
Exploring the Devil in Graph Spectral Domain
for 3D Point Cloud Attacks

Qianjiang Hu*, Daizong Liu*, and Wei Hu�

Wangxuan Institute of Computer Technology, Peking University
No. 128, Zhongguancun North Street, Beijing, China

hqjpku@pku.edu.cn, dzliu@stu.pku.edu.cn, forhuwei@pku.edu.cn

Abstract. With the maturity of depth sensors, point clouds have re-
ceived increasing attention in various applications such as autonomous
driving, robotics, surveillance, etc., while deep point cloud learning mod-
els have shown to be vulnerable to adversarial attacks. Existing attack
methods generally add/delete points or perform point-wise perturbation
over point clouds to generate adversarial examples in the data space,
which may neglect the geometric characteristics of point clouds. Instead,
we propose point cloud attacks from a new perspective—Graph Spec-
tral Domain Attack (GSDA), aiming to perturb transform coefficients in
the graph spectral domain that corresponds to varying certain geomet-
ric structure. In particular, we naturally represent a point cloud over a
graph, and adaptively transform the coordinates of points into the graph
spectral domain via graph Fourier transform (GFT) for compact repre-
sentation. We then analyze the influence of different spectral bands on
the geometric structure of the point cloud, based on which we propose to
perturb the GFT coefficients in a learnable manner guided by an energy
constraint loss function. Finally, the adversarial point cloud is generated
by transforming the perturbed spectral representation back to the data
domain via the inverse GFT (IGFT). Experimental results demonstrate
the effectiveness of the proposed GSDA in terms of both imperceptibility
and attack success rates under a variety of defense strategies. The code
is available at https://github.com/WoodwindHu/GSDA.
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1 Introduction

Deep Neural Networks (DNNs) are known to be vulnerable to adversarial exam-
ples [43,12], which are indistinguishable from legitimate ones by adding trivial
perturbations, but lead to incorrect model prediction. Many efforts have been
made into the attacks on the 2D image field [8,30,22,46], which often add im-
perceptible pixel-wise noise onto images to deceive the DNNs. Nevertheless, ad-
versarial attacks on 3D point clouds—discrete representations of 3D scenes or
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Fig. 1. (a) Existing point cloud attacks generally perturb point coordinates by shifting
points in the data domain. (b) We explore perturbation in the graph spectral domain,
leading to more imperceptible and effective adversarial examples. This is enlightened by
spectral characteristics: most energies are concentrated in low-frequency components
that represent the rough shape of point clouds while high-frequency components encode
fine-grained details. When attacked with bounded spectral noise, spectra of the point
cloud keeps similar patterns with the clean one, thus preserving geometric structures.

objects that consist of a set of points residing on irregular domains—are still
relatively under-explored, which are however crucial in various safety-critical
applications such as autonomous driving [4] and medical data analysis [41].

Existing 3D point cloud attacks [53,50,61,65,45,64,66,14] are all developed in
the data space. Some of them [53,61,50,65] employ the gradient search method
to identify critical points from point clouds and modify (add or delete) them
to distort the most representative features for misclassification. Recently, more
works [49,45,2,14,26,29,63] follow the C&W framework [12] to learn to perturb
xyz coordinates of each point by gradient optimization in an end-to-end manner.
Although the above two types of works achieve high attack success rates, the
perturbed point clouds are often easily perceivable to humans, such as outliers
and uneven distribution. This is because preserving geometric characteristics of
point clouds is generally not considered yet in these methods.

To this end, we propose point cloud attacks from a new perspective—Graph
Spectral Domain Attack (GSDA), aiming to exploit the elegant characterization
of geometric structures in the graph spectral domain and thereby perturb graph
transform coefficients that explicitly varies certain geometric structure. On the
one hand, we provide graph spectral analysis of point clouds, which shows that
the rough shape of point clouds is represented by low-frequency components
while the fine details of objects are encoded in high-frequency components in
general. With trivial perturbation in the spectral domain, the point cloud could
retain the original rough shape with similar local details, as shown in Figure 1.
On the other hand, the spectral characteristics of point clouds represent higher-
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level and global information than point-to-point relations leveraged in previous
works. That is, the spectral representation encodes more abstract and essential
contexts for recognizing the point cloud.

Based on the above analysis, we develop a novel paradigm of Graph Spectral
Domain Attack (GSDA) for point cloud attacks. In particular, different from im-
ages that are sampled on regular grids and typically transformed in the Discrete
Cosine Transform (DCT) domain, point clouds reside on irregular domains with
no ordering of points. Hence, we represent a point cloud over a graph naturally
and adaptively, where each point is treated as a vertex and connected to its K
nearest neighbors, and the coordinates of each point serve as the graph signal.
Then, we compute the graph Laplacian matrix [39] that encodes the edge con-
nectivity and vertex degree of the graph, whose eigenvectors form the basis of
the Graph Fourier Transform (GFT) [15]. Because of the compact representation
of point clouds in the GFT domain [19], we transform the coordinate signal of
point clouds onto the spectral domain via the GFT, leading to transform coeffi-
cients corresponding to each spectral component. Next, we develop a learnable
spectrum-aware perturbation approach to perturb the spectral domain with ad-
versarial noise. In order to keep the energy balance among the whole frequency
bands, we design an energy constraint function to restrict the perturbation size.
Finally, we transform the perturbed GFT coefficients back to the data domain
via the inverse GFT (IGFT) to produce the crafted point cloud. We iteratively
optimize the adversarial loss function, and perform back-propagation to retrieve
the gradient in the spectral domain for generating and updating the desired
spectrum-aware perturbations. The point clouds reconstructed by the IGFT are
taken as the adversarial examples.

Our main contributions are summarized as follows:

– We propose a novel paradigm of point cloud attacks—Graph Spectral Do-
main Attack (GSDA), which perturbs point clouds in the graph spectral
domain to exploit the high-level spectral characterization of geometric struc-
tures. Such spectral approach marks the first significant departure from the
current practice of point cloud attacks.

– We provide in-depth graph spectral analysis of point clouds, which enlight-
ens our formulation of exploring destructive perturbation on appropriate fre-
quency components. Based on this, we develop a learnable spectrum-aware
perturbation approach to attack 3D models in an end-to-end manner.

– Extensive experiments show that the proposed GSDA achieves 100% of at-
tack success rates in both targeted and untargeted settings with the least
required perturbation size. We also demonstrate the imperceptibility of the
GSDA compared to state-of-the-arts, as well as the robustness of the GSDA
by attacking existing defense methods and implementing transfer-based at-
tacks.

2 Related Works

3D Point Cloud Classification. Deep 3D point cloud learning has emerged
in recent years, which has diverse applications in many fields, such as 3D object
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classification [42,58], 3D scene segmentation [13,47,54], and 3D object detection
in autonomous driving [4,56]. Among them, 3D object classification is the most
fundamental yet important task, which learns representative information includ-
ing both local details and global context of point clouds. Early works attempt to
classify point clouds by adapting deep learning models in the 2D space [42,58].
In order to directly learn the 3D structure and address the unorderness problem
of point clouds, pioneering methods DeepSets [59] and PointNet [33] propose
to achieve end-to-end learning on point cloud classification by formulating a
general specification. PointNet++ [34] and other extensive works [9,27,57] are
built upon PointNet to further capture the fine local structural information from
the neighborhood of each point. Recently, some works focus on either designing
special convolutions on the 3D domain [24,1,44,28] or developing graph neural
networks [40,38,48,54,11] to improve point cloud learning. In this paper, we focus
on PointNet [33], PointNet++ [34] and DGCNN [48] since these 3D models are
extensively involved with practical 3D applications.

Adversarial Attack on 3D Point Clouds. Deep neural networks are vulnera-
ble to adversarial examples, which has been extensively explored in the 2D image
domain [32,31]. Recently, many works [53,50,61,65,45,64,66,14,25] adapt adver-
sarial attacks into the 3D vision community, which can be divided into two cate-
gories: 1) point adding/dropping attack: Xiang et al. [53] proposed point gener-
ation attacks by adding a limited number of synthesized points/clusters/objects
to a point cloud. Recently, more works [61,50,65] utilize gradient-guided attack
methods to identify critical points from point clouds for deletion. 2) point pertur-
bation attack: Previous point-wise perturbation attacks [49,45] learn to perturb
xyz coordinates of each point by adopting the C&W framework [2] based on the
Chamfer and Hausdorff distance with additional consideration of the benign dis-
tribution of points. Later works [14,26,29,63] further apply the iterative gradient
method to achieve more fine-grained adversarial perturbation.

Spectral Methods for Point Clouds In the graph spectral domain, the rough
shape of a point cloud will be encoded into low-frequency components, which is
suitable for denoising point clouds. Rosman et al. proposed spectral point cloud
denoising based on the non-local framework [36]. They group similar surface
patches into a collaborative patch and perform shrinkage in the GFT domain
by a low-pass filter, which leads to denoising of the 3D shape. Zhang et al pro-
posed a tensor-based method to estimate hypergraph spectral components and
frequency coefficients of point clouds, which can be used to denoise 3D shapes
[62]. On the contrary, high-frequency components often represent fine details of
point clouds, which can be used to detect contours or process redundant infor-
mation. Chen et al. proposed a high-pass filtering-based resampling method to
highlight contours for large-scale point cloud visualization and extract key points
for accurate 3D registration [3]. Sameera et al. proposed Spectral-GANs to gen-
erate high-resolution 3D point clouds, which takes the advantage of spectral
representations for compact representation [35].
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3 Graph Spectral Analysis for Point Clouds

In this section, we provide graph spectral analysis for point clouds, which lays
the foundation for the proposed graph spectral domain attack in Sec. 4. We
first discuss the benefit of graph spectral representations of point clouds and
introduce how to transform point clouds onto the spectral domain in Sec. 3.1.
Then, we analyze the roles of different spectral components with respect to
geometric structures in Sec. 3.2.

3.1 Spectral Representations of Point Clouds

Signals can be compactly represented in the spectral domain, provided that the
transformation basis characterizes principle components of the signals. For in-
stance, images are often transformed onto the Discrete Cosine Transform (DCT)
domain for compression and processing [5,23]. Different from images supported
on regular grids, point clouds reside on irregular domains with no ordering of
points, which hinders the deployment of traditional transformations such as the
DCT. Though we may quantize point clouds onto regular voxel grids or project
onto a set of depth images from multiple viewpoints, this would inevitably in-
troduce quantization loss. Instead, graphs serve as a natural representation for
irregular point clouds, which is accurate and structure-adaptive [19]. With an
appropriately constructed graph that well captures the underlying structure, the
Graph Fourier Transform (GFT) will lead to a compact representation of geo-
metric data including point clouds in the spectral domain [37,16,18,17,60,55],
which inspires new insights and understanding of point cloud attacks.

Formally, we represent a point cloud P = {pi}ni=1 ∈ Rn×3 consisting of n
points over a graph G = {V, E ,A}, which is composed of a vertex set V of
cardinality |V| = n representing points, an edge set E connecting vertices, and
an adjacency matrix A. Each entry ai,j in A represents the weight of the edge
between vertices i and j, which often captures the similarity between adjacent
vertices. Here, we construct an unweighted K-nearest-neighbor graph (K-NN
graph), where each vertex is connected to its K nearest neighbors in terms of
the Euclidean distance with weight 1. The coordinates of points in P are treated
as graph signals.

Prior to the introduction of the GFT, we first define the combinatorial graph
Laplacian matrix [39] as L := D−A, where D is the degree matrix—a diagonal
matrix where di,i =

∑n
j=1 ai,j . Given real and non-negative edge weights in an

undirected graph, L is real, symmetric, and positive semi-definite [6]. Hence,
it admits an eigen-decomposition L = UΛU⊤, where U = [u1, ...,un] is an
orthonormal matrix containing the eigenvectors ui, and Λ = diag(λ1, ..., λn)
consists of eigenvalues {λ1 = 0 ≤ λ2 ≤ ... ≤ λn}. We refer to the eigenvalues
as the graph frequency/spectrum, with a smaller eigenvalue corresponding to a
lower graph frequency.

For any graph signal x ∈ Rn residing on the vertices of G, its GFT coefficient
vector x̂ ∈ Rn is defined as [15]:

x̂ = ϕGFT(x) = U⊤x. (1)
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Fig. 2. Graph spectral analysis for 3D point clouds. We take an example from the
airplane object to investigate the roles of difference frequency bands in the graph
spectral domain. (a) Ground-Truth; (b) Remove mid-high frequencies; (c) Remove
high frequencies; (d) Perturb low frequencies; (e) Perturb mid frequencies; (f) Perturb
high frequencies.

The inverse GFT (IGFT) follows as:

x = ϕIGFT(x̂) = Ux̂. (2)

Since U is an orthonormal matrix, both GFT and IGFT operations are lossless.

3.2 Analysis in Graph Spectral Domain

When an appropriate graph is constructed that captures the geometric structure
of point clouds well, the low-frequency components of the corresponding GFT
characterize the rough shape of point clouds, while the high-frequency compo-
nents represent fine details or noise (i.e., large variations such as geometric
contours) in general.

To analyze such characteristics, we provide a toy experiment to investigate
the roles of difference frequency bands in the graph spectral domain. We ran-
domly take a clean point cloud airplane from the ModelNet40 dataset [51], and
sample it into 1024 points as an example point cloud P . We construct a K-NN
graph with K = 10 over the point cloud, and perform the GFT on the three
coordinate signals of each point in P . The resulting transform coefficient vectors
ϕGFT(P ) are presented in Figure 2(a). We see that, ϕGFT(P ) has larger ampli-
tudes at lower-frequency components and much smaller amplitudes at higher-
frequency components, demonstrating that most information is concentrated in
low-frequency components.

To further investigate how each frequency band contributes to the geometric
structure of the point cloud in the data domain, we first divide the whole spectral
domain into three bands: low-frequency band Bl ∈ [0, λl), mid-frequency band
Bm ∈ [λl, λh), and high-frequency band Bh ∈ [λh, λmax], where λl, λh, λmax

bound the three bands. While the division of frequency bands is not established,
we propose an appropriate division by the distribution of energy—squared sum of
transform coefficients. In this example, we compute that the lowest 32 frequencies
account for almost 90% of energy, while the lowest 256 frequencies account for
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almost 97% of energy. Based on this observation, we set λl = λ32 = 1.19 and
λh = λ256 = 13.93 in this instance.

Next, we study the influence of each frequency band on the geometric struc-
ture by removing different bands. As shown in Figure 2(b), when GFT coeffi-
cients in both mid- and high-frequency bands are assigned 0, the point cloud
reconstructed with only low-frequency components exhibits the rough shape of
the original object. By adding more information from the mid-frequency band,
the reconstructed point cloud has richer local contexts in Figure 2(c), but still
lacks fine-grained details such as the engines of the airplane. To summarize, each
frequency band is crucial to represent different aspects of the geometric structure
of a point cloud.

Then here is a key question: what are the results of attacking different fre-
quency bands? We investigate into this by separately perturbing each frequency
band with a large perturbation size, i.e., we perturb consecutive 32 frequencies
in each frequency band by adding noise of 0.2 on each frequency. As shown
in Figure 2(d-f), attacking low-frequency components introduces deformation
in the coarse shape but remains smoothness of the surface. When attacking
mid-frequency components, the shape of the object becomes much rougher. In
comparison, perturbing high-frequency components loses local details and in-
duces noise and outliers, though the silhouette of the shape is preserved to some
degree thanks to the clean lower-frequency components.

Inspired by the above properties of point clouds in the graph spectral domain,
we summarize several insights for developing effective spectral domain attacks:

– Each frequency band represents the geometric structure of the point cloud
from different perspectives (e.g., low-frequency components represent the
basic shape while high-frequency components encode find-grained details).
Perturbing only one frequency band may result in the corresponding distor-
tion in the data domain.

– Although a large perturbation size can ensure a high success attack rate, it
may severely change the spectral characteristics, thus leading to perceptible
deformations in the data domain.

Based on the above insights, a desirable spectral domain attack for point
clouds need to not only perform the perturbation among appropriate frequencies
for striking a balance, but also restrict the perturbation size for preserving the
original spectral characteristics.

4 Graph Spectral Domain Attack

4.1 The Formulation

Given a clean point cloud P = {pi}ni=1 ∈ Rn×3 where each point pi ∈ R3 is a
vector that contains the (x, y, z) coordinates, a well-trained classifier f(·) can
predict its accurate label y = f(P ) ∈ Y,Y = {1, 2, 3, ..., c} that represents its
object class best, where c is the number of classes. The goal of point cloud attacks
on classification is to perturb point cloud P into an adversarial one P ′, so that
f(P ′) = y′ (targeted attack) or f(P ′) ̸= y (untargeted attack), where y′ ∈ Y
but y′ ̸= y.
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Fig. 3. The overall pipeline of the proposed GSDA. Given a clean point cloud, we first
construct a K-NN graph and transform the point cloud into the spectral domain via the
GFT. Then, we perturb the GFT coefficients in a learnable manner with a specifically
designed restrictive function over the spectral energy. Subsequently, we transform the
perturbed spectral signals back to the data domain via the IGFT. Finally, we take the
reconstructed point cloud as the adversarial example and feed it into the target 3D
model for attack.

We propose a novel GSDA attack that aims to learn destructive yet imper-
ceptible perturbations in the spectral domain for generating adversarial point
clouds. Formally, we formulate the proposed GSDA as the following optimiza-
tion problem:

min
∆
Ladv(P

′,P , y), s.t.||ϕGFT(P
′)− ϕGFT(P )||p < ϵ,

where P ′ = ϕIGFT(ϕGFT(P ) +∆),
(3)

where Ladv(P
′,P , y) is the adversarial loss and ∆ is the perturbation. In the

imposed constraint, ϵ aims to restrict the perturbation size in the spectral do-
main, which preserves the original spectral characteristics so that the resultant
adversarial point cloud P ′ is visually indistinguishable from its clean version P .
We adopt the l2-norm in this equation.

To back-propagate the gradient in a desired direction for optimizing the
perturbation learning, we define our adversarial loss Ladv(P

′,P , y) as follows:

Ladv(P
′,P , y) = Lclass(P

′, y) + β · Lreg(P
′,P ), (4)

where Lclass(P
′, y) is to promote the misclassification of point cloud P ′. Lreg(P

′,P )
is a regularization term that minimizes the distance between P ′ and P to guide
perturbation in appropriate frequencies. β is a penalty parameter controlling the
regularization term.

Specifically, Lclass(P
′, y) is formulated as a cross-entropy loss as follows:

Lclass(P
′, y) =

{
− log(py′(P ′)), for targeted attack,

log(py(P
′)), for untargeted attack,

(5)

where p(·) is the softmax functioned on the output of the target model, i.e., the
probability with respect to adversarial class y′ or clean class y. By minimizing
this loss function, our GSDA optimizes the spectral perturbation ∆ to mislead
the target model f(·).

Besides, to strike a balance of perturbing different frequency bands, we uti-
lize both Chamfer distance loss [10] and Hausdorff distance loss [20] as the
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Lreg(P
′,P ) function. This reflects the imperceptibility in the data domain for

updating the frequency perturbation ∆.

4.2 The Algorithm

Based on the problem formulation, we develop an efficient and effective algo-
rithm for the GSDA model. As shown in Figure 3, the proposed GSDA attack
is composed of four steps: Firstly, the GSDA transforms the clean point cloud
P from the data domain to the graph spectral domain via the GFT operation
ϕGFT. Then, the GSDA perturbs the GFT coefficients through our designed
perturbation strategy imposed with an energy constraint function as in Eq. (3).
Next, we convert the perturbed spectral signals back to the data domain via the
IGFT operation ϕIGFT for constructing the adversarial point cloud P ′. Finally,
we optimize the adversarial loss function to iteratively update the desired per-
turbations added in the spectral domain. In the following, we elaborate on each
module in order.
Transform onto Spectral Domain. Given a clean point cloud P , we em-
ploy the GFT to transform P onto the graph spectral domain. Specifically, we
first construct a K-NN graph on the whole point cloud, and then compute the
graph Laplacian matrix L. Next, we perform eigen-decomposition to acquire the
orthonormal eigenvector matrix U , which serves as the GFT basis. The GFT
coefficients ϕGFT(P ) is then obtained by:

ϕGFT(P ) = U⊤P , (6)

where ϕGFT(P ) ∈ Rn×3 corresponds to the transform coefficients of the x-, y-,
z-coordinate signals.
Perturbation in the Graph Spectral Domain. We deploy a trainable per-
turbation ∆ to perturb the spectral representation of P : ϕGFT(P )+∆. Further,
to restrict the perturbation size among appropriate frequencies for enhancing the
imperceptibility, instead of the constraint of the entire energy in Eq. (3), we con-
strain the perturbation ∆ on each frequency in a valid range [ϵmin, ϵmax] in or-
der to keep the trend of spectral characteristics, i.e., low-frequency components
with large magnitudes and high-frequency components with small magnitudes.
In particular, we define the perturbation size of each frequency as:

∆/ϕGFT(P ) ∈ [ϵmin, ϵmax], (7)

which maintains a certain ratio to each frequency with ϵmax = −ϵmin. In order
to adjust the perturbation ∆ adaptively and further improve the success rate of
the proposed spectral attack, we formulate the attack process as an optimization
problem by leveraging the gradients of the target 3D model f(·) via backward-
propagation. We update the perturbation ∆ with the gradients, and learn the
perturbation ∆ as:

∆′ ←∆− lr · ∂∆(Ladv(P
′,P , y)),

s.t. ∆/ϕGFT(P ) ∈ [ϵmin, ϵmax],
(8)
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where lr is the learning rate.
Inverse Transform onto Data Domain. After obtaining the perturbed spec-
tral representations, we apply the IGFT to convert the perturbed signals from
the spectral domain back to the data domain as:

P ′ = ϕIGFT(ϕGFT(P ) +∆) = U(ϕGFT(P ) +∆), (9)

where P ′ is the crafted adversarial point cloud.

5 Experiments

5.1 Dataset and 3D Models
Dataset. We adopt the point cloud benchmark ModelNet40 [51] dataset in
all the experiments. This dataset contains 12,311 CAD models from 40 most
common object categories in the world. Among them, 9,843 objects are used for
training and the other 2,468 for testing. As in previous works [33], we uniformly
sample n = 1, 024 points from the surface of each object, and re-scale them into
a unit ball. For adversarial point cloud attacks, we follow [53,49] and randomly
select 25 instances for each of 10 object categories in the ModelNet40 testing
set, which can be well classified by the classifiers of interest.
3D Models. We select three commonly used networks in 3D computer vi-
sion community as the victim models, i.e., PointNet [33], PointNet++ [34], and
DGCNN [48]. We train them from scratch, and the test accuracy of each trained
model is within 0.1% of the best reported accuracy in their original papers. We
generate the adversarial point clouds on each of them, and further explore their
transferability among these three models.

5.2 Implementation Details
Experimental Settings. For generating the adversarial examples, we update
the frequency perturbation ∆ with 500 iterations. We use Adam optimizer [21]
to optimize the objective of our proposed GSDA attack in Eq. (3) with a fixed
learning rate lr = 0.01, and the momentum is set as 0.9. We set K = 10 to
build a K-NN graph. The penalty β in Eq. (4) is initialized as 10 and adjusted
by 10 runs of binary search [30]. The weights of Chamfer distance loss [10] and
Hausdorff distance loss [20] in the regularization term are set to 5.0 and 0.5,
respectively. Since the targeted attack is more challenging than the untargeted
attack, we focus on the targeted attack in the experiments. All experiments are
implemented on a single NVIDIA RTX 2080Ti GPU.
Evaluation Metrics. To quantitatively evaluate the effectiveness of our pro-
posed GSDA attack, we measure by the attack success rate, which is the ratio
of successfully fooling a 3D model. Besides, to measure the perturbation size of
different attackers, we adopt four evaluation metrics: (1) Data domain: l2-norm
distance Dnorm [7] which measures the square root of the sum of squared shifting
distance, Chamfer distance Dc [10] which measures the average squared distance
between each adversarial point and its nearest original point, Hausdorff distance
Dh [20] which measures the maximum squared distance between each adversarial
point and its nearest original point and is thus sensitive to outliers; (2) Spectral
domain: perturbed energy E∆ = ||ϕGFT(P

′)− ϕGFT(P )||2.
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Fig. 4. Visualization of the generated adversarial examples in both the data and spec-
tral domains. Specifically, we compare our GSDA with GeoA via evaluation metrics of
the perturbation budget Dc in the data domain and the perturbed energy E∆ in the
spectral domain.

5.3 Evaluation on Our GSDA Attack

Table 1. Comparative results on the perturbation sizes of different methods in the
data domain for adversarial point clouds. The results of 3D-ADV are borrowed from
its original paper. p,c ,o denote the variant of adversarial point, adversarial cluster and
adversarial object, respectively.

Attack
Model

Methods
Success
Rate

Perturbation Size
Dnorm Dc Dh

PointNet

FGSM 100% 0.7936 0.1326 0.1853
3D-ADVp 100% 0.3032 0.0003 0.0105
3D-ADVc 92.1% - 0.1652 -
3D-ADVo 81.9% - 0.1321 -
GeoA 100% 0.4385 0.0064 0.0175
Ours 100% 0.1741 0.0007 0.0031

PointNet++

FGSM 100% 0.8357 0.1682 0.2275
3D-ADVp 100% 0.3248 0.0005 0.0381
GeoA 100% 0.4772 0.0198 0.0357
Ours 100% 0.2072 0.0081 0.0248

DGCNN

FGSM 100% 0.8549 0.189 0.2506
3D-ADVp 100% 0.3326 0.0005 0.0475
GeoA 100% 0.4933 0.0176 0.0402
Ours 100% 0.2160 0.0104 0.1401

Quantitative results. In order to fairly compare our GSDA attack with exist-
ing methods, we perform four adversarial attacks, namely FGSM [61], 3D-ADV
[53], GeoA [49] and ours, and measure the perturbation in the data domain with
three evaluation metrics when these methods reach 100% of attack success rate.
Specifically, we implement these attacks on three 3D models PointNet, Point-
Net++ and DGCNN. Corresponding results are shown in Table 1. We see that,
our GSDA generates adversarial point clouds with almost the lowest perturba-
tion sizes in all evaluation metrics on three attack models.

Note that, as Dc measures the average squared distance between each adver-
sarial point and its nearest original point, attacking by adding a few points in
3D-ADVp has a natural advantage in terms of Dc because most of the distance
is equal to 0. However, it induces much larger distortions than ours on the other
two metrics.
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Table 2. Defense by dropping different
ratios of points via SOR.

Method
Attack success rate (%)

defense via SOR
0% 1% 2% 5% 10% 15% 20%

GeoA 100 83.47 70.56 52.61 31.58 18.62 11.71
Ours 100 91.87 89.91 85.38 72.53 50.00 27.78

Table 3. The attack success rate (%) on
PointNet model by various attacks under
defense.

Attack No Defense SRS DUP-Net IF-Defense

FGSM 100% 9.68% 4.38% 4.80%
3D-ADV 100% 22.53% 15.44% 13.70%
GeoA 100% 67.61% 59.15% 38.72%
Ours 100% 81.03% 68.98% 50.26%

Overall, this demonstrates that our generated point clouds are less distorted
quantitatively. Besides, for each attack method, it takes larger perturbation sizes
to successfully attack PointNet++ and DGCNN than to attack PointNet, which
indicates that PointNet++ and DGCNN are harder to attack.
Visualization results. We also provide some visualization results of generated
adversarial point clouds and corresponding spectral coefficients for comparison.
As shown in Figure 4, we compare the visualization of both GeoA and ours on
four examples under the setting of targeted attacks. Since GeoA implements
perturbation in the data domain while we conduct it in the spectral domain,
we provide the perturbation budgets in both two domains for fair comparison.
Figure 4 shows that our GSDA attack has less perturbation E∆ than GeoA in the
spectral domain as we develop an energy constraint function for optimization.
By reflecting the perturbation in the data domain, our adversarial examples are
more imperceptible than those of GeoA in both local details and distributions.
Quantitatively, we achieve smaller perturbation budget Dc in the data domain.
To conclude, our GSDA attack is more effective and imperceptible.

5.4 Analysis on Robustness of Our GSDA Attack

Attacking the Defenses. To further examine the robustness of our proposed
GSDA attack, we employ several 3D defenses to investigate whether our attack
is still effective. Specifically, we employ the PointNet model with the follow-
ing defense methods: Statistical Outlier Removal (SOR) [67], Simple Random
Sampling (SRS) [61], DUP-Net defense [67] and IF-Defense [52]. Table 2 shows
that across a range of dropping ratios via the defense SOR, the attack success
rates drop a lot. However, the performance of our GSDA attack decays much
slower than that of GeoA, validating that our attack is much more robust. We
also report the results with other defenses in Table 3. We observe that FGSM
and 3D-ADV attacks have low success rates under all the defenses, which is be-
cause they often lead to uneven local distribution and outliers. Besides, GeoA
achieves relatively higher attack success rates, since it utilizes a geometry-aware
loss function to constrain the similarity in curvature and thus has fewer out-
liers. In comparison, our attack achieves the highest success rates than all other
attacks under all defenses since the trivial perturbation in the spectral domain
reflects less noise in the data domain, thus enhancing the robustness.
Transferability of Adversarial Point Clouds. To investigate the transfer-
ability of our proposed GSDA attack, we craft adversarial point clouds on nor-
mally trained models and test them on all the three 3D models we consider. The
success rates, which are the misclassification rates of the corresponding models
on adversarial examples, are shown in Table 4. The left, middle and right parts
present the three models we attack: PointNet, PointNet++ and DGCNN; the
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Table 4. The attack success rate (%) of transfer-based attacks.
Attacks PointNet PointNet++ DGCNN PointNet PointNet++ DGCNN PointNet PointNet++ DGCNN

FGSM 100% 3.99% 0.63% 3.16% 100% 5.57% 3.59% 7.21% 100%
3D-ADV 100% 8.45% 1.28% 6.63% 100% 10.98% 6.82% 13.53% 100%
GeoA 100% 11.59% 2.59% 9.47% 100% 19.77% 12.46% 24.24% 100%
Ours 100% 11.51% 8.39% 10.89% 100% 30.84% 32.31% 84.49% 100%

columns of the table present the models we test. We observe that although our
GSDA attack is not tailored for transferability, it has relatively higher success
rates of transfer-based attacks than others. This is because our perturbation in
the spectral domain not only keeps spectral characteristics but also reflects triv-
ial noise in the data domain, which is thus more robust. A further improvement
of the transferability could be developed by employing an additional adversar-
ial learning mechanism with the Auto-Encoder reconstruction as in [14] (left as
the future works). The comparatively slightly lower transferability of our GSDA
in this table may be related with special properties of certain 3D models. To
summarize, this intrinsic property makes it possible to design black-box defense
against such adversarial instances.

5.5 Ablation Study

Table 5. Sensitivity analysis on the number K.
Number K Success Rate Dc Dh E∆

K=5 100% 0.0007 0.0031 3.4679
K=10 100% 0.0007 0.0031 3.4510
K=20 100% 0.0007 0.0030 3.4617
K=40 100% 0.0007 0.0030 3.4688

Table 6. Comparison of different spectral representations.

Method
Attack success rate (%)

Dc Dh E∆defense via SOR
0% 5% 10% 20%

Ours-1DDCT 100.00 6.84 3.24 0.62 0.0006 0.0037 28.7834
Ours-3DDCT 93.06 37.48 25.17 19.60 0.0029 0.0415 19.4804
Ours-GFT 100.00 85.38 72.53 27.78 0.0007 0.0031 3.4510

Choice of Spectral Representation. We first evaluate the benefit of spectral
representation in the GFT domain. Since the DCT is widely used in the 2D field
to transform images onto the spectral domain, we compare the spectral domain
attack performances on different spectral representations of the DCT and GFT.
We implement 1D DCT and 3D DCT for comparison. For 1D DCT, we regard
coordinates as the signal and perform 1D DCT on it. As to 3D DCT, we voxelize
the pointcloud and perform 3D DCT on coordinates signal. As shown in Table 6,
we see that our attack with the GFT is more robust to SOR defense and has much
lower perturbation size in the spectral domain than the attack with the DCT.
The main reason is that point clouds are unordered, which makes it challenging
to capture the correlations among points by the DCT. In contrast, the GFT
well captures the underlying structure of point clouds via the appropriate graph
construction.
Sensitivity on the Number K. As shown in Table 5, we investigate whether
the adversarial effects vary with respect to different settings of the number K
in the K-NN graph. Specifically, we implement K = 5, 10, 20, 40 to perform
the proposed GSDA attack on PointNet model and report the corresponding
perturbation budgets when achieving 100% of attack success rate. We see that
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the attack performance is insensitive to the number K since our attack with
different K’s requires similar perturbation budgets Dc,Dh in the data domain,
as well as in the spectral domain measured by E∆.

Fig. 5. Attacking performance when applying different ϵmax restrict, in terms of success
rate, Chamfer distance and Hausdorff distance results between adversarial point clouds
and the originals.

ground truth low low-mid

mid-high high all

Fig. 6. Visualization of attacks on specific frequency bands.

Sensitivity on the Perturbation Size [ϵmin, ϵmax]. As shown in Figure 5,
when we relax the perturbation constraint [ϵmin, ϵmax] in the spectral domain,
the success rates of our GSDA increase and achieve almost 100% of success rate
when ϵmax = −ϵmin = 3.0, meanwhile Dc and Dh achieve an good performance.
Attacks on Specific Frequency Bands. We also perform an ablation study
on how attacking specific frequency bands (i.e., low, low-mid, mid-high, high)
affects point clouds in the data domain. As shown in Figure 6, only attacking low
or high frequency band results in distortion of the rough shape or local details,
which is consistent with our analysis in Sec. 3. Instead, attacking appropriate
positions among the entire spectra achieves the most imperceptible results.

6 Conclusion

We propose a novel paradigm of point cloud attacks—Graph Spectral Domain
Attack (GSDA), which explores insightful spectral characteristics and performs
perturbation in the spectral domain to generate adversarial examples with geo-
metric structures well preserved. Extensive experiments show the vulnerability
of popular 3D models to the proposed GSDA and demonstrate the robustness
of our adversarial point clouds. Such spectral methodology blazes a new path
of developing attacks in 3D deep learning. Future promising directions include
developing effective defense methods against such spectral domain attacks.
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