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Fig. 1: Given a point cloud, we first decompose it into a sequence of perceptually
meaningful shape compositions via a canonical auto-encoder in (a). A group
of codebooks is then learned on the sequentialized shape compositions in (b).
Finally, we introduce an autoregressive model for point cloud generation in (c).

Abstract. With the capacity of modeling long-range dependencies in
sequential data, transformers have shown remarkable performances in a
variety of generative tasks such as image, audio, and text generation. Yet,
taming them in generating less structured and voluminous data formats
such as high-resolution point clouds have seldom been explored due to am-
biguous sequentialization processes and infeasible computation burden. In
this paper, we aim to further exploit the power of transformers and employ
them for the task of 3D point cloud generation. The key idea is to decom-
pose point clouds of one category into semantically aligned sequences of
shape compositions, via a learned canonical space. These shape composi-
tions can then be quantized and used to learn a context-rich composition
codebook for point cloud generation. Experimental results on point cloud
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reconstruction and unconditional generation show that our model per-
forms favorably against state-of-the-art approaches. Furthermore, our
model can be easily extended to multi-modal shape completion as an appli-
cation for conditional shape generation. The source code and trained mod-
els can be found at https://github.com/AnjieCheng/CanonicalVAE.
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1 Introduction

In the past few years, transformers not only dominate the natural language
processing area [27,9,2], but also consistently show remarkable performance in a
variety of vision tasks such as image classification [10], semantic and instance
segmentation [20,24] and image generation [12]. Compared to convolutional neural
networks, transformers learn dependencies between visual elements from scratch
without making any prior assumptions about data structure. As a result, they
are more flexible and capable of capturing long-range dependencies in sequential
data. Such property is especially desirable in the autoregressive generation of
globally coherent long-range sequential data, such as high-resolution images.
Indeed, promising performance of autoregressive generation via transformers has
been demonstrated in [12] for image generation.

However, employing transformers for autoregression generation on less struc-
tured data, such as raw point clouds, has seldom been explored hitherto. The
main challenge is that the sequentialization of such data is non-trivial. Naively
arranging a point cloud as a sequence of points will break shape structural
information and is computationally infeasible. To resolve the limitation, similar
to the grid-like patches applied to 2D images [12,23], one can uniformly divide a
point cloud into several groups and lay them out as a sequence. However, learning
the sequential shape representation can be difficult since such shape compositions
are entirely random.

In this paper, we resolve these issues and take the first step to employ
transformers in 3D point cloud generation. The key idea is to decompose a
point cloud into a sequence of semantically meaningful shape compositions,
which are further encoded by an autoregressive model for point cloud generation.
Specifically, we first learn a mapping function that maps each point cloud onto
a shared canonical sphere primitive. Through a canonical auto-encoder with a
few self-supervised objectives, the mapping function ensures that corresponding
parts (e.g., tails of two airplanes) from different instances overlap when mapped
onto the canonical sphere, i.e., dense correspondences of different instances are
established and are explicitly represented via a canonical sphere (see Fig. 1 (a)
middle). Grouping is carried out on the canonical sphere to obtain the shape
compositions (see Fig. 1 (a) right). Thanks to the correspondence constraint, each
group on the canonical sphere essentially corresponds to the same semantic part
on all point cloud instances. As a result, each point cloud can be sequentialized
into a set of shape compositions that are semantically aligned across different
instances. Finally, we train a vector-quantized autoencoder (VQVAE) using these
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sequentialized point cloud sequences, followed by learning a transformer that
resolves the point cloud generation task.

The main contributions of this work include:

– We propose a novel transformer-based autoregressive model for point cloud
generation.

– We introduce a canonical autoencoder and a self-supervised point grouping
network to sequentialize point clouds into semantically aligned sequences of
shape compositions.

– We train a VQVAE with group-specific codebooks, followed by learning a
transformer model using the sequentialized point clouds to resolve the task
of point cloud generation.

– Qualitative and quantitative comparisons demonstrate that our model can
achieve state-of-the-art performance for point cloud auto-encoding and gen-
eration. We also extend our model to multi-modal shape completion as an
application for conditional shape generation.

2 Related work

2.1 3D Shape Generation

3D shape generation targets at learning generative models on 3D shapes including
but not limited to point clouds [33], voxels [29], implicit surfaces [5], etc. Some
early works generate point clouds with a fixed-dimensional matrix [1,13]. Although
these models can be easily applied with existing generative models (e.g., [13]
a variational auto-encoder or [1] a generative adversarial network), they are
restricted to generating a fixed number of points and are not permutation invariant.
Several works [34,14,18] mitigate this issue by mapping a primitive to a point
cloud. Specifically, they attach a global latent code to each sampled point on the
primitive and then apply the transformation to the concatenation. In this work,
we also generate point clouds from a shared primitive. Different from existing
works, we decompose the primitive into different compositions and represent each
group as a local latent code. Thanks to the local latent code representation, our
model can generate point clouds with more fine-grained details.

Several recent works consider point clouds as samples from a distribution and
propose different probabilistic models to capture the distribution. For example,
PointFlow (PF) [33] applies normalizing flow to 3D point clouds. ShapeGF [3]
models the gradient of the log-density field of shapes and generates point clouds
using Langevin dynamics. DFM [21] and PVD [38] are both diffusion models
that learn a probabilistic model over a denoising process on inputs.

Most related to our work, PointGrow [25], AutoSDF [22] and ShapeFormer [32]
also use autoregressive models to generate 3D shapes. Specifically, the PointGrow
discretizes point coordinates of a point cloud to fixed values and generates a
shape in a point-wise manner following the spatial order. However, due to the
large number of points in each point cloud, the size of generated point clouds
is limited. Instead, our model decomposes a point cloud into compact shape
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compositions that are both semantically meaningful and more efficient to process.
The AutoSDF learns an autoregressive model on volumetric Truncated-Signed
Distance Field (T-SDF), where a 3D shape is represented as a randomly permuted
sequence of latent variables, while the proposed method takes raw point clouds as
inputs and decomposes them into ordered sequences of shape compositions. The
ShapeFormer represents 3D shapes as voxel grids that have limited capacity to
encode details. Moreover, the ShapeFormer uses row-major order to turn voxels
into sequences, which can be sensitive to object rotation and missing parts.

2.2 Transformers for Point Clouds

Recently, several works have started to apply transformers for point clouds
due to their impressive representation ability. For example, Zhao et al. [37]
design self-attention layers for point clouds and show improvement in point cloud
classification and segmentation. Guo et al. [15] use a transformer to enhance
local information within the point cloud. Nico et al. [11] propose to extract local
and global features from point clouds and relate two features with the attention
mechanism. Xiang et al. [31] leverage a transformer to extract local features with
a focus on shape completion. Kim et al. [17] work on the shape generation task,
in which they propose to encode a hierarchy of latent codes for flexible subset
structures using a transformer. However, these works only employ transformer
architectures on the encoding side. In contrast, we use transformer architectures
as the decoder and focus on the autoregressive generation process.

3 Method

We propose a framework that employs transformers in the task of point cloud
generation. The overview of our framework is illustrated in Fig. 1. Given a
point cloud, our method first maps it onto a canonical sphere in Section 3.1. By
adopting self-supervised training objectives (e.g., Chamfer distance loss, Earth
Mover distance loss), we ensure that the semantically corresponding points from
different instances overlap on the canonical sphere. Thus, by grouping points
on the canonical sphere and serializing them as a sequence, we equivalently
decompose each point cloud into an ordered sequence of shape compositions. This
process is described in Section 3.2. We then learn a vector-quantized variational
auto-encoder (VQVAE) using the sequentialized point clouds in Section 3.3, with
codebooks as a library of the shape compositions in the point clouds. Finally, a
transformer is trained for point cloud generation in Section 3.4.

3.1 Point Cloud Sequentialization

Different from convolutional neural networks, transformer models require sequen-
tial data as inputs. Taking the transformer in [12] as an example, an image is
first sequentialized by starting from the top left patch and sequentially moving
to the bottom right patch in a zigzag order. The underline key is that all images
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Fig. 2: Our Canonical Auto-encoder contains two parts: a point encoder that
produces the shape feature of an input point cloud; a nonlinear function that
decodes the canonical sphere, along with the shape feature, back to the input
shape.

are sequentialized by the same “zigzag” order, allowing the transformer to learn
to predict patches based on their surrounding context. However, when it comes
to an orderless data structure such as point clouds, it remains challenging to
sequentialize the unordered points similarly to images.

To resolve this issue, two key questions need to be answered: a) what forms a
unit in a sequentialized point cloud? b) how to sort these units in a consistent
order for different point clouds? In this section, for ease of understanding, we
consider a single point as a unit in each point cloud and demonstrate how to sort
these points in a consistent order for different point clouds. We then discuss how
to learn more semantically meaningful and memory-friendly units (i.e., shape
compositions) in the next section.

To sequentialize all point clouds in a consistent order, we first map them
onto a shared canonical sphere. Each point on the sphere is from semantically
corresponding points on different point clouds. Thus, by finding an order for
points on the sphere, all the point clouds can be sequentialized accordingly.
For instance, if a point on the canonical sphere is labeled as the kth point in
a sequence, then all its corresponding points in different point clouds are also
labeled as the kth point in the sequentialized point cloud. In the following, we
first discuss how to map point clouds to a canonical sphere and then describe
the order we choose to sort all points.

Mapping point clouds to a canonical sphere. We learn a nonlinear function
to associate all point clouds with a canonical sphere π and thus obtain their
correspondences, as inspired by [8]. As shown in Fig. 2, given an input point
cloud x ∈ RM×3 including M points, we first encode it as a 256-dimensional
global latent code by an encoder, e.g., DGCNN [28]. We then replicate the global
code and concatenate it with points sampled from a canonical unit sphere as the
input to the nonlinear function. At the output end of the function, we reconstruct
the input point cloud via a Chamfer loss and an Earth Mover distance loss. The
function thus performs a nonlinear transformation between the sphere and an
individual instance, conditioned on its latent shape feature. We follow [8], in
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Fig. 3: We learn a self-supervised network to decompose the canonical sphere into
non-overlapping groups. With canonical mapping, point clouds are simultaneously
decomposed into semantically aligned shape compositions. See Sec. 3.2.

which the nonlinear function is a parameterized model implemented as a neural
network. We name the combination of the shape encoder and the nonlinear
function as Canonical Auto-encoder. For any point xi from an input point cloud
x, to locate its corresponding point on the sphere, we can (1) search its nearest
neighbor x̂i on the reconstructed point cloud x̂, then (2) trace the point πi on
the sphere where x̂i is mapped from.

As proved by Cheng et al. [8], points of all the reconstructed shapes are
“re-ordered” according to the point indices of the canonical sphere (see Fig. 2). We
note that as the key difference, we remove the “point cloud-to-sphere mapping
network” designed in [8] to avoid processing the points that are inaccurately
mapped to locations far away from the sphere surface. Our design also simplifies
the following process in Sec. 3.2, i.e., the grouping and sequentialization can be
conducted on a complete sphere instead of a subset of it [8]. For brevity, in the
following, we denote the canonical mapping process as Φ, the corresponding point
of xi ∈ x on the sphere π as Φx→π(xi), and the corresponding point of πi ∈ π on
x as Φ−1

π→x(πi).
Canonical sphere serialization. Since all point clouds are aligned with the
canonical sphere by the Canonical Auto-encoder, any order defined on the
canonical sphere can be easily transferred to any point cloud. In this paper, we
traverse the canonical sphere from the pole with a Fibonacci spiral (see Fig. 1
(a)) and serialize the points in the spiral order along the way. As a result, the
index of a point in a point cloud can be easily determined as the index of its
corresponding point on the canonical sphere.

3.2 Shape Composition Learning

Though the re-ordered point clouds in Sec. 3.1 can be readily represented as
sequences of points, such sequences usually include thousands of points and
are intractable to be modeled by autoregressive models. In this section, we
introduce a more semantically meaningful and memory-efficient unit for point
cloud sequentialization.

Specifically, we decompose the points of each point cloud instance into G
groups (G = 128 throughout all experiments). We call each group a shape
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composition, which is analogous to an image patch in the 2D domain. As discussed
above, since each point cloud is aligned to the canonical sphere, decomposing
the point clouds is thus equivalent to decomposing the canonical sphere. A
straightforward way is to uniformly divide the sphere by randomly sampling
G points as center points and assigning each point to the nearest center point.
However, this approach does not take the semantic prior into consideration and
often produces discontinuous shape compositions.

Instead, we introduce a self-supervised grouping network as shown in Fig. 3.
For each point on the sphere, we predict its group assignment by a multi-layer
perceptron (MLP), followed by a SoftMax activation function. Both are shared
by all the points on the sphere. This results in an assignment probability map P
for all points q ∈ π, where P j

i indicates the probability of assigning point πi to
the jth group.

To train this network and produce reasonable shape compositions, at the
output end, we transfer the grouping assignment probability from each point
πi ∈ π on the canonical sphere to its corresponding point Φ−1

π→x(πi) on the input
point cloud. As a result, we obtain an assignment probability map for each point
cloud instance. To ensure the learned grouping captures the structure of a point
cloud and formulates a decent abstraction of it, we compute G structure points
K ∈ RG×3 [7], where each Kj is computed as:

Kj =

m∑
i=1

Φ−1
π→x(πi)P

j
i with

m∑
i=1

P j
i = 1 for j = 1, 2, ..., G (1)

Finally, a Chamfer distance is applied between the predicted structure points K
and the input point cloud x, as LCD(K,x).

After training, we assign each point on π to the group with the highest
probability. To assign each point xi ∈ x to a group, we simply let it take the
group label of its corresponding point Φx→π(xi) on the sphere. In different
point clouds, points on corresponding semantic parts share the same grouping
assignment through the canonical sphere. As a result, any point cloud instance is
decomposed into a set of shape compositions, each of which includes the points
assigned to this group.

These shape compositions form the basic shape units and are further sorted
into a sequence following the Fibonacci spiral order described in Sec. 3.1. In the
following sections, we still denote each point cloud as x for brevity, but we assume
that all point clouds have been processed into sequences of shape compositions
using the method described above.

3.3 Point Cloud Reconstruction through VQVAE

Now we introduce how to utilize the sequentialized point clouds to learn a
VQVAE. Our VQVAE includes three components, an encoder E, a decoder D,
and a vector quantizer Q, as shown in Fig. 1(c). We discuss each component in
detail in the following.
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Point cloud encoding. Given a sequentialized instance x, we first compute
the point-wise feature by the encoder E. To compute the feature of each shape
composition, we apply max-pooling to aggregate features of all points belonging
to this shape composition. We denote the feature of the jth group as zj .
Point cloud sequence quantization. Next, we quantize the group feature
vectors z by a group of jointly learned codebooks. In conventional VQVAEs, a
single codebook is learned and shared by all the compositions (e.g., image patches
in 2D VQVAEs [26]). However, we found that this strategy often leads to low
code utilization. The model struggles to capture the diverse feature of all groups
via only a few codes while leaving all the others unused. Such design leads to the
usage of an unnecessarily large codebook and inferior reconstruction results.

To resolve this issue, we learn an independent codebook for each group where
at least one code from each codebook will be utilized. Since each codebook is
only responsible for representing one particular shape composition, we can safely
reduce the number of codes and the dimension of each code without degrading the
performance. Specifically, given zj for group j, we first reduce its dimension from
256 to 4 to obtain a low dimensional feature ẑj by learning a linear projection.
We then quantize ẑj into zlowq by finding its nearest neighbor token from the

corresponding group codebook Zj . Note that each group codebook Zj contains
50 4-dimensional latent codes. Finally, we project the matched codebook token
back to the high-dimension embedding space and denote the quantized group
feature as zq. We note that the recent work [35] also shows that this dimension
reduction process improves the reconstruction quality. We show in Sec. 4.4 that
our design choices for codebook significantly increase codebook usage.
Point cloud sequence decoding. To recover the input point cloud from zq,
we concatenate each point in the canonical sphere π with the corresponding
quantized group feature and feed the concatenation to the decoder D.
VQVAE training. We use the same network architecture as in Sec. 3.1 for both
E and D. We train them together with the codebooks by applying the Chamfer
and Earth Mover Distance between the reconstructed point cloud x̂ and the input
point cloud x:

LQuantization = LCD(x, x̂) + LEMD(x, x̂) +
∥∥sg[zlowq ]− ẑ

∥∥2
2

(2)

where sg[·] is the stop-gradient operation. We use exponential moving average
(EMA) [4] to maintain the embeddings in each of the group codebooks Zj .

3.4 Point Cloud Generation through Transformers

Given the learned codebooks, we can represent a point cloud sequence as a
sequence of codebook token indices in order to learn an auto-regressive model.

Specifically, we represent the codebook token indices as s1, s2, ..., sG, where
G is the total group number. Given indices s<i, we train a transformer model
to predict the distribution of possible next indices si based on its preceeding
codebook tokens as:

G∏
i=1

p(si|s1, s2, ..., si−1) (3)
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Table 1: Shape auto-encoding on the ShapeNet dataset. The best results are
highlighted in bold. CD is multiplied by 104 and EMD is multiplied by 102.

AtlasNet
PF ShapeGF DPM Ours Oracle

Dataset Metric Sphere Patches

Airplane
CD 1.002 0.969 1.208 0.966 0.997 0.889 0.837
EMD 2.672 2.612 2.757 2.562 2.227 2.122 2.062

Chair
CD 6.564 6.693 10.120 5.599 7.305 6.177 3.201
EMD 5.790 5.509 6.434 4.917 4.509 4.218 3.297

Car
CD 5.392 5.441 6.531 5.328 5.749 5.050 3.904
EMD 4.587 4.570 5.138 4.409 4.141 3.614 3.251

PF ShapeGF DPM Ours Input

Fig. 4: Auto-encoding (reconstruction) results. We also shown results from PF
(PointFlow) [33], ShapeGF [3], and DPM [21] on the left for comparison.

The training objective is to minimize the negative log-likelihood by

LTransformer = Ex∼p(x)) [− log p(s)] (4)

The architecture of our transformer model is similar to as [12], where the indices
are projected into the embedding space at each position together with an additive
positional embedding. However, since each of our groups owns its own codebook,
we do not use a shared embedding space for all codebook token indices. Instead,
each index si is mapped to the embedding space using a separate linear layer.

Unconditional generation. With the learned transformer model, unconditional
shape generation is carried out by sampling token-by-token from the output
distribution. The sampled tokens are then fed into the decoder D in the VQVAE
to decode output shapes.

Conditional generation. Going beyond unconditional generation, we further
incorporate our transformer with a conditional input. Specifically, given a con-
dition c (e.g., a depth image), we use our transformer to generate a shape that
matches the semantic meaning of c. For instance, if c is a depth image, then the
transformer is expected to generate a 3D shape that renders the depth image
from the given viewpoint. To this end, we first encode the condition c into a
feature vector in the same dimension of token embedding, then prepend the
feature vector before the first token embedding.
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4 Experiments

Datasets. Following previous works [33,3,17], we conduct our auto-encoding
and generation experiments on the airplane, chair, and car category from the
ShapeNet [6] dataset. For the multi-modal shape completion task, we follow [38]
which uses the ShapeNet rendering data from Genre [36]. For baselines that take
additional partial point clouds as inputs, we use the data provided by [38].

Evaluation metrics. For a fair comparison, we follow prior works [34,33,3] and
use the symmetric Chamfer Distance (CD) as well as the Earth Mover’s Distance
(EMD) to evaluate the quality of the reconstructed point clouds. To evaluate
the quality of the unconditionally generated point clouds, we use the Minimum
Matching Distance (MMD) [1], the Coverage Score (COV) [1], and the 1-NN
classifier accuracy (1-NNA) [33]. To evaluate the multi-modal shape completion
performance for the conditional generation task, we follow Wu et al. [30] that uses
a) the Total Mutual Difference (TMD) to measure the generation diversity and
b) the Minimal Matching Distance (MMD) to measure the completion quality
with Chamfer Distance (CD). We normalize each point cloud for all generation
experiments to a unit sphere before measuring the metrics.

4.1 Shape Auto-encoding

We first evaluate how well our model can approximate a shape with quantized
features. We quantitatively compare our results against the following state-of-the-
art point cloud auto-encoders: AtlasNet [14] variants that deform from patches
and from sphere, respectively, PointFlow (PF) [33], ShapeGF [3], and DPM [21].
Following [3], we also report the lower bound of the reconstruction errors in the
“Oracle” column. As shown in Table 1, our method consistently outperforms
other methods when measured by EMD. Note that EMD is usually considered a
better metric to measure a shape’s visual quality [38] as it requires the outputs
to have the same density as the ground-truth shapes [19]. This suggests that our
reconstructed point clouds have more uniformly distributed points on the surface.
We also provide qualitative results compared to baselines in Figure 4 to validate
the effectiveness of our model.

4.2 Unconditional Generation

We quantitatively compare our method with the following state-of-the-art gener-
ative models: PointGrow [25], ShapeGF [3], SP-GAN [18], PointFlow (PF) [33],
SetVAEF [17], DPM [21], and PVD[38]. We summarize the quantitative results
in Table 2. For most of the metrics, our model has comparable, if not better,
performance than other baselines. This suggests that our model is capable of
generating diverse and realistic samples. We provide qualitative results comparing
to baselines in Figure 5.

Among these baselines, PointGrow is most relevant to our work that generates
point clouds in an autoregressive manner. Our model significantly outperforms
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Table 2: Shape generation results. ↑ means the higher the better, ↓ means the
lower the better. MMD-CD is multiplied by 103 and MMD-EMD is multiplied
by 102.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Category Model CD EMD CD EMD CD EMD

Airplane

PointGrow 3.07 11.64 10.62 10.62 99.38 99.38
ShapeGF 1.02 6.53 41.48 32.84 80.62 88.02
SP-GAN 1.49 8.03 30.12 23.21 96.79 98.40
PF 1.15 6.31 36.30 38.02 85.80 83.09
SetVAE 1.04 6.16 39.51 38.77 89.51 87.65
DPM 1.10 7.11 36.79 25.19 86.67 90.49
PVD 1.12 6.17 40.49 45.68 80.25 77.65

Ours 0.83 5.50 45.67 44.19 63.45 71.60

Chair

PointGrow 16.23 18.83 12.08 13.75 98.05 99.10
ShapeGF 7.17 11.85 45.62 44.71 61.78 64.27
SP-GAN 8.51 13.09 34.74 26.28 77.87 84.29
PF 7.26 12.12 42.60 45.47 65.56 65.79
SetVAE 7.60 12.10 42.75 40.48 65.79 70.39
DPM 6.81 11.91 43.35 42.75 64.65 69.26
PVD 7.65 11.87 45.77 45.02 60.05 59.52

Ours 7.37 11.75 45.77 46.07 60.12 61.93

Car

PointGrow 14.12 18.33 6.82 11.65 99.86 98.01
ShapeGF 3.63 9.11 48.30 44.03 60.09 61.36
PF 3.69 9.03 44.32 45.17 63.78 57.67
SetVAE 3.63 9.05 39.77 37.22 65.91 67.61
DPM 3.70 9.39 38.07 30.40 74.01 73.15
PVD 3.74 9.31 43.47 39.49 65.62 63.35

Ours 3.31 8.89 41.76 47.72 55.68 57.81

PointGrow in all metrics because PointGrow scales poorly [25] when generating
large point sets. In contrast, our method can generate shapes in an arbitrary
resolution ranging from low to high with sharp details within a single model. We
show point clouds generated with different resolutions compared to PointGrow
in Figure 6.

4.3 Conditional Generation

During inference, our transformer model generates a sequence by a probabilistic
sampling of each token, which naturally allows multi-modal generation. On the
other hand, the shape completion problem is multi-modal in nature since the
incompleteness introduces significant ambiguity [30]. Motivated by this property,
we extend our approach to shape completion as an application for conditional
shape generation. Specifically, we use a depth map as the input condition to
the transformer model. We employ a ResNet50 [16] encoder to extract global
features from the depth map and prepend the feature vector to the transformer
as discussed in follow Sec. 3.4.

We compare with two state-of-the-art approaches on multi-modal shape
completion: MSC [30] and PVD [38]. Note that both MSC [30] and PVD [38]
take aligned point clouds as inputs. Therefore, they require additional camera
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PF ShapeGF SetVAE DPM PVD Ours

Fig. 5: Shape generation results. We shown results from PF (PointFlow) [33],
ShapeGF [3], SetVAE [17], DPM [21], and PVD [38].

n = 1024 n = 2048 n = 1024 n = 2048 n = 4096 n = 8194

PointGrow Ours

Fig. 6: High-resolution generation results comparing to PointGrow [25]. n refers
to the number of output points.

parameters to obtain partial scans from the depth map. We present quantitative
comparison results in Table 3 and show that our approach can achieve comparable
or even better performance without requiring additional camera parameters. We
also report results using different temperatures, which suggests that our model
can provide controllable diversity by scaling the temperature parameter.

We visualize qualitative results in Figure 7. In general, our model produces
shapes with better visual quality. However, due to the inherent ambiguity in
single-view reconstruction, it is difficult to infer the real scale of objects without
knowing the camera parameters, especially for depth maps rendered from the
side views. For instance, given a depth map of a chair from side viewpoints, our
model generates plausible but wider chairs than the ground truth 3D shapes, as
shown in the first row of Fig. 7.

4.4 Ablation Study

Effectiveness of the canonical mapping function. Table 4 shows ablations
on the effectiveness of our canonical mapping function, with empirical results
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Table 3: Multi-modal completion on the Chair dataset. t denotes the temperature
scaling factor. ↑ means the higher the better, ↓ means the lower the better. MMD
and TMD are both multiplied by 103.

Category Metric Input MMD (↓) TMD (↑)

Airplane
MSC Depth+Camera 1.475 0.925
PVD Depth+Camera 1.012 2.108

Ours (t=1) Depth 0.663 1.449
Ours (t=2) Depth 0.673 2.406
Ours (t=3) Depth 0.684 2.352

Chair
MSC Depth+Camera 6.372 5.924
PVD Depth+Camera 5.042 7.524

Ours (t=1) Depth 5.142 6.553
Ours (t=2) Depth 5.261 8.174
Ours (t=3) Depth 6.427 13.341

Table 4: Ablation study on the effectiveness of primitive grouping on the Chair
dataset. CD is multiplied by 104 and EMD is multiplied by 102.

Canonical Grouping Uniform Grouping

#groups 16 128 256 16 128 256

CD (↓) 7.542 6.177 7.933 8.646 7.676 7.278
EMD (↓) 4.466 4.218 4.645 4.772 4.541 4.627

on CD and EMD metrics using the ShapeNet Chair dataset. We report variants
of our model using a different number of groups G and an alternative way to
segment the canonical sphere (in the “Uniform Grouping” column). Specifically,
we uniformly sampleG points on the sphere as centers and use the nearest neighbor
search to assign all points on the sphere to its nearest center point. Though
straightforward, this approach does not provide any semantic correspondence
across shape instances; thereby, our model consistently performs better than
this baseline in different G settings. For the uniform setting, the auto-encoding
results directly relate to the G because a larger G results in a finer segmentation.
However, our model performs the best with a moderate G = 128. Since the size
of each group is automatically determined in our model (i.e. rather than an equal
size), therefore, some groups may include only a few points when G is large. This
tends to hurt the encoding performance and results in over-fitting.

Effectiveness of group-wise codebooks. Table 5 demonstrates the effectiveness
of the latent reduction and group-wise codebook (see Sec. 3.3) in our vector
quantizer Q. In addition to CD and EMD, we also report the codebook usage for
each model. The usage is computed as the percentage of codes that have been
utilized at least once over the entire test set. For a fair comparison with our full
model that uses 128 group codebooks in size 50, we use a global codebook in size
5000 (≈ 128×50) for each variant that does not use group-wise codebooks. Our
full model performs the best with dimension reduction from 256 to 4 together
with a group-wise codebook. Reducing the lookup dimension in the codebook
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Input/GT MSC PVD Ours Input/GT MSC PVD Ours

Fig. 7: Multi-modal shape completion results. We shown 4 samples comparing
to MSC and PVD. The input depth-map, partial point cloud, and reference
ground-truth shape for each sample is shown in the first column, respectively
(from top to bottom).

Table 5: Ablation study on using different vector quantization on the Chair
dataset. CD is multiplied by 104 and EMD is multiplied by 102.

Dimension Reduction ✗ 256→64 256→4 256→64 256→4
Grouped Codebook ✗ ✗ ✗ ✓ ✓

CD (↓) 7.139 6.561 6.298 6.442 6.177
EMD (↓) 4.376 4.272 4.283 4.228 4.218
Codebook Usage (%, ↑) 11.72 21.04 35.72 70.22 79.28

and using a group-wise codebook significantly boost the codebook usage, thereby
achieving better auto-encoding quality.

5 Conclusions

We propose a transformer-based autoregressive model for point cloud generation.
The key idea is to decompose a point cloud into a sequence of semantically
aligned shape compositions in a learned canonical space. We show that these
compositions can be further used to learn a group of context-rich codebooks
for point cloud generation. Experimental results demonstrate that the proposed
method can achieve state-of-the-art performance for point cloud auto-encoding
and generation. Finally, we show that our model can be easily extended to
multi-modal shape completion as an application for conditional shape generation.
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