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A Illustration of Lpivot

Figure 1 illustrates Lpivot introduced in Section 3.3 of the main paper in 2D.

B Network architecture

The network architectures of the neural networks employed in the proposed
method are depicted in Figure 2. The squircle diagram represents tensors, where
the first and the second numbers inside the parentheses indicate the channel and
the number of points, respectively. The squircle without the parentheses indicates
the scalar value. For the split operation, N [X,Y ] denotes the split operation of
the input tensor to N sliced tensors with X channels with Y points. For the
square diagrams with square brackets, the first and the second numbers in the
square brackets indicate the input and output channels, respectively. The green
square diagrams indicate multiple identical subnetwork architectures. P denotes
the number of points in the input point cloud to encoder E. C denotes the
number of coordinate points in the input to the shape decoders {Gz

i } and {Gc
i},

and the discriminator D.
We use the simple PointNet architecture in the author-provided code of [7]

as the encoder E. We use two separate MLP networks, F c
r and F q

r , for predicting
{rci | i ∈ Ap} and {qc

i | i ∈ Ar}, respectively. For the normalization layer in F c
r

and F c
q , we have experimentally found that using instance normalization [14] for

F c
r and layer normalization [1] for F c

q achieves the best performance. For the
joint state si, we multiply π to {si | yi = revolute}. For the discriminator D, we
use the architecture based on the PointNet [10] implementation in the author-
provided code of [11]. The weight of each linear layer in our discriminator is
normalized using spectral normalization [8] for stable training.

C Training details

We train our models per category with the same hyperparameter configuration
described in Section 3.4 in the main paper for all categories. For the input, we
use the point cloud with 4096 points sampled from the surface of the target
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Fig. 1. Illustration of Lpivot in 2D.

Fig. 2. The architectures of our networks.

shape during the training. Unless otherwise noted, we use the complete shape
point cloud. We use a batch size of 18. We train our network in two stages
following [2]: first, we train it on an implicit field of 163 grids and then on 323

grids. For the ground-truth implicit field, for each sample in a batch, we use
4096 3D coordinate points and their corresponding indicator values sampled
from either 163 or 323 grids, depending on the training stage. This multi-stage
training strategy on grids with different resolutions is inspired by [2]. We train
our network on 163 grids in the first training stage. In addition, we set ri = rci
in the first stage. Then, we set ri = rci + rsi in the second stage. We determine
the number of iterations for each stage according to the reconstruction loss and
to the visualization of the reconstructed shapes on the validation data. It takes
2 to 3 days to train one model on a single NVIDIA V100 graphics card with 16
GB of GPU memory.

Model parameter initialization. We use a sine function as a nonlinear ac-
tivation function and the weight initialization strategy proposed in [12] in our
shape decoders, as follows:
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Drawer
Eye-
glasses

Oven Laptop
Washing
machine

Training 24 35 30 73 39
Test 6 7 7 13 6

# of parts (1 3 0) (1 0 2) (1 0 1) (1 0 1) (1 0 1)

Table 1. Number of samples per cat-
egory in each data split. Each sample
is augmented by transforming its part
pose to generate 100 instances. Numbers
in a parethnesis in the last row indicates
the ground-truth number of fixed, pris-
matic and revolute type parts.

Fig. 3. Visualization of the canonically
posed and randomly posed ground-truth
meshes of each category. The colors corre-
spond to the different ground-truth part la-
bels. The colored arrows show the axis di-
rections of the coordinate system used in
this paper.

where IN is an input channel to a linear layer, U is a uniform distribution, and
w is an element of the weight of a linear layer. For a linear layer that takes 3D
coordinates as an input, we do not scale the weight w by 1

30 .
As described in the main paper, we set the number of parts used in our

model as N = 8, which consists of one “fixed” part, three “revolute” parts,
and four “prismatic” parts. Each initial joint direction ei for the ”revolute” and
”prismatic” parts are set as follows, with z-axis as up, x-axis as forward, and
y-axis as right: +z, −z and +y directions for “revolute” parts and +x direction
for “prismatic” parts. See Figure 3 for visual correspondence between shapes
and axes.

C.1 Training of the baseline models

We use the author-provided implementations for all the baselines. We explain
the additional detail of the training for the baselines below.

BSP-Net [2]. Because the models in the author-provided codes of the other
part decomposition baselines (BAE-Net [3] and NSD [5]) are trained on 323

grids, we also trained BSP-Net on up to 323 grids, compared to the 643 grids in
the original implementation. For training on the eyeglasses category, we could
not successfully train the model even with different random seeds with the pro-
vided training script. After several trials, we experimentally found that scaling
ground-truth indicator values by four for the first 20,000 iterations produced
good initialization of the model. On the basis of this finding, we first pre-trained
the model using the scaled ground-truth indicator values for 20,000 iterations for
the eyeglasses category; then, we trained the model with the provided training
script.

NSD [5] and Neural Parts [9]. The model defined in the author-provided
code takes an RGB image as an input, which is a more challenging setting for
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3D shape reasoning than 3D shape input. We replace the image encoder of
the original implementation with the same PointNet-based encoder used in our
approach for a fair comparison.

NPCS [6]. In the experiment described in Section 4.2 in the main paper,
we modified the original implementation of NPCS to use complete shape point
clouds instead of partial point clouds of the depth map as an input with train-
ing from scratch, to remove the unnecessary performance degradation caused by
pose ambiguity arising from the barely visible articulated part.

D Data preparation

In this section, we describe our data preparation procedure.

D.1 Data split

We split our training and test data according to the per-category data split
approach introduced in [6]. We ensure that the test split contains at least six
samples per category, except for the laptop category; therefore, the average split
ratio is approximately 8:2. For the laptop category, we use 11 samples in the test
split to make the split ratio comparable with those of the other categories. The
number of samples in each split per category is presented in Table 1.

D.2 Ground-truth implicit field generation

Following [7], we generate the ground-truth implicit field by the volumetric fu-
sion of 100 depth images of a mesh object. For the mesh object, we sample 100
instances with randomly sampled part poses for each sample. For the pose sam-
pling, we uniformly sample the rotation amount for each joint for the revolute
joints. For the revolute joints of all categories except the eyeglasses category, we
sample the rotation amount between 0◦ and 135◦. For the eyeglasses category,
we sample between 0◦ and 90◦. For the prismatic joints of the drawer category,
we sample the translation amount between 0 and the maximum amounts of the
joints written in the URDF files of each sample in the SAPIEN dataset [16].
After we sample a part pose for each instance, we articulate the sample in its
canonical pose (the rotation amount and translation amount were set to 0◦ and
0, respectively) using the sampled motion amount and ground-truth joint con-
figuration. The canonically posed shape and the randomly posed shape of the
same sample are shown in Figure 3. Finally, we normalize the size and location
of the instances following [7]. Specifically, we normalize the instances with the
maximum extent collected from the instances generated from the same sample.
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E Part labeling procedure for evaluation and part
segmentation visualization

E.1 Part labeling procedure

In this section, we explain the labeling procedure using the ground-truth part
labels of the training samples to evaluate the part segmentation performance,
following the same procedure used in [5, 4]. First, for each surface point sampled
from the ground-truth part mesh of the instance of the training set, we determine
the nearest reconstructed part and vote for the ground-truth part label of that
point. Next, we assign each reconstructed part to the part label that has the
highest number of votes. Finally, for each surface point sampled from the instance
in the test split, we determine the nearest reconstructed part surface and assign
the part label of the reconstructed part.

E.2 Part segmentation visualization

To visualize part segmentation, similar to [13], We first measure the distance
between a barycentric point of a ground-truth mesh face to the surface of each
part. Then we assign a mesh face the label of the part with the shortest distance
to the barycentric point. Lastly, we color each face according to the obtained
label.

F Additional semantic capability evaluation

F.1 Additional visualization of the part segmentation

We visualize the additional part segmentation results of the proposed approach
in Figure 4. Also, we visualize the part segmentation results given various part
poses in Figure 9.

F.2 Part segmentation using all the training samples

In Section 4.1 in the main paper, we show that our method works most efficiently
by requiring instances with only a limited variety of poses for the initial annota-
tions. We use canonically posed shapes, visualized in Figure 3, in the training set
for the initial annotations. This section reports the evaluation setting where an-
notations of all training instances are available for the initial annotation, which
is a favorable setting for the baselines. However, the annotation cost can be much
higher in reality than in the previous setting.

The results are shown in Table 2. Even under this setting favorable for the
previous works, our method performs comparably with the state-of-the-art part
decomposition method BSP-Net [2] using 256 primitives. It is not surprising
that using many primitives achieves fewer part segmentation errors because,
even when one primitive is inconsistently assigned to the ground-truth part, the
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Fig. 4. Visualization of the additional part segmentation results of the proposed ap-
proach with various samples. For drawer category, the different between some GT
shapes are subtle (e.g., difference in handle shapes), we pick the three samples with
distinct shape difference to avoid confusion.

impact on the label IoU is smaller. This is because a smaller portion of the eval-
uation points becomes erroneous compared with the model using fewer parts
or primitives. Note that our research focuses on representing ground-truth ar-
ticulated parts with consistently the same reconstructed parts by considering
the part kinematics, unlike BSP-Net and the other baselines, which can assign
different sets of primitives to the same articulated parts without considering the
underlying part pose. To show the effectiveness of considering the part kine-
matics, we show the performance drop from using all training instances to using
only the canonically posed instances in the table under the heading “Difference.”
We can see that our approach has the second best drop with the comparable
number with Neural Parts [9], yet higher part parsing performance. This shows
that considering the part kinematics contributes to label efficiency by reduc-
ing the necessary initial annotation to perform well on the unsupervised part
segmentation of articulated objects.
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Fig. 5. Relationship between Gc
i ,

Gz
i and Ô. (a) Category-common

shape Ôc = maxi{σ(Gc
i (·))}. (b)

maxi{σ(Gz
i (·))} overlaid with Ôc. (c)

Predicted shape Ô.

Fig. 6. Qualitative ablation of CS and
CP. The arrow indicates the predicted
revolute direction.

Fig. 7. Qualitative ablation on
Lpivot at training step 1.3k. The
red sphere shows the pivot point,
and the arrow indicates the joint
direction.

Fig. 8. A failure case of the drawer category. (a)
The best-performing model. (b) The failure case.
The part which reconstructs the back side is mis-
classified compared to (a).

F.3 Part segmentation with the aligned number of parts

In Table 3 of the main paper, we have only reported the average of the label IoU
performance where we align the predefined maximum number of the parts of all
the baselines to the same as ours (N = 8). We show the full result in In Table 3.

G Additional part pose evaluation

Because we train our model in an unsupervised fashion, through the labeling
process described in Appendix E.1, the part kinematic types of the ground-
truth and the assigned reconstructed part do not necessarily match. Moreover,
multiple reconstructed parts may be assigned to one ground-truth part. There-
fore, we choose EPE as the evaluation metric for part pose estimation due to its
kinematic type agnostic property and calculation based on point correspondence
between prediction and ground-truth, rather than part-level correspondence. In
this section, as an additional part pose evaluation, we evaluate the accuracy of
joint parameter estimation for “revolute” and “prismatic” parts.

To avoid the problem of part pose evaluation in unsupervised learning de-
scribed above, we evaluate the accuracy of joint parameter estimation by con-
sidering the prediction is correct when the following three conditions are all
satisfied. (1) One reconstructed part is assigned to one ground-truth dynamic
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Drawer
Eye-
glasses

Oven Laptop
Washing
machine

mean
(All)

mean
(Canonical)

Difference
(All - Canonical)

# of
parts

BAE [3] 6.25 11.11 73.01 25.11 80.32 39.16 39.17 -0.01 1.42/8
BSP[2] 70.29 74.96 89.40 86.21 95.28 83.23 76.65 6.58 27.50/256
NSD [5] 38.56 44.06 74.63 74.40 89.01 64.13 63.75 0.39 10
NP [9] 60.56 64.75 85.33 86.22 74.72 74.32 74.31 0.01 5
Ours 74.83 66.25 82.06 86.80 95.18 81.02 80.99 0.04 4.16/8

Table 2. Part segmentation performance. We use all the instances in the training set
to assign a label to each part as well as to the primitives. “Canonical” denotes the
mean label IoU only using the canonically posed instances of the training for the label
assignment. “Difference” shows the performance drop from the setting that uses all
the instances in the training set to the setting that uses only the canonically posed
instances. The average and the predefined maximum numbers of recovered parts or
primitives are shown before and after the slash, in the last column. Our method achieves
the same level of the label efficiency with Neural Parts with higher part segmentation
performance.

Drawer
Eye-
glasses

Oven Laptop
Washing
machine

mean

BAE [3] 6.25* 11.11* 73.06 25.11* 80.30 39.17
BSP [2] 26.62 71.14 85.19 64.41 86.60 66.79
NSD [5] 34.07 60.06 70.09 70.12 62.97 59.46
NP [9] 61.10 65.47 77.57 62.73 86.69 70.71
Ours 74.73 66.18 82.07 86.81 95.15 80.99

Table 3. Part segmentation performance
in label IoU with the aligned number
of parts for all methods (N = 8). The
starred numbers indicate the failure of
part decomposition and that only one re-
covered part represents the entire shape.

Drawer
Eye-
glasses

Oven Laptop
Washing
machine

mean

# of
assigned parts

1.0 1.0 1.0 1.0 1.0 1.0

Part type
accuracy

89.50 83.25 100.0 92.14 100.0 91.46

Table 4. Part assignment evaluation.
The first row shows the number of re-
constructed parts assigned to the ground-
truth parts, and the second row shows the
accuracy of part kinematic type matches
between the ground-truth and the as-
signed reconstructed parts for dynamic
part types.

part. (2) The part kinematic type is the same between the ground-truth and
the assigned reconstructed part. (3) The error of the joint parameters against
the ground-truth is less a threshold. This evaluation method is more challenging
than EPE because of the influence of (1) and (2) above, besides the prediction
error of the joint parameters. We evaluate joint state accuracy and joint direc-
tion accuracy. Only for the revolute part, we also evaluate joint axis distance
accuracy, defined as the line to line distance between the ground-truth and the
predicted line segments consisting of the pivot point and the joint direction.

Figure 10 shows the evaluation results with varying error thresholds. We
show the results of NPCS only as a reference; NPCS is a supervised model
and assumes that the part segmentation is available during training, and the
part kinematic types are also known. In contrast, our method learns both part
segmentation and part kinematic type in an unsupervised fashion. Since NPCS
does not estimate the pivot point, we only show the results of our method for
joint axis distance accuracy. As for the joint state, we see reasonable accuracy of
70.80% for revolute parts on average when the threshold is less than 10 degrees
and 79.43% when the threshold is 15 degrees. For the “prismatic” part of the
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drawer, our method outperforms the NPCS when the threshold is less than 0.1.
For joint direction estimation, in three out of five categories (eyeglasses, laptop,
and oven), our method is comparable or outperforming NPCS. In Table 4, we
also show the number of reconstructed parts assigned to the ground-truth parts
and the accuracy of part kinematic type of dynamic parts matches between
the ground-truth and the assigned reconstructed parts. In all categories, the
model correctly assigns one part. Moreover, even without part type supervision,
our model successfully predicts correct part types with high accuracy of 91.46%.
Improving the unsupervised learning of joint parameters under shape supervision
is an interesting research direction.

H Formulation details

The intuition behind multiplying Gz
i and Gc

i . Since a shape can exist
at positions only where both Gz

i and Gc
i are large through multiplication, for

each part, Gc
i defines a category-common shape, and Gz

i provides a shape that
reflects input-dependent details around the category-common shape, visualized
in Figure 5.

Effectiveness of the second term in Lreconstruction. Optimizing the second
term of Lreconstruction enables directly optimizing Gc

i rather than optimizing it
through the first term. It allows to quickly learn a category-common shape,
resulting in better Gz

i by Gc
i during the training. Removing the second term

results in a significant drop in mean label IoU (80.99 → 51.78).

The motivation of vector quantization for F c. Directly regressing the pose
parameter value is known to be difficult. Prior work [15] classifies the value into
the discretized value ranges and regresses the residual within the classified range.
Motivated by this, vector quantization for F c models discrete modality of the
joint parameter, and F z regresses the residual.

Implementation details of Lpivot To further regularize the location of the
pivot point during the training, we make SGT in the first term of Eq. 5 conditional
in our implementation as S̃GT = SGT∩Si,fixed if ∅ ≠ Si,fixed otherwise S̃GT = SGT,

where Si,fixed = Si ∩ {x | Ôj(x) > 0.5, yj = fixed}. This formulation considers
the predicted fixed part in regularization. After the training proceeds, the fixed
part will likely have higher occupancy values around the fixed ”base” part of
the target shape to which the dynamic parts attach. The above conditioning
further constrains the pivot point’s location to the ground truth shape around
the intersection between the predicted fixed and revolute parts.

I Qualitative ablation study

In this section, we visualize some of the qualitatie results as an additional ab-
lation study. When we remove caninical shape decoder (CS), we frequently find
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unsuccessful decomposition; a single part spans two GT parts (purple), and the
shape deformation accounts for the shape variation. We visualize an example
in Figure 6. The boxes show the parts with their joint states set to 0. Colors
indicate the part IDs. With CS, the variation is expressed by part poses with
successful decomposition. Without canonical pose decoder (CP), similarily with
CS, we find that the model degenerates to express shape variation by differ-
ent part poses by shape deformation. During the training, we find turning off
Lpivot for correct pivot point localization makes the traning difficult to converge
to preferable decomposition, especially for eyeglasses category. As visualized in
Figure 7, with Lpivot, the pivot point locates the proper position between parts
even at the early stage of the training. However, without Lpivot, the pivot points
are off from the reconstructed shape.

J Failure cases and limitation

Because pose-aware part decomposition without explicit supervision is a highly
ill-posed task, as a limitation, our method requires manual initialization of part
types and joint directions for each part to stabilize the training process, as
described in Section 3.1. Although the manual initialization, part decomposition
induction by pose constraints with joint parameters, and the proposed losses
contribute to stabilizing the training process, different model initialization and
stochastic training may result in different part decomposition results due to the
unsupervised nature of the approach and the ill-posed target problem. In our
experiments, we tried a few random seeds when part decomposition failed in the
early stages of the traning for the models reported in Table 2 of the main paper.

We also found our drawer category is more challenging to converge well than
the other categories, resulting in degenerated quantitative performance. As visu-
alized in Figure 9, we attribute this cause to its more considerable intra-category
size variation. Our canonical shape decoder learns category-specific mean part
shapes. The decoder also models canonical part locations for the prismatic part,
unlike a revolute part location modeled by its pivot point. Thus, deviating largely
from the mean part shapes and large part location difference caused by the size
difference weakens the effectiveness of the canonical shape decoder, leading to
the semantically less consistent part decomposition. As shown in Figure 9 for
the drawer category, the side of the object shapes is misclassified for the first and
second objects, compared to the third objects. We also visualize another failure
case in Figure 8. The model successfully learns the reasonable part shapes, yet
the decomposition is less consistent, as emphasized in the boxes. Due to the small
number of parts used by our model, misclassifying a single part could drop the
segmentation performance significantly (74.83 → 60.97). Note that even such a
model performs comparably with the leading primitive-based part decomposi-
tion method [9] when the number of parts is aligned, as shown in Table 3. One
possible extension to tackle this problem can be learning to model size in addi-
tion to the shape and pose for each part and letting the canonical shape decoder
learn part shape in normalized space in terms of part pose and size.
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Fig. 9. Visualization of the part segmentation results given input shapes with various
part poses. Arrows in the figure indicate the ground-truth or predicted joint directions.
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Fig. 10. Joint parameter estimation performance.
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