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Abstract. Point cloud completion has become increasingly popular among
generation tasks of 3D point clouds, as it is a challenging yet indispens-
able problem to recover the complete shape of a 3D object from its
partial observation. In this paper, we propose a novel SeedFormer to
improve the ability of detail preservation and recovery in point cloud
completion. Unlike previous methods based on a global feature vector,
we introduce a new shape representation, namely Patch Seeds, which
not only captures general structures from partial inputs but also pre-
serves regional information of local patterns. Then, by integrating seed
features into the generation process, we can recover faithful details for
complete point clouds in a coarse-to-fine manner. Moreover, we devise
an Upsample Transformer by extending the transformer structure into
basic operations of point generators, which effectively incorporates spa-
tial and semantic relationships between neighboring points. Qualitative
and quantitative evaluations demonstrate that our method outperforms
state-of-the-art completion networks on several benchmark datasets. Our
code is available at https://github.com/hrzhou2/seedformer.

Keywords: Point cloud completion, Patch Seeds, Upsample Transformer

1 Introduction

As a commonly-used and easily-acquired data format for describing 3D objects,
point clouds have boosted wider research in computer vision for understanding
3D scenes and objects. However, raw point clouds, routinely captured by Li-
DAR scanners or RGB-D cameras, are inevitably sparse and incomplete due to
the limited sensor resolution and self-occlusion. It is an indispensable step to
recover complete point clouds from partial/incomplete data in real-world scenes
for various downstream applications [24,16,20].

Recent years have witnessed an increasing number of approaches apply-
ing deep neural networks on point cloud completion. The dominant architec-
ture [43,1,38] employs a general encoder-decoder structure where a global fea-
ture (or called shape code) is extracted from partial inputs and is used to gener-
ate a complete point cloud in the decoding phase. However, this global feature
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(a) Input (b) GRNet (c) SnowflakeNet (d) SeedFormer (e) GT

Fig. 1: Visual comparison of point cloud completion results. Compared with GRNet [40]
and SnowflakeNet [38], SeedFormer is better at preserving existing structures (grey
bounding box) and recovering missing details (green bounding box).

structure possesses two intrinsic drawbacks in its representation ability: (i) fine-
grained details are easily lost in the pooling operations in the encoding phase
and can hardly be recovered from a diluted global feature in the generation, and
(ii) such a global feature is captured from a partial point cloud, thus represent-
ing only the “incomplete” information of the seen part, and is contrary to the
objective of generating the complete shape.

Besides the overall network architecture, another problem is derived from the
designs of point cloud generators. Unlike image inpainting which predicts RGB
colors of the missing pixels, the 3D point generation is designed differently to
predict (x, y, z) coordinates which are unstructured yet continuously distributed
in the 3D space. This suggests that the desired points, which can describe the
missing parts of the target object, have close spatial and semantic relationships
with surrounding points in their local neighborhoods. However, existing methods,
either using folding-based generators [41,43,34,39,42] or following a hierarchical
structure with MLP/deconvolution implementations [27,11,38], attempt to pro-
cess each point independently by splitting one target point into more. These
designs neglect the distribution of existing points which results in poor recovery
quality of geometric details (see in Fig. 1(b) and Fig. 1(c)).

To resolve the aforementioned problems, we propose a novel point cloud
completion network, namely SeedFormer, with better detail preservation and
recovery ability as shown in Fig. 1. Based on the designed Patch Seeds and Up-
sample Transformer, the decoding phase of our method consists of two main
steps of: (i) first generating the complete shape from incomplete features in the
seed generator, and (ii) then recovering fine-grained details in a coarse-to-fine
manner. In the first stage, unlike previous methods using global features, we
introduce Patch Seeds as a latent representation in the point cloud completion
architecture. The Patch Seeds characterize the complete shape structure with
learned features stored in local seeds. This helps generate more faithful details
as it preserves regional information which is highly sparse in a global feature.
Secondly, a new point generator is designed for both seed generator and the
subsequent layers. Following the idea discussed before, we propose to integrate
useful local information into the generation operations by aggregating neighbor-
ing points in the proposed Upsample Transformer. In particular, we formulate
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the generation of new points as a transformer-style self-attention weighted av-
erage of point features in the local field. This leads to a better understanding
of local geometric features captured by semantic relationships. Qualitative and
quantitative evaluations demonstrate the clear superiority of SeedFormer over
the state-of-the-art methods on several widely-used public datasets. Our main
contributions can be summarized as follows:

– We propose a novel SeedFormer for point cloud completion, greatly improv-
ing the performance of generating complete point clouds in terms of both
semantic understanding and detail preservation.

– We introduce Patch Seeds as a new representation in the completion archi-
tecture to preserve regional information for recovering fine details.

– We design a new point generator, i.e. Upsample Transformer, by extending
the transformer structure into basic operations of generating points.

2 Related Work

Voxelization-based shape completion. The early attempts on 3D shape
completion [3,10,25] rely on intermediate representations of voxel grids to de-
scribe 3D objects. It is a simple and direct way to apply powerful CNN structures
on various 3D applications [18,15,30]. However, this kind of methods inevitably
suffers from information loss, and the computational cost increases heavily with
regard to voxel resolution. Alternatively, Xie et al. [40] propose to use gridding
operations and 3D CNNs for coarse completion, followed by refinement steps to
generate detailed structures.
Point cloud completion. Recently, state-of-the-art deep networks are designed
to directly manipulate raw point cloud data, instead of introducing an interme-
diate representation. The pioneering work PointNet [21] proposes to apply MLPs
independently on each point and subsequently aggregate features through pool-
ing operations to achieve permutation invariance. Following this architecture,
PCN [43] is the first learning-based method for point cloud completion, which
adopts a similar encoder-decoder design with a global feature representing the
input shape. It generates a complete point cloud from the global feature using
MLPs and folding operations [41]. Focusing on the decoding phase of generating
point clouds with more faithful details, several works [27,34,11] extend the gen-
eration process into multiple steps in a hierarchical structure. This coarse-to-fine
strategy helps produce dense point clouds with details recovered gradually on
the missing parts. Furthermore, Wang et al. [31] propose a cascaded refinement
module to refine predicted points by computing a displacement offset. Similar
ideas are also explored in [44,37,39,35]. In order to utilize supervision not only
from 3D points but also in the 2D image domain, some other works [45,39] use
rendered single-view images to guide the completion task. Among the aforemen-
tioned methods, the global feature design is widely used due to its efficiency and
simplicity, while it still represents intrinsic drawbacks as we discussed before.
PoinTr [42] proposes a set-to-set translation strategy which shares similar ideas



4 H. Zhou et al.

with SeedFormer. However, PoinTr designs local proxies which are used for fea-
ture translation in transformer blocks. SeedFormer introduces Patch Seeds that
can be propagated to the following upsample layers, focusing on the decoding
process of recovering fine details from partial inputs.
Point cloud generators. Generating 3D points is a fundamental step for
point cloud processing and can be generalized to wider research areas. Follow-
ing PointNet, early generative models [1] use fully-connected layers to produce
point coordinates directly from a latent representation in auto-encoders [23,14]
or GANs [8]. Then, FoldingNet [41] presents a new type of generators by adding
variations from a canonical 2D grid in the point deformation. It requires lower
computational cost while assuming that 3D object lies on 2D-manifold. Following
this design, [39] proposes a style-based folding operator by injecting shape infor-
mation into point generation using a StyleGAN [12] design. Moreover, Snowflak-
eNet [38] proposes to generate new points by splitting parent point features
through deconvolution. More recently, with the success of transformers in nat-
ural language processing [29,36,5,4], an increasing number of research have de-
veloped such architecture for encoding 3D point clouds. In this work, we further
extend the application of transformer-based structure into the basic operations
of point cloud generation in the decoding phase, which also represents a new
pattern of point generators with local aggregation.

3 Method

3.1 Architecture Overview

The overall architecture of SeedFormer is shown in Fig. 2. We will introduce our
method in detail as follows.
Encoder. Denote the input point cloud as P = {pi|i = 1, 2, ..., N} ∈ RN×3

where N is the total number of points and pi possesses the (x, y, z) coordinates.
The encoder applies point transformer [46] and set abstraction layers [22] to
extract features from the incomplete shape. The number of points is reduced
progressively in each layer and then we obtain patch features Fp ∈ RNp×Cp and
the corresponding patch center coordinates Pp ∈ RNp×3, which represent the
local structures of the partial point cloud.
Seed generator. Seed generator aims to predict the overall structure of the
complete shape. It is designed to produce a coarse yet complete point cloud
(seed points) as well as seed feature of each point which can capture regional
information of local patterns. Given the extracted patch features Fp and center
coordinates Pp, we use Upsample Transformer (Sec. 3.3) to generate a new set
of seed features:

F = UpTrans(Fp,Pp). (1)

Then, we obtain the corresponding seed points S = {xi}Ns
i=1 ∈ RNs×3 by applying

MLPs on the generated seed features F = {fi}Ns
i=1 ∈ RNs×Cs . Grouping seed

points and features together yields our Patch Seeds representation (more details
are discussed in Sec. 3.2).
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Fig. 2: The overall architecture of SeedFormer is shown in the upper part. (a) The seed
generator is applied to obtain Patch Seeds which are subsequently propagated into
each of the following layers by interpolating seed features. (b) Several upsample layers
are used in the coarse-to-fine generation where an Upsample Transformer is applied for
producing new points with skip-connection and seed feature encoding.

Coarse-to-fine generation. Afterwards, we follow the coarse-to-fine genera-
tion [41,11,38] to progressively recover faithful details in a hierarchical structure.
This process consists of several upsample layers, each of which takes the previous
point cloud and produces a dense output Pl (l = 1, 2, ...) with an upsampling
rate of rl where our Patch Seeds are closely involved. Specifically, each point in
the input point cloud is upsampled into rl points using the Upsample Trans-
former. The coarse point cloud P0 which is fed to the first layer is produced by
fusing seeds S and the input point cloud P using Farthest Point Sampling (FPS)
[22] to preserve partial structure of the original input [31].

3.2 Point Cloud Completion with Patch Seeds

Patch Seeds. Patch Seeds serve as a new shape representation in point cloud
completion. It consists of both seed coordinates S and features F where each
seed covers a small region around this point with seed feature containing se-
mantic clues about this area. With rich information provided in seed features,
SeedFormer can recover ambiguous missing details as shown in Fig. 1(d). Thus,
compared with a global feature, the Patch Seeds representation possesses two
advantages: (i) it can preserve regional information of local patterns, thus tiny
details can be recovered in the complete point cloud; (ii) it represents the com-
plete shape structure which is recovered from the partial input with explicit
supervision (Sec. 3.4).

Usage. Throughout the following steps, Patch Seeds are incorporated into each
of the upsample layers to provide regional information. Given an input point
cloud Pl, we propagate seed features to each point pi ∈ Pl by interpolating
feature values in its neighborhood Ns(i) (k nearest seeds of pi). We use weighted
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Fig. 3: (a) shows the design of our Upsample Transformer. The generation processes of
new points around a target point (red) are shown: (b) an upsample layer can produce
dense points within its local neighborhood; (c) the seed generator tends to generate
seed points covering unseen parts of the object where the softmax function can be
optionally disabled.

average based on inverse distances [22] to compute the interpolated features:

sli =

∑
j∈Ns(i)

d̂ijfj∑
j∈Ns(i)

d̂ij
where d̂ij =

1

dij
. (2)

Here, dij denotes the distance between pi and seed point xj , and fj is the

corresponding seed feature. The interpolated features in this layer are {sli}
Nl
i=1.

3.3 Upsample Transformer

Point generator via local aggregation. The generation process in point cloud
completion aims to produce a set of new points, either maintaining data fidelity
by preserving geometric details or well inferring missing parts based on the ex-
isting shape structure. The commonly-used folding operations [41,43,34,39] are
designed to upsample each point independently with fixed 2D variants which
leads to poor detail recovery. Differently, our Upsample Transformer is designed
to incorporate closely-related local information into the generation by aggregat-
ing features from neighboring points. To this end, based on the point trans-
former [46] structure, we propose to formulate the generation process of new
points as a self-attention weighted average of point features in the local field
(Fig. 3(a)). Moreover, following the idea of local aggregation, we can extend
other successful encoder designs, e.g., PointNet++ [22], Transformers [29,46] or
point cloud convolutions [32,28,47], into point generators in point cloud comple-
tion, to produce a new set of features with upsampled points. This is further
evaluated in Sec. 4.5.
Upsample layer. We first explain how to apply the designed Upsample Trans-
former in an upsample layer (Fig. 2(b)). Given the input points Pl ∈ RNl×3 and
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the corresponding interpolated seed features {sli}
Nl
i=1, we concatenate them and

apply a shared MLP to form the point-wise queries {qli}
Nl
i=1. Following [38], we

use the output features from the previous layer as keys {kli}
Nl
i=1 in the trans-

former. It is used to preserve learned features of the existing points in the input.
Then, the values {vli}

Nl
i=1 are obtained by applying a MLP on the concatenated

keys and queries. Upsample Transformer applies a channel-wise attention using
the subtraction relation in a local neighborhood N (i) (k nearest neighbors) of
each point:

âijm = αm(β(qli)− γ(klj) + δ), j ∈ N (i). (3)

Here, αm, β and γ are feature mapping functions (i.e., MLPs) to produce at-
tention vectors. δ is a positional encoding vector to learn spatial relations. For
each upsampled point relating to the centered point pi, a specific kernel αm

is defined where m = 1, 2, ..., rl indicates one of the rl generation processes in
this layer (rlNl = Nl+1). Each kernel learns a certain geometric pattern of local
characteristics which outputs a separate group of self-attention weights to form
a new point. In addition, to normalize the computed weights into a balanced
scale, âijm is applied by a softmax function:

aijm =
exp(âijm)∑

j∈N (i) exp(âijm)
. (4)

Then, we compute the generated point features by combining weights with the
duplicated values:

him =
∑

j∈N (i)

aijm ∗ (ψ(vlj) + δ), (5)

where ψ is also a feature mapping function and ∗ denotes the elemental-wise
product. Grouping all him from each kernel yields our produced upsampled point
features Hl = {him|i = 1, 2, ...Nl;m = 1, 2, ..., rl} ∈ RrlNl×C . Hl also serves as

the keys {kl+1
i }Nl+1

i=1 of next layer in the skip connection. Finally, we apply shared
MLPs on point features to obtain a set of point displacement offsets ∆Pl. The
output point cloud is defined as Pl+1 = P̂l + ∆Pl, where P̂l is the duplicated
point cloud, for both refining existing points and generating new points.
Positional encoding with seed features. The basic positional encoding in
the self-attention computations is designed to capture spatial relations between
3D points [46]. Besides, since the introduced seeds contain regional features with
regard to the seed positions, we encode the interpolated features into regional
encoding as follows:

δ = ρ(pi − pj) + θ(si − sj). (6)

Here, δ encodes both positional relation and seed feature relation between pi
and pj . ρ and θ are encoding functions using a two-layer MLP.
Transformer without softmax. Similarly, Upsample Transformer is also used
in the seed generator but is implemented without skip connection and seed fea-
tures (Fig. 2(a)). Generating seeds involves a different objective of producing seed
points which can predict missing regions and cover the complete shape struc-
ture. As shown in Fig. 3(c), when the input point cloud represents an incomplete
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shape, it is essential for the seed generator to produce seed points outside the
local neighborhood. However, the standard transformer structure represents an
intrinsic limitation that the softmax normalization explicitly produces attention
weights within a specific range of (0, 1). This may limit the learning ability espe-
cially in the seed generator. To solve this, we simply remove the softmax function
in the transformer; that is, aijm = âijm is applied without normalization. The
experiments in Sec. 4.5 show that it is easier to generate better seed points by
disabling the softmax function or using other alternatives.

3.4 Loss Function

We use Chamfer Distance (CD) as our loss function to measure the distance
between two unordered point sets [6]. To ensure that the generated seeds S
can cover the complete shape, we down-sample the ground-truth point cloud to
the same point number as S and compute the corresponding CD loss between
them. The same loss function is also applied to each output Pl separately in
the upsample layers. Then, we define the sum of all CDs as the completion loss
Lcomp. Besides, following [33], we compute the partial matching loss Lpart on the
final predicted result to preserve the shape structure of the input point cloud.
The total training loss is defined as:

L = Lcomp + Lpart. (7)

4 Evaluation

4.1 Implementation Details

The SeedFormer encoder applies two layers of set abstraction [22] and obtain
Np = 128 patches of the incomplete point cloud. Then, in the seed generator, we
produce a set of seed features F ∈ RNs×Cs where Ns = 256 and Cs = 128. The
coarse point cloud P0 contains N0 = 512 points which is obtained by merging
S and P using FPS. Three upsample layers are used in the following coarse-to-
fine generation procedure which output dense point clouds {P1,P2,P3} and P3

corresponds to the final predicted result. Channel number of generated features
is set to C = 128 for all upsample layers.

We train our network end-to-end using pytorch [19] implementation. We use
Adam [13] optimizer with β1 = 0.9 and β2 = 0.999. All the models are trained
with a batch size of 48 on two NVIDIA TITAN Xp GPUs. The initial learning
rate is set to 0.001 with continuous decay of 0.1 for every 100 epochs.

4.2 Experiments on PCN Dataset

Data. The PCN dataset [43] is one of the most widely used benchmark datasets
for point cloud completion. It is a subset of ShapeNet [2] with shapes from 8
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Table 1: Completion results on PCN dataset in terms of per-point L1 Chamfer Distance
×1000 (lower is better).

Methods Average Plane Cabinet Car Chair Lamp Couch Table Boat

FoldingNet [41] 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99
TopNet [27] 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12
AtlasNet [9] 10.85 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61

PCN [43] 9.64 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59
GRNet [40] 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04
CRN [31] 8.51 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05
NSFA [44] 8.06 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48

PMP-Net [35] 8.73 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25
PoinTr [42] 8.38 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29

SnowflakeNet [38] 7.21 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40

SeedFormer 6.74 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85

(a) Input (b) PCN (c) GRNet (d) Snowflake (e) Ours (f) GT
Fig. 4: Visual comparisons on PCN dataset.

categories. The incomplete point clouds are generated by back-projecting 2.5D
depth images from 8 viewpoints in order to simulate real-world sensor data.
For each shape, 16,384 points are uniformly sampled from the mesh surfaces as
complete ground-truth, and 2,048 points are sampled as partial input. We follow
the same experimental setting with PCN for a fair comparison.

Results. Following previous methods, we report the Chamfer Distances with
L1 norm (×1000) in Tab. 1. Detailed results of each category are also provided.
SeedFormer achieves the best scores on all categories of this dataset, outperform-
ing previous state-of-the-art methods by a large amount. Moreover, in Fig. 4, we
show visual results of shapes from three categories (Lamp, Chair and Couch),
compared with PCN [43], GRNet [40] and SnowflakeNet [38]. It shows that Seed-
Former can produce clearly better results with more faithful details. As shown
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Table 2: Completion results on ShapeNet-55 dataset evaluated as L2 Chamfer Distance
×1000 (lower is better) and F-Score@1% (higher is better).

Methods Table Chair Plane Car Sofa CD-S CD-M CD-H CD-Avg F1

FoldingNet [41] 2.53 2.81 1.43 1.98 2.48 2.67 2.66 4.05 3.12 0.082
PCN [43] 2.13 2.29 1.02 1.85 2.06 1.94 1.96 4.08 2.66 0.133

TopNet [27] 2.21 2.53 1.14 2.18 2.36 2.26 2.16 4.3 2.91 0.126
PFNet [11] 3.95 4.24 1.81 2.53 3.34 3.83 3.87 7.97 5.22 0.339
GRNet [40] 1.63 1.88 1.02 1.64 1.72 1.35 1.71 2.85 1.97 0.238
PoinTr [42] 0.81 0.95 0.44 0.91 0.79 0.58 0.88 1.79 1.09 0.464

SeedFormer 0.72 0.81 0.40 0.89 0.71 0.50 0.77 1.49 0.92 0.472

Table 3: Completion results on ShapeNet-34 dataset evaluated as L2 Chamfer Distance
×1000 (lower is better) and F-Score@1% (higher is better).

Methods 34 seen categories 21 unseen categories
CD-S CD-M CD-H Avg F1 CD-S CD-M CD-H Avg F1

FoldingNet [41] 1.86 1.81 3.38 2.35 0.139 2.76 2.74 5.36 3.62 0.095
PCN [43] 1.87 1.81 2.97 2.22 0.154 3.17 3.08 5.29 3.85 0.101

TopNet [27] 1.77 1.61 3.54 2.31 0.171 2.62 2.43 5.44 3.50 0.121
PFNet [11] 3.16 3.19 7.71 4.68 0.347 5.29 5.87 13.33 8.16 0.322
GRNet [40] 1.26 1.39 2.57 1.74 0.251 1.85 2.25 4.87 2.99 0.216
PoinTr [42] 0.76 1.05 1.88 1.23 0.421 1.04 1.67 3.44 2.05 0.384

SeedFormer 0.48 0.70 1.30 0.83 0.452 0.61 1.07 2.35 1.34 0.402

in the 2-nd and 3-rd rows, our network can preserve complicated details in the
regions of chair arms and backs, without introducing undesired components.

4.3 Experiments on ShapeNet-55/34

Data. We further evaluate our model on ShapeNet-55 and ShapeNet-34 datasets
from [42]. These two datasets are also generated from the synthetic ShapeNet [2]
dataset while they contain more object categories and incomplete patterns. All
55 categories in ShapeNet are included in ShapeNet-55 with 41,952 shapes for
training and 10,518 shapes for testing. ShapeNet-34 uses a subset of 34 cate-
gories for training and leaves 21 unseen categories for testing where 46,765 object
shapes are used for training, 3,400 for testing on seen categories and 2,305 for
testing on novel (unseen) categories. In both datasets, 2,048 points are sampled
as input and 8,192 points as ground-truth. Following the same evaluation strat-
egy with [42], 8 fixed viewpoints are selected and the number of points in partial
point cloud is set to 2,048, 4,096 or 6,144 (25%, 50% or 75% of the complete
point cloud) which corresponds to three difficulty levels of simple, moderate and
hard in the test stage.



SeedFormer: Patch Seeds based Point Cloud Completion 11

Table 4: Completion results on KITTI dataset evaluated as Fidelity Distance and
Minimal Matching Distance (MMD). Lower is better.

PCN [43] FoldingNet [41] TopNet [27] MSN [17] GRNet [40] SeedFormer

Fidelity 2.235 7.467 5.354 0.434 0.816 0.151
MMD 1.366 0.537 0.636 2.259 0.568 0.516

GRNetInput SeedFormer

Car A

Car B

View 1View 0View 1View 0View 1View 0

Fig. 5: Visual comparison of point cloud completion results on KITTI dataset. For a
clearer comparison, we show two different views of each object.

Results. The ShapeNet-55 dataset tests the ability of dealing with more diverse
objects and incompleteness levels. Tab. 2 reports the average L2 Chamfer Dis-
tances (×1000) on three difficulty levels and the overall CDs. Additionally, we
show results from 5 categories (Table, Chair, Plane, Car and Sofa) with more
than 2,500 samples in the training set. Complete results for all 55 categories
are available in the supplemental material. We also provide results under the F-
Score@1% metric [26]. Compared with previous methods, SeedFormer achieves
the best scores on all categories and evaluation metrics. In particular, our method
outperforms the SOTA model PoinTr [42] by 15.6% in terms of overall CD and
16.8% in terms of average CD on hard difficulty.

On ShapeNet-34, the networks should handle novel objects from unseen cate-
gories which do not appear in the training phase. We show results on two test sets
in Tab. 3. Our method again achieves the best scores. Especially, when dealing
with unseen objects, SeedFormer shows better generalization ability achieving
an average CD of 1.34 which is 34.6% lower than PoinTr.

4.4 Experiments on KITTI

Data. In order to evaluate the proposed model on real-scanned data, we fur-
ther conduct experiments on the KITTI [7] dataset for completing sparse point
clouds of cars in real-world environments. This dataset consists of a sequence
of LiDAR scans from outdoor scenes where car objects are extracted in each
frame according to the 3D bounding boxes, resulting in a total of 2,401 partial
point clouds. Unlike other datasets which are built from synthetic models, the
scanned data in KITTI can be highly sparse and does not have complete point
cloud as ground-truth. Thus, we follow the experimental settings of GRNet [40]
and evaluate our method using two metrics: (i) Fidelity Distance, which is the
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Table 5: Ablation study on shape repre-
sentations. We also evaluate the density
of Patch Seeds.

Methods CD-Avg

global feature 6.97
seed number = 128 7.00
seed number = 256 6.74
seed number = 512 6.75

Table 6: Ablation study on different gen-
erator designs.

Methods CD-Avg

folding operation 6.93
deconvolution 6.90

graph convolution 6.88
point-wise attention 6.85

Upsample Transformer 6.74

Table 7: Alternatives to softmax function
in seed generator.

Methods CD-Avg

w/ softmax 6.83
w/o softmax 6.74

w/ scaled-softmax 6.80
w/ log-softmax 6.80

Table 8: Ablation study on different po-
sitional encoding in Upsample Trans-
former.

Methods CD-Avg

none 6.88
positional 6.80

positional + regional 6.74
combined 6.78

average distance from each point in the input to its nearest neighbour in the
output. This measures how well the input is preserved; (ii) Minimal Matching
Distance (MMD), which is the Chamfer Distance between the output and the
car point cloud from ShapeNet that is closest to the output point cloud in terms
of CD. This measures how much the output resembles a typical car.

Results. Following GRNet, we fine-tune our model (pretrained on PCN dataset)
on ShapeNetCars (the cars from ShapeNet) for a fair comparison. Quantitative
evaluation results are shown in Tab. 4 compared with previous methods. We
also show some visual comparisons of the predicted point clouds in Fig. 5. Each
of the car objects is visualized in two different views for a clearer comparison.
We can see that our method performs clearly better on real-scanned data. Even
with a very sparse input (see the 2-nd row in Fig. 5), SeedFormer can produce
general structures of the desired object.

4.5 Ablation Studies

In this section, we demonstrate the effectiveness of several architecture designs
in SeedFormer and provide some optional choices that can be applied in the
network. All the networks are trained on PCN dataset with identical settings.

Patch Seeds. The Patch Seeds representation attempts to preserve geometric
features locally, which shows clear superiority of detail recovery over previous
global feature designs. We first ablate these two network architectures by replac-
ing Patch Seeds with a global feature in the SeedFormer network. Specifically,
in the seed generator, the global feature is obtained through max-pooling from
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input patch features, and is used to produce a coarse point cloud by a deconvo-
lution layer [38]. Then, in the subsequent upsample layers, this global feature is
concatenated with each input point which is fed to the Upsample Transformer
similarly. All other architectures are identical. Results in Tab. 5 show clear im-
provement of our Patch Seeds design (6.74 vs 6.97). In addition, we ablate the
number of seeds in the network and show that 256 seed points are suitable for
covering an input 3D object with proper density.
Upsample Transformer and other generator designs. We compare Up-
sample Transformer with other point cloud generators. Among previous methods
for point cloud completion, folding-based operation [41] and deconvolution [38]
are commonly-used. Unlike our generator which considers semantic relationships
between points, these two designs are applied to process each point independently
without using contextual information of point clouds.

The information from local areas is vital for point cloud completion, and
we provide two optional choices for point generation operators. As discussed in
Sec. 3.3, we adopt graph convolution [32] and vanilla Transformer (point-wise
attention) to further demonstrate the effectiveness of local aggregation. In this
experiment, we replace the Upsample Transformers in both seed generator and
upsample layers, and keep other architectures the same. All the generators are
designed to produce new features with upsampled points. Tab. 6 shows point
generation by local aggregation performs better than previous methods, and the
performance of Upsample Transformer stands out in similar designs.
Alternatives to softmax function. The softmax function can provide bal-
anced weights in the self-attention mechanism. However, in the case of seed
generators, it also presents intrinsic limitations on generating new points. In
Tab. 7, we show that the standard transformer structure (w/ softmax) is not
the best choice (6.83) in the seed generator. Our improvement (w/o softmax) by
applying self-attention without softmax function aims to release the points from
limited weights within a specific range of (0, 1). Similar results can be achieved
by using a log-softmax or scaled-softmax (multiplied by a scale parameter λ)
function, which are also alternatives to the original softmax function.
Positional encoding. Upsample Transformer applies both positional encoding
from spatial relations and regional encoding from seed feature relations. This
extends the original positional encoding in transformers by utilizing information
from interpolated seed features. Tab. 8 shows that this design performs bet-
ter which also demonstrates the effectiveness of incorporating information from
Patch Seeds into the generation process of Upsample Transformer. Moreover, we
design another ablation which combines both features in one encoding (6.78).
We concatenate the two inputs and obtain a joint version through MLPs.

5 Visualization of Patch Seeds

In this section, we give some insights to achieve a deeper understanding of the
generation process of Patch Seeds. The seed generator takes Np = 128 patches
(Fig. 6(b)) extracted from the input point cloud and produces a new set of
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(a) Input (b) Patch (c) Patch Seeds (d) Prediction (e) GT
Fig. 6: Illustration of Patch Seeds and other intermediate results. (a) Input point cloud.
(b) Extracted patch centers from partial input. (c) Generated seeds (red: seed0, blue:
seed1) according to the seed generator process. (d) Our predicted results with each
point colored according its nearest seed. (e) Ground truth.

Ns = 256 seed points (Fig. 6(c)). Instead of using a global feature, adopting a
patch-to-patch translation allows us to track the paths in the seed generation
process. Specifically, the generated seeds can be divided into two groups, denoted
as seed0 and seed1, since each patch center is split into two seeds according to
different groups of self-attention weights in Upsample Transformer (see in Eq. 3).
Thus, we visualize the obtained Patch Seeds in Fig. 6(c) with specific colors (red:
seed0, blue: seed1). We can see that the red points (seed0) are close to the partial
patches where the network tries to preserve the input structures. As for another
group (blue points), if the input point cloud is symmetric to the ground-truth
(the 1-st row in Fig. 6(a)), SeedFormer learns to duplicate the existing points as
well as features, thus it can recover the missiles which are inferred from the seen
parts. If the input is asymmetric (in the 2-nd row), our network can also predict
missing parts according to the similar observations in the seen point cloud. For
a clearer illustration, we also visualize the predicted complete point clouds in
Fig. 6(d) where each point is colored according to its nearest seed.

6 Conclusion

In this paper, we propose a novel point cloud completion network, termed Seed-
Former. As opposed to previous methods, SeedFormer introduce a new shape
representation, namely Patch Seeds, in point cloud completion. The idea of Patch
Seeds is to capture both global shape structure and fine-grained local details by
learning regional features which are stored in several local seeds. This leads
to a better performance of shape recovery and detail preservation in the gen-
erated point clouds. Furthermore, by extending the transformer structure into
point generation, we propose a novel Upsample Transformer to capture useful
neighborhood information. Comprehensive experiments show that our method
achieves clear improvements on several challenging benchmark dataset compared
to state-of-the-art competitors.
Acknowledgements. This work is supported by the National Natural Science
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