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Abstract. Man-made articulated objects exist widely in the real world.
However, previous methods for unsupervised part decomposition are un-
suitable for such objects because they assume a spatially fixed part lo-
cation, resulting in inconsistent part parsing. In this paper, we propose
PPD (unsupervised Pose-aware Part Decomposition) to address a novel
setting that explicitly targets man-made articulated objects with me-
chanical joints, considering the part poses in part parsing. As an analysis-
by-synthesis approach, We show that category-common prior learning for
both part shapes and poses facilitates the unsupervised learning of (1)
part parsing with abstracted part shapes, and (2) part poses as joint pa-
rameters under single-frame shape supervision. We evaluate our method
on synthetic and real datasets, and we show that it outperforms previ-
ous works in consistent part parsing of the articulated objects based on
comparable part pose estimation performance to the supervised baseline.

1 Introduction

Our daily life environments are populated with man-made articulated objects,
ranging from furniture and household appliances such as drawers and ovens to
tabletop objects such as eyeglasses and laptops. Humans are capable of recog-
nizing such objects by decomposing them into simpler semantic parts based on
part kinematics. Researchers have shown that even very young infants learn to
group objects into semantic parts using the location, shape, and kinematics as a
cue [38, 37, 42], even from a single image [34, 18]. Although humans can naturally
achieve such reasoning, it is challenging for machines, particularly in the absence
of rich supervision.

3D part-level understanding of shapes and poses from a single frame observa-
tion has wide range of applications in computer vision and robotics. Learning to
represent complex target shapes with simpler part components as a generative
approach enables applications such as structure modeling [25, 33] and unsuper-
vised 3D part parsing [39, 29, 7, 28]. The previous unsupervised approaches have
mainly focused on non-articulated objects. Because they exploit the consistent
part location as a cue to group shapes into semantic parts, these approaches are
unsuitable for decomposing articulated objects when considering the kinematics
of dynamic part locations. For part pose, modeling kinematic structures as joint
parameters has various applications, such as motion planning in robotic ma-
nipulation [1] and interaction with environment in augmented reality [4]. There
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Fig. 1. (Left) Even through independent observations, infants can build a mental model
of the articulated object for part parsing based on its kinematics. (Middle) Likewise,
we propose an unsupervised generative method that learns to parse the single-frame,
unstructured 3D data of articulated objects and predict the part-wise implicit fields
as abstracted part shapes as well as their part poses as joint parameters. (Right) Our
approach outperforms the previous works in consistent part parsing for man-made
articulated objects.

exists a large body of works for discriminative approaches dedicated to man-
made articulated objects for part pose estimation in addition to part segmen-
tation. However, they require explicit supervision, such as segmentation labels
and joint parameters [11, 1, 44, 41, 20]. Removing the need for such expensive
supervision has been an important step toward more human-like representation
learning [2].

In this study, as a novel problem setting, we investigate the unsupervised part
decomposition task for man-made articulated objects with mechanical joints,
considering part poses as joint parameters, in an unsupervised fashion. Specifi-
cally, we consider the revolute and prismatic parts with one degree-of-freedom
joint state because they cover most of the kinematic types that common man-
made articulated objects have [41, 1, 24]. This task aims to learn consistent part
parsing as a generative shape abstraction approach for man-made articulated ob-
jects with various part poses from single-frame shape observation. An overview
is shown in Figure 1. Recent part decomposition studies have focused on novel
part shape representations for shape reconstruction. In contrast, we focus on
part parsing and part pose modeling as a first step to expand the current genera-
tive part decomposition’s applications to man-made articulated objects in novel
ways, such as part pose consistent segmentation and part pose estimation as
joint parameter prediction. To realize the task, we identify the two challenges;
(1) for pose-aware part decomposition, the model must consider the kinematics
between possibly distant shapes to group them as a single part and (2) has to
disentangle the part poses from shape supervision. A comparison with previous
studies is presented in Table 1.

To address these challenges, we propose PPD (unsupervised Pose-aware Part
Decomposition) that takes an unsegmented, single-frame point cloud with vari-
ous underlying part poses as an input. PPD predicts abstracted part-wise shapes
transformed using the estimated joint parameters as the part poses. We train
PPD as an autoencoder using single-frame shape supervision. PPD employs
category-common decoders to capture category-specific rest-posed part shapes
and joint parameters. Learning to transform the rest-posed shapes properly dis-
entangles shape and pose, and (2) constraining the position of the parts by the
joint parameters forces shapes in distant space that share the same kinematics
to be recovered as the same part. We also propose a series of losses to regularize
the learning process. Furthermore, we employ non-primitive-based part shape
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Part
segmentation

Joint parameter
estimation

Generative Unsupervised

ANSCH [20] ✓ ✓
A-SDF [26] ✓ ✓

Nueral Parts [28] ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓

Table 1. Overview of the previous works. We regard a method as unsupervised if the
checked tasks can be learned only via shape supervision during training.

representation and utilize deformation by part poses to induce part decomposi-
tion, in contrast to previous works that employ primitive shapes and rely on its
limited expressive power as an inductive bias.

Our contributions are summarized as follows: (1) We propose a novel unsu-
pervised generative part decomposition method for man-made articulated ob-
jects based on part kinematics. (2) We show that the proposed method learns
disentangled part shape and pose: a non-primitive-based implicit field as part
shape representation and the joint parameters as the part poses, using single-
frame shape supervision. (3) We also demonstrate that the proposed method
outperforms previous generative part decomposition methods in terms of se-
mantic capability (parsimonious shape representation, consitent part parsing
and interpretability of recovered parts) and show comparable part pose estima-
tion performance to the supervised baseline.

2 Related works

Unsupervised part decomposition. Existing unsupervised generative part
decomposition studies mostly assume non-articulated objects in which the part
shapes are in a fixed 3D location [39, 27, 8, 7, 9, 15], or also targeting human body
and hand shapes without considering part pose [28]. They induce part decom-
position by limiting the expressive power of the shape decoders by employing
learnable primitive shapes. Closest work of ours is BAE-Net [8], whose main
focus is consistent part parsing by generative shape abstraction. It also employs
a non-primitive-based implicit field as the part shape representation, similar to
ours. However, it still limits the expressive power of the shape decoder using
MLP with only three layers. In contrast, our approach assumes parts to be dy-
namic with the consistent kinematics and induces part decomposition through
rigid transformation of the reconstructed part shapes with the estimated part
poses to make the decomposition pose-aware.

Articulated shape representation. A growing number of studies have tack-
led the reconstruction of category-specific, articulated objects with a particular
kinematic structure, such as the human body and animals. Representative works
rely on the use of category-specific template models as the shape and pose prior
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Fig. 2. Model overview. PPD infers implicit field Ô based on part poses {Bi} and
part-wise implicit fields {Ôi} given input point cloud I. The category-common de-
coders F c and {Gc

i} capture part pose biases and part shape priors in constant latent
vectors. Instance-dependent decoders F z and {Gz

i } model input specific components.
Constraining the instance-dependent decoders by the category-common biases and the
priors in the proposed approach realizes unsupervised part decomposition and joint pa-
rameter learning. Note we shorthand {∗i} to denote an ordered set {∗i}Ni=1 for brevity.

[21, 46, 3, 45, 19]. Another body of works reconstruct target shapes without tem-
plates, such as by reconstructing a part-wise implicit field given a part pose as
an input [10] or focusing on non-rigid tracking of the seen samples [5]. The re-
cent work [26] targets man-made articulated objects and supervised part shape
reconstruction. In contrast, our approach focuses on man-made articulated ob-
jects with various kinematic structures. Our approach learns the part shapes
and poses during training, without any part label and pose information either
as supervision or input, and is applicable to unseen samples.

Part pose estimation. In discriminative approaches, a number of studies have
focused on the inference of part poses as joint parameters [20, 41, 1] targeting
man-made articulated objects. These approaches require expensive annotations,
such as part labels and ground-truth joint parameters. Moreover, they require
category-specific prior knowledge of the kinematic structure. In contrast, our
model is based on generative approach and is category agnostic. Moreover, it
only requires shape supervision during training. A recent work [13] assumes
an unsupervised setting where multi-frame, complete shape point clouds are
available for both input and supervision signals during training and inference.
Whereas our approach assumes a single-frame input and shape supervision, it
also works with partial shape input during inference. Note that, in this study, the
purpose of part pose estimation is, as an auxiliary task, to facilitate consistent
part parsing. It is not our focus to outperform the state-of-the-art supervised
approaches in part pose estimation.

3 Methods

In our approach, the goal is to represent an articulated object as a set of se-
mantically consistent part shapes based on their underlying part kinematics.
We represent the target object shape as an implicit field that can be evalu-
ated at an arbitrary point x ∈ R3 in 3D space as O : R3 → [0, 1], where
{x ∈ R3 | O(x) = 0} defines the outside of the object, {x ∈ R3 | O(x) = 1} the
inside, and {x ∈ R3 | O(x) = 0.5} the surface. Given a 3D point cloud I ∈ RP×3
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of P points as an input, we approximate the object shape using a composite
implicit field Ô that is decomposed into a collection of N parts. The i-th part
has an implicit field Ôi(x | I) as part shape and part pose Bi ∈ SE(3). We ensure
that O is approximated as O(x) ≈ Ô(x | I, {Bi}Ni=1) through the losses.

An overview of PPD is shown in Figure 2. PPD employs an autoencoder
architecture, and is trained under single category setting. Given a point cloud
I, the encoder derives the disentangled shape latent vector ϕ ∈ Rm and the two
pose latent vectors θ ∈ Rn and ψ ∈ Ro. Category-common pose decoder F c

captures joint parameter biases given ψ. Instance-dependent pose decoder F z

models residual joint parameters to the biases given θ. The part-wise category-
common shape decoder Gc

i captures category-common shape prior. Given ϕ and
conditioned by Gc

i , instance-dependent shape decoder Gz
i infers residual shape

details of the target shape to decode a part-wise implicit field Ôi. We discuss
the details about F z and F c in Section 3.1, and Gz

i and Gc
i in Section 3.2.

3.1 Part pose representation

We characterize part pose Bi by its part kinematic type and joint parameters.
Each part kinematic type yi ∈ {fixed,prismatic, revolute} is manually set as a
hyperparameter. The joint parameters consist of the joint direction ui ∈ R3 with
the unit norm and joint state si ∈ R+. Additionally, the ”revolute” part has the
pivot point qi ∈ R3. We refer to the joint direction and pivot point as the joint
configuration. For the ”fixed” part, we set Bi as an identity matrix because no
transformation is applied. For the ”prismatic” part, we define Bi = T (siui),
where T (·) represents a homogeneous translation matrix given the translation
in R3, and si and ui represent the translation amount and direction, respec-
tively. For the ”revolute” part, we set Bi = T (qi)R(si,ui), where R(·) denotes
a homogeneous rotation matrix given the rotation representation, and si and
ui represent the axis-angle rotation around the axis ui by angle si. In human
shape reconstruction methods using template shape, its pose is initialized to be
close to the real distribution to avoid the local minima [14, 19]. Inspired by these
approaches, we parametrize the joint direction as [ui; 1] = R(ri)[ei; 1], where ei
is a constant directional vector with the unit norm working as the initial joint
direction as a hyperparameter and ri ∈ R3 represents the Euler-angle represen-
tation working as a residual from the initial joint direction ei. This allows us to
manually initialize the joint direction in a realistic distribution through ei by
initializing ri = 0. Figure 4 illustrates the joint parameters.

Based on our observations, we assume that the joint configuration has a
category-common bias, while the joint state strongly depends on each instance.
This is because the location of each part and the entire shape of an object
can constrain the possible trajectory of the parts, which is defined by the joint
configuration. To illustrate this idea, we propose to decompose the joint config-
uration into a category-common bias term and an instance-dependent residual
term denoted as ri = rci + rzi and qi = qc

i + qz
i , respectively. We employ the

category-common pose decoder F c(qt(ψ)), which outputs {rci | i ∈ Ap} and
{qc

i | i ∈ Ar}, where Ap = {i ∈ [N ] | yi ̸= fixed}, Ar = {i ∈ [N ] | yi = revolute},
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Fig. 3. Illustration of part decomposition induction. ”Single part” indicates that the
model is degenerated to use only a single part to reconstruct the whole target shape.
”Multiple parts” indicates that part decomposition is correctly induced. In (b), the
”single part” model misclassifies query point x2 as outside, in contrast to x1. As shown
in (c), a single part pose {Bi} cannot correctly transform both query points inside the
rest-posed shape. The ”multiple parts” model successfully classifies both query points
using different part poses per part. Minimizing the reconstruction loss incentivizes the
model to use multiple parts and appropriate part types for {Bi}.

Fig. 4. Geometric relationship between
the joint parameters.

Fig. 5. Visualization of the training pro-
cess. The numbers in the figure show the
training steps.

ψ denotes a pose latent vector, and qt(·) is a latent vector quantization operator
following VQ-VAE [32]. The operator qt(·) outputs the nearest constant vector
to the input latent vector ψ among the Nqt candidates. Instead of using a single
constant vector, the model selects a constant vector among multiple constant
vectors to capture the discrete, multi-modal category-common biases. We also
employ an instance-dependent pose decoder F z(θ) that outputs {si | i ∈ Ap},
{rzi | i ∈ Ap}, and {qz

i | i ∈ Ar}. We constrain the possible distribution of the
joint configuration around the category-common bias by the loss function ex-
plained in Section 3.3. This constraint incentivizes the model to reconstruct the
instance-dependent shape variation by the joint state, which constrains the part
location along the joint direction. This kinematic constraint biases the model to
represent the shapes having the same kinematics with the same part. The previ-
ous works [15, 9, 29] do not impose such a constraint on the part localization, thus
learned part decomposition is not necessarily consistent under different poses.

3.2 Part shape representation

We propose a non-primitive-based part shape representation that is decomposed
into the category-common shape prior and instance-dependent shape details.
We employ MLP-based decoders to model a part-wise implicit field. We capture
the category-common shape prior using the category-common shape decoder
Gc

i (x). Because Gc
i does not take a latent vector from the encoder, it learns

an input-independent, rest-posed part shape template as the category-common
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shape prior. We also employ an instance-dependent shape decoder Gz
i (x | ϕ)

to capture the additional instance-dependent shape details conditioned with the
shape prior. We formulate a part-wise implicit field Ôi as follows:

Ôi(x | I) = σ(Gz
i (x,ϕ)Ô

c
i (x)) (1)

where σ(·) represents the sigmoid function and Ôc
i (x) = σ(Gc

i (x)). For brevity,

we omit I in Ôi and simply denote it as Ôi(x). Given the part poses {Bi}
as part-wise locally rigid deformation, we formulate Ô as the composition of
{Ôi} defined as Ô(x | I, {Bi}) = maxi{Ôi(B

−1
i x)}. As in the piecewise rigid

model of [10], coordinate transformation B−1
i x realizes locally rigid deformation

by Bi of the part-wise implicit field by querying the rest-posed indicator. Note
that, although we set the maximum number of parts N , the actual number of
parts used for reconstruction can change; it is possible that some parts do not
contribute to the reconstruction because of the max operation or simply because
Ôi < 0.5 for all 3D locations.

In Equation 1, we experimentally found that conditioning Gz
i by Ôc

i through
multiplication rather than addition effectively prevents Gz

i from deviating largely
from Gc

i . This conditioning induces the unsuperivsed part decomposition. We il-
lustrate the idea in Figure 3. Considering reconstructing the target shape by
single i-th part, since the multiplication makes it difficult to output shapes that
deviating largely from the category-common prior shape, the large shape vari-
ations of target shapes are expressed by Bi regarded as the global pose of the
reconstructed shape. However, the large shape variations in target shapes are
due to the various local poses of multiple part shapes. Therefore, the large shape
variations of target shapes cannot be expressed only by the single part and its
part pose Bi. Thus, as an inductive bias of the unsupervised part decomposi-
tion, the model is incentivized to use a composition of multiple parts to express
the shape variations due to various local part poses. We visualize the learning
process in Figure 5. First, the model learns high indicator values in spatial loca-
tions of static parts with high probabilities of space occupancy in any instance.
Next, part decomposition is induced to accommodate various target shapes’ part
poses, generating multiple dynamic parts. Indicator values in the spatial loca-
tions with less displacement by different part poses (e.g., near pivot points of
revolute parts) first exceed the iso-surface threshold. Then, the model simulta-
neously optimizes part pose estimation and shape reconstruction during training
as an analysis-by-synthesis approach.

3.3 Training losses

Shape losses. To learn the shape decoders, we minimize the reconstruction
loss using the standard binary cross-entropy loss (BCE) defined as:

Lreconstruction = λreconstructionBCE(Ô, O) + λc
reconstructionBCE(Ô

c, O) (2)

where Ôc(x | B) = maxi{Ôc
i (B

−1
i x)}, and λreconstruction and λc

reconstruction are
the loss weights. The second term in Equation 2 is essential for stable training;
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it facilitates fast learning of {Gc
i}, so that {Gz

i } can be correctly conditioned in
the early stage of the training process. Moreover, because we consider the locally
rigid deformation of the shape, the volumes of the shape before and after the
deformation should not be changed by the intersection of parts; we formulate
this constraint as follows:

Lvolume = λvolume

(
Ex

[
ReLU(max

i
{Gz

i (B
−1
i x,ϕ)})

]
− Ex

[
ReLU(max

i
{Gz

i (x,ϕ)})
])2 (3)

Joint parameter losses. For the joint parameters qi and ri, we prevent an
instance-dependent term from deviating too much from the bias term, we regu-
larize them by the loss:

Ldeviation = λdeviation

(
1

Nr

∑
i∈Ar

∥qz
i ∥+

1

Np

∑
i∈Ap

∥rzi ∥
)

(4)

where Nr = |Ar|, Np = |Ap|, and λdeviation is the loss weight. Moreover, we pro-
pose a novel regularization loss that constrains the pivot point with the implicit
fields. We assume that the line in 3D space, which consists of the pivot point
and joint direction, passes through the reconstructed shape. The joint should
connect at least two parts, which means that the joint direction anchored by
the pivot point passes through at least two reconstructed parts. We realize this
condition as follows:

Lpivot =
λpivot

Nr

∑
i∈Ar

(
min

x∈SGT

∥qi − x∥+ 1

2

(
min
x∈Si

∥qi − x∥+ min
x∈Si,j

∥qi − x∥
))

(5)

where SGT = {x ∈ R3 | O(x) = 1}, Si = {x ∈ R3 | Ôi(B
−1
i x) > 0.5}, Si,j = {x ∈

R3 | Ôj(B
−1
j x) > 0.5, j ∈ Ar\i}, and λpivot is the loss weight. Note that Lpivot is

self-regularizing and not supervised by the ground-truth part segmentation. See
supplementary material for an illustration of Lpivot and further details. To reflect
the diverse part poses, we prevent the joint state si from degenerating into a
static state. In addition, to prevent multiple decomposed parts from representing
the same revolute part, we encourage the pivot points to be spatially spread. We
realize these requirements by the loss defined as:

Lvariation =
1

Np

∑
i∈Ap

(
λvariations

std(si)
+ λvariationq

∑
j∈Ar\i

exp
(
− ∥qi − qj∥

v

))
(6)

where std(·) denotes the batch statistics of the standard deviation, v is a constant
that controls the distance between pivot points, and λvariations and λvariationq are
the loss weights. Lastly, following the loss proposed in [32], the pose latent vector
ψ is optimized by the loss:

Lquantization = ∥ψ − sg(qt(ψ))∥ (7)
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where sg denotes an operator stopping gradient on the backpropagation.

Adversarial losses. Inspired by human shape reconstruction studies [6, 30], we
employ the adversarial losses from WGAN-GP [12] to regularize the shape and
pose in the realistic distribution. The losses are defined as:

Ldiscriminator = λdiscriminator

(
Ex̃∼Pg

[D(x̃)]− Ex∼Pr
[D(x)]

)
+ Ex̂∼Px̂

[(∥∇x̂D(x̂)∥ − 1)
2
]

(8)

Lgenerator = −λgeneratorEx̃∼Pg
[D(x̃)] (9)

where D(·) is a discriminator; x̃ is a sample from the reconstructed shapes Pg

transformed by the estimated joint configuration and randomly sampled joint
state s̃i ∼ Uniform(0, hi), with the maximum motion amount hi treated as a
hyperparameter; x is a sample from the ground-truth shapes Pr; x̂ is a sample
from Px̂, which is a set of randomly and linearly interpolated samples between
x̂ and x; and λgenerator and λdiscriminator are the loss weights. As an input to D,
we concatenate the implicit field and corresponding 3D points to create a 4D
point cloud, following [17].

3.4 Implementation details

We use the Adam solvers [16] with a learning rate of 0.0001 with a batch size
of 18 to optimize the sum of the losses: Lreconstruction +Lvolume +Lquantization +
Ldeviation+Lpivot+Lvariation+Lgenerator and the discriminator loss Ldiscriminator,
respectively. We use the complete shape point cloud with 4096 points sam-
pled from the surface of the target shape as input, unless otherwise noted.
We use 4096 coordinate points and their corresponding indicator values for the
ground-truth implicit field. We set the loss weights as follows: λreconstruction =
0.01, λc

reconstruction = 0.001, λdeviation = 0.1, λpivot = 100, λvariations = 0.1,
λvariationq = 0.01, λvolume = 1000, λgenerator = 0.65, and λdiscriminator = 0.35. We
set v = 0.01 in Lvariation and Nqt = 4 for qt(·). For hi in Ldiscriminator, we set
to π

2 and 0.4 the ”revolute” and ”prismatic” parts, respectively. Note that we
experimentally found that it does not constrain the model to predict si larger
than hi to reconstruct the target shape. Because we do not impose any geometric
constraints on the part shapes, we set the number of parts for each part kine-
matics yi as its maximum number in the datasets plus an additional one part for
over-parameterization. The detail of the datasets is explained in Section 4. We
set N = 8, which consists of one ”fixed” part, three ”revolute” parts, and four
”prismatic” parts. We use the same hyperparameter for all categories, without
assuming the category-specific knowledge. During the training, the max oper-
ation is substituted with LogSumExp for gradient propagation to each shape
decoder. See supplementary material for further training details.
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Network architecture. We use the PointNet [31]-based architecture from [23]
as an encoder E and the one from [35] as a discriminator D. Our shape decoders
{Gc

i} and {Gz
i } are MLP with sine activation [36] for a uniform activation magni-

tude suitable for propagating gradients to each shape decoder. For the category-
common pose decoder F c, we use separate networks of MLP for each kind of
output variables. For the instance-dependent pose decoder F z, we employ MLP
with a single backbone having multiple output branches. The detailed network
architecture can be found in supplementary material.

4 Experiments

Datasets. In our evaluation, we follow the recent part pose estimation studies
targeting man-made articulated objects for the synthetic datasets and the object
categories covering various part kinematics: oven, eyeglasses, laptop, and washing
machine categories from Motion dataset [40], and the drawer category from
SAPIEN dataset [41]. Each category has a fixed number of parts with the same
kinematic structure. We generate 100 instances with different poses per sample,
generating 24k instances in total. We divide the samples into the training and
test sets with a ratio of approximately 8:2. We also normalize the side length
of samples to 1, following [23]. Further details can be found in supplementary
material. To verify the transferability of our approach trained on synthetic data
to real data, we use the laptop category from RBO dataset [22] and Articulated
Object Dataset [24], which is the intersecting category with the synthetic dataset.

Baselines. We compare our method with the state-of-the-art unsupervised gen-
erative part decomposition methods with various characteristics: BAE-Net [7]
(non-primitive-based part shape representation), BSP-Net [7] (primitive-based
part shape representation with part localization by 3D space partitioning), NSD
[15] and Neural Parts [28] denoted as NP (primitive-based part shape represen-
tation with part localization in R3). For BSP-Net, we train up to 323 grids of
the implicit field instead of 643 grids in the original implementation to match
those used by other methods. For NSD and Neural Parts, we replace its image
encoder with the same PointNet-based encoder in our approach. For the part
pose estimation, we use NPCS [20] as the supervised baseline. NPCS performs
part-based registration by iterative rigid-body transformation, which is a com-
mon practice in articulated pose estimation of rigid objects. See supplementary
material for further training details of the baselines.

Metrics. For the quantitative evaluation of the consistent part parsing as a
part segmentation task, we use the standard label IoU, following the previous
studies [8, 7, 9, 15]. As our method is unsupervised, we follow the standard initial
part labeling procedure using a training set to assign each part a ground-truth
label for evaluation purposes following [9, 15]. A detailed step can be found in
supplementary material. For the part pose evaluation, we evaluate the 3D motion
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Drawer
Eye-
glasses

Oven Laptop
Washing
machine

mean
# of
parts

BAE [8] 6.25* 11.11* 73.06 25.11* 80.30 39.17 1.42/8
BSP [7] 66.31 70.69 81.65 76.68 87.92 76.65 27.50/256
NSD [15] 38.39 42.11 74.67 74.44 89.11 63.75 10
NP [28] 60.57 64.69 85.41 86.23 74.65 74.31 5
Ours 74.73 66.18 82.07 86.81 95.15 80.99 4.16/8

Table 2. Part segmentation performance in label IoU. Higher is better. The starred
numbers indicate the failure of part decomposition and that only one recovered part
represents the entire shape. The average and the predefined maximum numbers of
recovered parts or primitives are shown before and after the slash, in the last column.

flow of the deformation from the canonical pose to the predicted pose as the
endpoint error (EPE) [43], which is a commonly used metric for pose estimation
of articulated objects [40, 5]. We scale it by 100 in experiment results.

4.1 Semantic capability

We evaluate the semantic capability of our approach in part parsing. As part
decomposition approaches aim to learn 3D structure reasoning with as small
a number of ground-truth labels as possible, it is preferable to obtain the initial
manual annotations with as few numbers of shapes as possible. This requirement
is essential for articulated objects, which have diverse shape variations owing to
the different articulations. As our approach is part pose consistent, we only
need a minimal variety of instances for the initial manual labeling. To verify
this, we evaluate the part segmentation performance using only the canonically
posed (joint states were all zero) samples in the training set. See supplementary
material for further studies on pose variation for the initial annotation.

The evaluation results are shown in Table 2. Our model uses a much smaller
number of parts than BSP-Net [7]; however, it still performs the best. This
shows that our model is more parsimonious, and each part has more semantic
meaning in part parsing. The segmentation results are visualized in Figure 6.
To eliminate differences in the number of parts and primitives for each method,
Table 3 shows the result when each method’s maximum number of parts and
primitives is aligned to N = 8. Our method outperforms the previous works by
a large margin. For visualization procedure and additional results of our part
segmentation result, see supplementary material.

We also visualize the generated part shapes in Figure 7. We can see that
a single part shape successfully reconstructs the complex target shape, such
as disconnected shapes that a single primitive shape cannot express. Also, our
part shapes are more semantic and interpretable than the previous works. This
demonstrates the advantage of using non-primitive-based part shape representa-
tion. As we can see in the improved part segmentation performance, our approach
realizes semantically more consistent part decomposition without a complicated
mechanism such as grouping primitive shapes based on part kinematics.



12 Y. Kawana et al.

Fig. 6. Visualization of the part segmentation. Reconstructed shape in mesh is shown
inside a box. The same color indicates the same segmentation part.

Label IoU ↑
BAE [8] 39.17
BSP [7] 66.79
NSD [15] 59.46
NP [28] 70.71
Ours 80.99

Table 3. Label IoU with
the aligned number of
primitives and parts for
all methods (N = 8).

Fig. 7. Visualization of parts and primitives. The boxes
represent the parts or primitives used to reconstruct the
semantic parts.

Disentanglement between the part shapes and poses. Because our ap-
proach disentangles shape supervision into part shapes and poses, it realizes
pose-aware part decomposition. To verify the learned disentanglement, we vi-
sualize the interpolation results of part shapes and joint states as part poses
in Figure 8. In the middle row, we show the shape interpolation between the
source and the target while fixing the joint state si of the source to maintain the
same part pose. The shape is smoothly deformed from the source to the target
maintaining the original pose. In the bottom row, we interpolate the joint state
si between the source and the target; the joint state changes from the source
to the target maintaining the shape identity of the source shape. Our model
successfully disentangles the part shapes and poses, unlike previous methods as
shown in the top row.

4.2 Part pose estimation

To validate whether the predicted part decomposition is based on the reason-
able part pose estimation, we quantitatively evaluate part pose estimation. Be-
cause we train our model without specifying a canonically posed shape, we use
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Fig. 8. Interpolation in terms of
disentangled part shapes and joint
states as part pose.

Drawer
Eye-
glasses

Oven Laptop
Washing
machine

mean

NPCS [20]
(Supervised)

1.598 1.087 2.702 0.751 1.594 1.546

Ours
(Unsupervised)

3.452 2.631 3.360 2.546 2.529 2.903

Table 4. Part pose estimation performance in
EPE. Lower is better. NPCS is trained with
ground-truth for both part labels and part-wise
rigid-body transformations as part pose, offering
an upper bound for our unsupervised approach.

Lvolume Ldeviation Lpivot Lvariation Lgenerator VQ CS CP Full

Label IoU ↑ 72.20 73.21 74.27 65.29 70.14 72.78 55.67 71.35 80.99
EPE ↓ 4.362 6.628 9.250 6.676 7.276 10.772 8.827 7.219 2.988

Table 5. Ablation study of the losses and the proposed components: VQ, CP and
CS indicates disabling the use of multiple constant vectors introduced in Section 3.1,
the category-common pose decoder, and the category-common shape decoders, respec-
tively. ”Full” means using all the losses and the components.

the part pose transformations between the target instance and the canonically
posed instance of the same sample as the estimated part pose to align with the
prediction of the supervised baseline, NPCS [20]. Note that NPCS assumes that
part segmentation supervision and ground-truth of part-wise rigid-body trans-
formations as part pose are available during training, and part kinematic type
per part is known, which we do not assume. Therefore, NPCS offers an upper
bound for our unsupervised approach. We present the evaluation results in Table
4. Our method is comparable with NPCS, with the same order of performance.
Note again that we are not attempting to outperform supervised pose estimation
methods; rather, we aim to show that our unsupervised approach can decompose
parts based on reasonable part pose estimation. See supplementary material for
further discussion on part pose estimation.

4.3 Ablation studies

We evaluate the effect of the proposed losses, the multiple constant vectors for
multi-modal category-common pose bias learning, and the category-common de-
coders on part segmentation and part pose estimation. We disable each loss and
component one at a time. We only use the corresponding instance-dependent de-
coder(s) when disabling the category-common decoders for pose and shape. The
results are shown in Table 5. Enabling all losses and the components performs the
best. Particularly, disabling the category-common shape decoders significantly
degrades both label IoU and EPE. This indicates that learning category-common
shape prior is essential to perform proper part decomposition and to facilitate
part pose learning, which is the core idea of this study.
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Label IoU ↑ EPE ↓
Complete 80.99 2.903
Depth 80.65 3.203

Table 6. Comparison between
the point cloud input types:
complete shape and depth
map.

Fig. 9. Real depth map input. (Left) RBO dataset
[22] and (Right) Articulated Object Dataset [24].

4.4 Depth map input and real data

Because PPD’s decoders do not assume a complete shape as an input, it works
with depth map input. Following BSP-Net [7], we train a new encoder that takes
a depth map captured from various viewpoints as a partial point cloud and
replace the original encoder. We minimize the mean squared error between the
output latent vectors of the original and the new encoders so that their output
are close for the same target shape. The results are shown in Table 6. The depth
map input performs comparably to the complete point cloud input. We also
verify that our model trained on synthetic depth maps reasonably generalizes to
real data, as shown in Figure 9.

5 Conclusion

We propose a novel unsupervised generative part decomposition method, PPD,
for man-made articulated objects considering part kinematics. We show that
the proposed method learns the disentangled representation of the part-wise
implicit field as the decomposed part shapes and the joint parameters of each
part as the part poses. We also show that our approach outperforms previous
generative part decomposition methods in terms of semantic capability and show
comparable part pose estimation performance with the supervised baseline.

As shown in qualitative results, our generative method achieves reasonable
part shape reconstruction reflecting target shape variations sufficient to induce
part decomposition and challenging joint parameter learning. As a limitation, our
method currently fails to capture details of the target shapes up to the primitive-
based previous works [15, 7], focusing on the shape reconstruction performance
rather than part pose consistency. Also, joint parameter learning requires manual
initialization of joint direction and part types for each part. The future work will
address the above limitation.
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