
nonlinear feature embedding to extract style features from the latent. Then, we
use adaptive instance normalization [4] to fuse the local styles with the spatial
features. We repeat the process with another round of style embedding and
fusion, then predict the final output from the fused feature. For our grouping
network, we follow [2], using a two-layer 128-neuron MLP with ReLU activations
and BatchNorm layers. Our transformer model is modified from [5], where we
reduce their number of layers and heads to 24 and 16, respectively.

2.2 Training Details

We use the airplane category in ShapeNet as an example to illustrate the training
pipeline. We perform all the experiments on a workstation with Intel Xeon Gold
6154 CPU (3.00GHz) and 4 NVIDIA Tesla V100 (32GB) GPUs. We implement
our framework with Pytorch 1.10. Please see Algorithm 1 for more details.



2 A. Cheng et al.

Algorithm 1 : The training phase of our approach consists of learning four
components: (1) Canonical Auto-encoder (2) Canonical Grouping Network (3)
VQVAE (4) Transformer

(A) Canonical Auto-encoder ▷ 8 hours on Airplane category

1: Sub-sample M points from the input point cloud x and canonical sphere π;
2: Initialize weight of the encoder Ec(·) and decoder Dc(·);
3: while not converged do
4: foreach iteration do
5: zx ← Ec(x);
6: x̂← Dc([πi, zA]), where πi ∈ π;
7: Obtain reconstruction loss LCD(x̂, x) and LEMD(x̂, x);
8: Update weight;

(B) Canonical Grouping Network ▷ 2 hours on Airplane category

1: Generate randomly M points from the canonical sphere π;
2: Initialize weight of the canonical grouping network MLP (·);
3: while not converged do
4: foreach iteration do
5: Obtain the corresponding point of πi ∈ π on x as Φπ→x(πi);
6: Pi ← MLP ([xi, πi), where xi ∈ x, πi ∈ π;
7: Kj ←

∑m
i=1 Φπ→x(πi)P

j
i , where j = 1, 2, ..., G;

8: Obtain loss LCD(K,x);
9: Update weight;

(C) VQVAE ▷ 24 hours on Airplane category

1: Sub-sample M points from the input point cloud x and canonical sphere π;
2: Sequentialize x;
3: Initialize weight of E(·), D(·), and V Q(·);
4: while not converged do
5: foreach iteration do
6: Obtain group feature z ← E(x)
7: zq ← V Q(z)
8: x̂← D([πi, zq]), where πi ∈ π;
9: Obtain loss LQuantization;
10: Update weight;

(D) Transformer ▷ 16 hours on Airplane category

1: Sub-sample M points from the input point cloud x;
2: Initialize weight of the transformer;
3: Vector Quantize x to a sequence s;
4: while not converged do
5: foreach iteration do
6: Obtain the probability distribution for each si ∈ s autoregressively.
7: Obtain loss LTransformer;
8: Update weight;



Autoregressive 3D Shape Generation via Canonical Mapping 3

2.3 Inference Details

Esser et al. [5] introduce several test-time hyper-parameters (e.g., top-k and top-p
heuristics, temperature scaling factor t) for transformer to obtain best results.
Following [5], we use the top-p sampling heuristic for the transformer model
which we empirically set p = 0.92 throughout all experiments. We do not use the
top-k sampling heuristic and the temperature scaling factor t is set to 1 unless
otherwise specified. We provide unconditional generation results on ShapeNet
Chair using different p in Table 1.

Table 1: Shape generation results on ShapeNet Chair. ↑ means the higher the better, ↓
means the lower the better. MMD-CD is multiplied by 103 and MMD-EMD is multiplied
by 102.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Model CD EMD CD EMD CD EMD

p = 0.85 7.70 11.87 41.84 44.25 61.40 64.72
p = 0.92 7.37 11.75 45.77 46.07 60.12 61.93
p = 0.99 7.22 11.73 44.86 45.46 60.19 62.38

2.4 Evaluation Metrics

– Minimum matching distance (MMD) [13] measures the visual quality
of the generated set. For each sample in the reference set, we compute the
distance to its nearest neighbor in the generated set. The final MMD is the
average of the computed distances. Note that the nearest neighbor can be
searched with different distance measurements such as Chamfer distance or
Earth Mover distance.

– Coverage (COV) [13] is able to detect mode-collapse in the generated set.
Specifically, COV measures the fraction of samples in the reference set that
are matched to at least one sample in the generated set. Specifically, for each
sample in the generated set, we mark its nearest neighbor in the reference set
as a matched sample. Similar to the MMD metric, the nearest neighbor can
be searched with different distance measurements such as Chamfer distance
or Earth Mover distance.

– 1-nearest neighbor accuracy (1-NNA) [13] is a metric that performs
two-sample tests [8] on the generated set and the reference set. Therefore, if
the generated set is drawn from the reference set, the classifier will result in
a random model (i.e., close to 50% accuracy).

– Total Mutual Difference (TMD) [12] is a metric that measures the
diversity given a conditional input (e.g., depth-map, partial point cloud).
Specifically, for each shape i in the k generated set, we calculate its average
Chamfer distance dCD

i to the other k−1 shapes. The total TMD is calculated

as
∑k

i=1 d
CD
i .



4 A. Cheng et al.

3 Computational Time and Model Size

Table 2: The parameter size and inference time for different models.

Model # Parameters Inference Time

PointGrow [10] 0.31M 5303.70
ShapeGF [1] 0.13M 0.2659
SP-GAN [7] 0.58M 0.2407
PointFlow [13] 1.61M 0.3506
SetVAE [6] 0.55M 0.0158
DPM [9] 3.87M 0.0943
PVD [14] 27.6M 38.35

Ours (Transformer) 20.6M 1.5391
Ours (VQ) 0.91M 0.0981

Ours (Total) 21.5M 1.6372

We report the inference time and model size for different models in Table 2. To
be precise, each model’s inference time and model size is measured as the time
and number of parameters needed for generating a shape instance. All results are
measured with their official implementation on a workstation with Intel Xeon
Gold 6154 CPU (3.00GHz) and a single NVIDIA Tesla V100 (32GB). Note that
PointGrow requires forwarding the model with the same times as the desired
number of points (e.g., 2048). Therefore, PointGrow is slow to compute. PVD
is a diffusion-based approach that involves multi-step refinement from random
noise, therefore, is computationally intensive, too.

4 Ablation on Shape Composition Serialization

To analyze the effect of different shape composition serialization, we train our
transformer model with (1) random order (2) Fibonacci spiral order (3) inverse
Fibonacci spiral order (Spiral⋆). As shown in Table 3, using Fibonacci spiral
order in either direction is generally better than using a random order.

Table 3: Shape generation results on ShapeNet Chair. ↑ means the higher the better, ↓
means the lower the better. MMD-CD is multiplied by 103 and MMD-EMD is multiplied
by 102.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Model CD EMD CD EMD CD EMD

Random 7.44 11.85 43.20 42.14 61.02 65.18
Spiral 7.37 11.75 45.77 46.07 60.12 61.93
Spiral⋆ 7.17 11.61 44.56 44.71 59.36 62.23



Autoregressive 3D Shape Generation via Canonical Mapping 5

5 Qualitative Results of Auto-encoding

In Figure 1, we show more auto-encoding results. Thanks to the context-rich
codebook, our model is able to reconstruct shapes with better local details.
Moreover, the points are more uniformly distributed on the surface.

PF ShapeGF DPM Ours Input
Fig. 1: Auto-encoding (reconstruction) results. We also shown results from PF (Point-
Flow) [13], ShapeGF [1], and DPM [9] on the left for comparison.



6 A. Cheng et al.

6 Qualitative Results of Unconditional Generation

In Figure 2, Figure 3, and Figure 4, we show more unconditional generation
results. The results suggest that our model can generate diverse shape in high
fidelity.

PF ShapeGF SetVAE DPM PVD Ours

Fig. 2: Shape generation results on ShapeNet Airplane. We shown results from
PF (PointFlow) [13], ShapeGF [1], SetVAE [6], DPM [9], and PVD [14].



Autoregressive 3D Shape Generation via Canonical Mapping 7

PF ShapeGF SetVAE DPM PVD Ours

Fig. 3: Shape generation results on ShapeNet Chair. We shown results from PF
(PointFlow) [13], ShapeGF [1], SetVAE [6], DPM [9], and PVD [14].



8 A. Cheng et al.

PF ShapeGF SetVAE DPM PVD Ours

Fig. 4: Shape generation results on ShapeNet Car. We shown results from PF
(PointFlow) [13], ShapeGF [1], SetVAE [6], DPM [9], and PVD [14].



Autoregressive 3D Shape Generation via Canonical Mapping 9

7 Qualitative Results of Conditional Generation

In Figure 5, we show 4 more samples of the conditional generation results. Our
shape completion results tend to show more variation and have better visual
quality comparing to MSC [12] and PVD [14].

Input/GT MSC PVD Ours Input/GT MSC PVD Ours

Fig. 5: Multi-modal shape completion results. The input depth-map, partial point
cloud, and reference ground-truth shape for each sample is shown in the first column,
respectively (from top to bottom).

8 Visualization of Latent Space

To further show that the proposed model can learn codebooks as a library of
local shapes, we visualize the learned VQ codes in different groups in Figure 6,
where each codebook clearly captures one meaningful part of the chair category.

Fig. 6: Visulization of codebooks. Each of the 7× 7 grid corresponds to a learned group
codebook and each shape in the inner square represents a decoded code.



10 A. Cheng et al.

9 Generalizing to Different Object Categories.

To show that our model is capable of generalizing to different object categories,
we report the auto-encoding performance of our model on the full ShapeNet
collections, which consist of shapes from 55 categories. We use the same model
configuration and training hyper-parameters as mentioned in the paper. As shown
in Table 4, our method achieves lower EMD and comparable CD scores. We
demonstrate reconstructions of other categories (e.g., guitar, table, bathtub, lamp,
mug, skateboard) by our model in the figure below.

Table 4: Shape auto-encoding on the full ShapeNet dataset. CD is multiplied by 104

and EMD is multiplied by 102.

AtlasNet
PF ShapeGF Ours Oracle

Metric Sphere Patches

CD 5.301 5.121 7.551 5.154 5.164 3.031
EMD 5.553 5.493 5.176 4.603 3.799 3.103

10 Limitations

Our model relies on the learned correspondence from the canonical mapping
function, therefore, inherits similar limitations from Cheng et al. [3]. Our model
fails to reconstruct certain samples with holes or with complex topology. We
show some failure cases of our model in Figure 7.

Input Ours Input Ours Input Ours
Fig. 7: Failure cases.



Autoregressive 3D Shape Generation via Canonical Mapping 11

References

1. Cai, R., Yang, G., Averbuch-Elor, H., Hao, Z., Belongie, S., Snavely, N., Hariharan,
B.: Learning gradient fields for shape generation. In: ECCV. pp. 364–381. Springer
(2020) 4, 5, 6, 7, 8

2. Chen, N., Liu, L., Cui, Z., Chen, R., Ceylan, D., Tu, C., Wang, W.: Unsupervised
learning of intrinsic structural representation points. In: CVPR (2020) 1

3. Cheng, A.C., Li, X., Sun, M., Yang, M.H., Liu, S.: Learning 3d dense correspondence
via canonical point autoencoder. In: NeurIPS (2021) 10

4. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style.
ICLR (2017) 1

5. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image
synthesis. In: CVPR (2021) 1, 3

6. Kim, J., Yoo, J., Lee, J., Hong, S.: Setvae: Learning hierarchical composition for
generative modeling of set-structured data. In: CVPR. pp. 15059–15068 (2021) 4,
6, 7, 8

7. Li, R., Li, X., Hui, K.H., Fu, C.W.: Sp-gan: Sphere-guided 3d shape generation and
manipulation. TOG 40(4), 1–12 (2021) 1, 4

8. Lopez-Paz, D., Oquab, M.: Revisiting classifier two-sample tests. ICLR (2017) 3
9. Luo, S., Hu, W.: Diffusion probabilistic models for 3d point cloud generation.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 2837–2845 (2021) 4, 5, 6, 7, 8

10. Sun, Y., Wang, Y., Liu, Z., Siegel, J., Sarma, S.: Pointgrow: Autoregressively learned
point cloud generation with self-attention. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. pp. 61–70 (2020) 4

11. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. TOG 38(5), 1–12 (2019) 1

12. Wu, R., Chen, X., Zhuang, Y., Chen, B.: Multimodal shape completion via con-
ditional generative adversarial networks. In: European Conference on Computer
Vision. pp. 281–296. Springer (2020) 3, 9

13. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3d
point cloud generation with continuous normalizing flows. In: CVPR. pp. 4541–4550
(2019) 3, 4, 5, 6, 7, 8

14. Zhou, L., Du, Y., Wu, J.: 3d shape generation and completion through point-voxel
diffusion. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 5826–5835 (2021) 4, 6, 7, 8, 9


