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The following describes the content in each section in the supplementary material.
– § 1 describes additional implementation details.
– § 2 presents ablation study of the proposed model.
– § 3 illustrates more details of our baselines including encoder-decoder net-

works [4] and EditNeRF [8].
– § 4 details our experimental settings (e.g., datasets, evaluations).
– § 5 provides detailed analysis on the limitations of the proposed model.
– § 6 provides more color editing results with diverse color scribbles.

1 Implementation Details

The implementation details of 3D shape and color networks are included in the
main text. Here we provide additional implementation details.

– Joint latent space. The shape and color latent codes are both of dimension
128 throughout our experiments. We observe that lower-dimensional latent
codes (e.g., 32) lead to worse shape reconstruction.

– 2D sketch and renderings. The image resolution of all 2D modalities is
set to 128× 128. We use the generator architecture from DCGAN [12] for all
2D modalities.

– Few-shot shape generation. We use the discriminator from DCGAN [12].
The mapping function hw(z) in the MineGAN framework [14] is a two-layer
MLP with batch normalization [7] and a ReLU activation function.

– Latent optimization. In the task of shape and appearance manipulation, we
conduct the latent optimization for 5 steps starting from a known initial latent
code that corresponds to the initial 2D and 3D instances. The hyperparameter
γ and β in Eqn.11 is 0.02 and 0.5 respectively by default. For the single-view
shape generation tasks, we run multiple trials of latent optimization from
different randomly sampled latent codes. The optimized code with minimal
reconstruction loss is used as the final result. We observe that such multi-trial
optimization significantly stabilizes the performance of 3D reconstruction
(see Sec. 2 for more details).

2 Ablation study

The latent optimization is crucial to the performance of our shape reconstruction
and manipulation tasks. In this section, we provide ablation studies on the regu-
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larization loss (Eqn. 10 in the main text) and the multi-trial latent optimization
method (as described in Sec. 1).

Regularization Loss. We apply the same regularization loss as DualSDF [5], i.e.,
Lreg = γmax(∥z∥22, β), where two hyperparameters γ and β control the strength
of the regularization. The regularization term LREG(z) effectively constrains the
optimization of the latent code z in the prior distribution of the pretrained MM-
VADs. Without such regularization, we find that the single-view 3D reconstruction
fails in most cases. Fig. 1 provides one example.

(a) Input (b) with LREG (e) w/o LREG

Fig. 1. The effect of LREG. Without the regularization term, our model fails to
reconstruct 3D shapes from a sketch image.

Multi-trial latent optimization for 3D reconstruction. Similar to other generative
models (e.g., GANs), the latent optimization with the proposed MM-VADs
is a highly non-convex problem and prone to local minimal. To relieve this
issue, we conduct the latent optimization for multiple rounds with different
initial latent codes. We use the latent codes with minimal reconstruction loss in
multiple trials as the final results of the latent optimization. We find this simple
strategy significantly stabilizes our model in the 3D reconstruction task. For
example, the mean Chamfer distance decreases from 5.50 to 1.73 in the task of
3D reconstruction from single-view sketch on ShapeNet airplanes and from 9.10
to 4.70 on ShapeNet chairs. In 3D shape manipulation, the latent optimization
starts from a known latent code corresponding to the target shape to be edited,
and we only run the latent optimization once.

3 Baselines

Here we present more details about the baselines used in our experiments.

– Encoder-Decoder Networks [4,13]. This model is originally designed for
predicting 3D shapes from sketches, followed by a shape refinement step
based on differentiable rendering. We re-purpose this model to reconstruct
3D shapes from RGB images by simply modifying the input channels in the
first convolutional layer. We use the official implementations with default
hyperparameter settings 3.

3 https://github.com/cvlab-epfl/MeshSDF

https://github.com/cvlab-epfl/MeshSDF
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– EditNeRF [8] edits a conditional radiance field representation of 3D scenes
with sparse scribbles as input. The shape and color of 3D objects are edited
by updating the neural network weights. We make qualitative comparisons
with the EditNeRF using their pre-trained models4. Our model shares many
similarities with EditNeRF (e.g., network architecture, scribble-based interac-
tion). However, the proposed model is significantly different from EditNeRF
in terms of shape representation (SDFs [11] vs NeRF [9]), shape manipulation
method (latent optimization vs network fine-tuning), and the way to bridge
the 3D and 2D modalities (shared latent spaces vs differentiable rendering).
Tab. 1 provides detailed comparisons between EditNeRF and our model.

Table 1. Comparisons with EditNeRF [8]. † The shape reconstruction and manip-
ulation can be combined and interleaved with the proposed model. This enables us to
edit novel instances (Fig. 10 in the main manuscript provides an example). ‡ The time
cost of rendering a 256× 256 image is included in the editing time

EditNeRF [8] Ours

Latent codes Separate shape and color codes
Network A common network shared by all training instances

Task Shape/color manipulation with sparse scribbles

Instance-specific sub-networks ✓ ✗

Generative model ✗ ✓

3D recon. from sketch or RGB ✗ ✓

Editing novel instances † ✗ ✓

Shape representation NeRF [9] SDFs [11]
Bridge of 2D/3D modalities Differentiable rendering Shared latent spaces

Editing method Update network weights Latent optimization

Estimated editing time ‡ 60s 7s

4 More Experimental details

4.1 Training and Testing Dataset

We train the proposed multi-modal variational auto-decoders (MM-VADs) on the
ShapeNet dataset [2]. The training and testing split is the same as DeepSDF [11]
and DualSDF [5]. We use the same pre-trained MM-VADs throughout our
experiments. For airplanes, there are 1780 shapes for training and 456 shapes
for testing. For chairs, there are 3281 training shapes and 833 testing instances.
For 3D shape manipulation, we present the results on known shapes (i.e., shapes
from training data), similar to EditNeRF [8] and DualSDF [5].

4 https://github.com/stevliu/editnerf

https://github.com/stevliu/editnerf
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4.2 3D reconstruction from Sketch or RGB modalities.

Table 2 presents quantitative evaluations of the 3D reconstruction from sketch and
RGB inputs under different occlusion ratios, corresponding to the curves in Fig. 7
in the main manuscript. We report results on both vertically and horizontally
occluded inputs. Since 3D shapes and their 2D views are generally symmetric
horizontally, the proposed model has almost no performance drop when masking
out the right-half regions of the inputs. In comparison, the encoder-decoder
networks [4] that is trained on full-view inputs suffers from the input domain
shift induced by the occlusion.

Table 2. Quantitative results of single-view reconstruction. We report the
average Chamfer Distance (30, 000 points) multiplied by 103 between the reconstructed
3D shapes and the groundtruth (lower is better). The performance of the proposed
model is slightly worse than the encoder-decoder networks [4] trained on the full-view
inputs. However, MM-VADs perform more robustly to the input domain shift (e.g.,
only partial view of input is available). The first column presents the occlusion rate in
the input, where “Full” means no occlusion in the input, “1/2-horizontal” the left half
of the input is visible, and “3/4-vertical” the top 3/4 region of the object is available.
Superscripts in the last row denote the performance drop under the input domain shift
(lower is better). This table corresponds to Fig. 7 in the main text

View Model
Airplane Chair

Avg.
Sketch RGB Sketch RGB

Full
Enc-Dec 1.45 1.21 4.24 3.45 2.59
Ours 1.73 1.40 5.96 4.70 3.44

1/2-horizontal
Enc-Dec 3.30 6.18 16.34 7.61 8.36+5.77

Ours 1.79 1.38 6.07 5.00 3.56+0.12

3/4-vertical
Enc-Dec 2.33 1.94 13.10 6.99 6.09+3.50

Ours 2.07 1.55 6.91 5.64 4.04+0.60

1/2-vertical
Enc-Dec 3.97 3.56 24.31 10.13 10.49+7.90

Ours 2.39 1.89 8.01 7.06 4.87+1.43

1/4-vertical
Enc-Dec 4.28 4.77 27.64 9.77 11.61+9.02

Ours 3.32 2.63 8.27 8.19 5.60+2.16

4.3 Few-shot 3D Generation

Fig. 2 presents the 2D examples used in our few-shot shape generation experiments.
For each category (e.g., armchair), we randomly sample 10 images from our
training data. We then adapt a pre-trained MM-VAD using these 2D examples
based on the MineGAN framework [14]. We further collect 200 images per category
from our training data for training binary classifiers and calculating FID scores.
The classifiers are fine-tuned from a ResNet18 [6] pre-trained on ImageNet.
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Fig. 2. 2D examples for few-shot shape generation. Each row presents the 10
2D examples used to adapt a pre-trained MM-VADs to generate armchairs, side chairs,
and pink chairs respectively.

5 Limitations

3D reconstruction from 2D modalities. The proposed model fails to reconstruct
fine structures of 3D shapes from sketches or RGB views, for example, the holes
on the back of chairs (Fig. 3a, b, g, h), fine textures on the seat of chairs (Fig. 3e),
or the wheelbase of desk chairs (Fig. 3c, f). The capability of modeling fine
structures is mainly determined by the 3D shape representation (i.e., SDFs [11]),
training samples of SDFs, and the capacity of the proposed generative model. This
issue can be potentially relieved by sampling more 3D training points surrounding
the surface or increasing the capacity of the proposed model (e.g., enlarging the
dimension of the latent space, increasing the depth of 3D shape networks)

(a) (b) (c) (d) (e) (f) (g) (h)

2D

3D

Fig. 3. Limitations of 3D reconstruction from 2D modalities. The proposed
model fails to generate fine structures of 3D shapes from sketches (a-d) or RGB
renderings (e-h). The red bounding boxes highlight the object parts where our model
fails to reconstruct the 3D structures.

3D manipulation with 2D color scribble. Similar to GAN-based image manip-
ulation models [15,3,1,10], we are only able to provide editing results within
the prior distribution of a pre-trained MM-VAD. For example, in the task of
editing shape with color scribbles, if there are multiple scribbles of different
colors on the same part of a shape (e.g., the seat of a chair), our model either
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edits the shape based on one of the scribbles or generates a surface color that is
completely different from all scribbles, as shown in Fig. 4. We notice that the
editing results of EditNeRF [8] are similar to ours based on their released demo5.
Our model may produce unexpected color editing results, for example, the edited
3D surface color may not match the 2D color scribbles provided by the user
(Fig. 4d), probably due to bad initialization of the latent code or suboptimal
hyperparameter settings. The multi-trial latent optimization described in Sec. 2
may relieve this issue.

(a) Initial shape (b) Single scribble (c) Double scribbles (d) Mismatch between 2D and 3D

Fig. 4. Limitations of editing shape via color scribble. We are only able to
provide color editing results in the prior distribution of the generative model. For
example, if there are two scribbles of different color on the same part of a chair, our
model either propagates one of the scribbles (e.g., first two columns in (c)) or generates
a surface color that are different from both scribbles (e.g., last column in (c)). As a
reference, we provide the editing results with single scribble in (b). Our model also
produces 3D color editing results that do not match with the 2D input scribbles, as
shown in (d).

3D manipulation via 2D sketch. In this task, the major issue is that editing one
part of a shape usually leads to changes in other parts. For example, removing the
engines on the wing of airplanes results in new engines on the tail in many cases,
as shown in Fig. 3 in the main text. Fig. 6 in this section provides more examples.
This is mainly because editing shapes via latent optimization can only produce
new shapes in the prior distribution of the generative model. It is potentially
useful to add more constraints upon the latent optimization, e.g., enforcing the
output of the 2D sketch generator to be as similar as possible to the original
sketch. However, our preliminary experiments show that the latent optimization
with such constraint typically under-fits the edited parts of the sketch and fails
to achieve desired edits in 3D shape. In addition, the proposed model fails to
add more complicated structures into the shape, for example, adding holes onto
the back of chairs (Fig. 6c). We will investigate these issues further in our future
work.

Few-shot shape generation. We are unable to adapt a pre-trained MM-VAD to
generate shapes of fine-grained categories (e.g., single-engine airplanes) using a
few 2D RGB images. We also fail to adapt a pre-trained MM-VAD using a few

5 https://github.com/stevliu/editnerf

https://github.com/stevliu/editnerf
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(a) (b)

Remove curve Add curve

Remove engines Add engines Add holes

Add holes

(c)

Fig. 5. Limitations of editing shape via sketch. (a-b) Editing one part via sketch
leads to changes in other parts which are not edited in the sketch. The parts where
our model fails to maintain are annotated in red bounding boxes. (c) The proposed
method fails to add fine structures onto the shape via sketch (e.g., adding holds onto
the back of chairs).

2D sketches. We hypothesize that this is because the discriminator is trained from
scratch and unable to learn discriminative representations among fine-grained
categories or sparse inputs (e.g., sketches) with limited 2D examples. These issues
may be relieved by initializing the discriminator with a pre-trained classifier. We
leave this in our future work.

6 Diverse color scribbles.

Fig. 6 shows more 3D color editing results with diverse color scribbles. Our
method is robust to color scribbles of different shapes/amounts/positions.

2D
3D

Fig. 6. Diverse color scribbles. The first column presents the initial 2D and 3D
modalities. The following columns present the color editing results with diverse scribbles.
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