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Abstract. In 3D action recognition, there exists rich complementary in-
formation between skeleton modalities. Nevertheless, how to model and
utilize this information remains a challenging problem for self-supervised
3D action representation learning. In this work, we formulate the cross-
modal interaction as a bidirectional knowledge distillation problem. Dif-
ferent from classic distillation solutions that transfer the knowledge of a
fixed and pre-trained teacher to the student, in this work, the knowledge
is continuously updated and bidirectionally distilled between modalities.
To this end, we propose a new Cross-modal Mutual Distillation (CMD)
framework with the following designs. On the one hand, the neighbor-
ing similarity distribution is introduced to model the knowledge learned
in each modality, where the relational information is naturally suitable
for the contrastive frameworks. On the other hand, asymmetrical con-
figurations are used for teacher and student to stabilize the distillation
process and to transfer high-confidence information between modalities.
By derivation, we find that the cross-modal positive mining in previous
works can be regarded as a degenerated version of our CMD. We per-
form extensive experiments on NTU RGB+D 60, NTU RGB+D 120,
and PKU-MMD II datasets. Our approach outperforms existing self-
supervised methods and sets a series of new records. The code is available
at: https://github.com/maoyunyao/CMD

Keywords: Self-supervised 3D action recognition, contrastive learning

1 Introduction

Human action recognition, one of the fundamental problems in computer vision,
has a wide range of applications in many downstream tasks, such as behavior
analysis, human-machine interaction, virtual reality, etc. Recently, with the ad-
vancement of human pose estimation algorithms [3,14,59], skeleton-based 3D hu-
man action recognition has attracted increasing attention for its light-weight and
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Fig. 1. CrosSCLR [23] vs. CMD (Ours). Given handful negative samples, CrosSCLR
performs cross-modal positive mining according to the cosine similarity between em-
beddings. The nearest neighbor of the positive query in modality A will serve as an
additional positive sample in modality B, and vice versa. In our approach, we refor-
mulate cross-modal interaction as a bidirectional knowledge distillation problem, with
similarity distribution that models the modality-specific knowledge.

background-robust characteristics. However, fully-supervised 3D action recogni-
tion [7,13,20,24,25,30,44,46,47,62,63,64] requires large amounts of well-annotated
skeleton data for training, which is rather labor-intensive to acquire. In this
paper, we focus on the self-supervised settings, aiming to avoid the laborious
workload of manual annotation for 3D action representation learning.

To learn robust and discriminative representation, many celebrated pre-
texts like motion prediction, jigsaw puzzle recognition, and masked reconstruc-
tion have been extensively studied in early works [27,32,33,34,50,65]. Recently,
the contrastive learning frameworks [4,17,35] have been introduced to the self-
supervised 3D action recognition community [27,41]. It achieves great success
thanks to the capability of learning discriminative high-level semantic features.
However, there still exist unsolved problems when applying contrastive learning
on skeletons. On the one hand, the success of contrastive learning heavily relies
on performing data augmentation [4], but the skeletons from different videos are
unanimously considered as negative samples. Given the limited action categories,
it would be unreasonable to just ignore potential similar instances, since they
may belong to the same category as the positive one. On the other hand, cross-
modal interactive learning is largely overlooked in early contrastive learning-
based attempts [27,41], yet integrating multimodal information [8,11,12,26,45,56]
is the key to improving the performance of 3D action recognition.

To tackle these problems, CrosSCLR [23] turns to cross-modal positive min-
ing (see Figure 1 (a)) and sample reweighting. Though effective, it suffers the
following limitations. Firstly, the positive sample mining requires reliable prelim-
inary knowledge, thus the representation in each modality needs to be optimized
independently in advance, leading to a sophisticated two-stage training process.
Secondly, the contrastive context, defined as the similarity between the posi-
tive query and negative embeddings, is treated as individual weights of samples
in complementary modalities to participate in the optimization process. Such
implicit knowledge exchange lacks a holistic grasp of the rich contextual infor-
mation. Besides, the cross-modal consistency is also not explicitly guaranteed.
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In this work, we go beyond heuristic positive sample mining and reformu-
late cross-modal interaction as a general bidirectional knowledge distillation [18]
problem. As shown in Figure 1 (b), in the proposed Cross-modal Mutual Distilla-
tion (CMD) framework, the neighboring similarity distribution is first extracted
in each modality. It describes the relationship of the sample embedding with
respect to its nearest neighbors in the customized feature space. Compared with
individual features [18] or logits [42], such relational information is naturally suit-
able for modeling the knowledge learned with contrastive frameworks. Based on
the relational information, bidirectional knowledge distillation between each two
modalities is performed via explicit cross-modal consistency constraints. Since
the representation in each skeleton modality is trained from scratch and there is
no intuitive teacher-student relationship between modalities, embeddings from
the momentum updated key encoder along with a smaller temperature are used
for knowledge modeling on the teacher side, so as to stabilize the distillation
process and highlight the high-confidence information in each modality.

Compared to previous works, the advantages of our approach are three-fold:
i) Instead of heuristically reweighting training samples, the contextual informa-
tion in contrastive learning is treated as a whole to model the modality-specific
knowledge, explicitly ensuring the cross-modal consistency during distillation. ii)
Unlike cross-modal positive sample mining, our approach does not heavily rely
on the initial representation, thus is free of the sophisticated two-stage train-
ing. This largely benefits from the probabilistic knowledge modeling strategy.
Moreover, the positive mining is also mathematically proved to be a special case
of the proposed cross-modal distillation mechanism under extreme settings. iii)
The proposed CMD is carefully designed to be well integrated into the existing
contrastive framework with almost no extra computational overhead introduced.

We perform extensive experiments on three prevalent benchmark datasets:
NTU RGB+D 60 [43], NTU RGB+D 120 [28], and PKU-MMD II [9]. Our ap-
proach achieves state-of-the-art results on all of them under all evaluation proto-
cols. It’s worth noting that the proposed cross-modal mutual distillation is easily
implemented in a few lines of code. We hope this simple yet effective approach
will serve as a strong baseline for future research.

2 Related Work

Self-supervised Representation Learning: Self-supervised learning meth-
ods can be roughly divided into two categories: generative and contrastive [29].
Generative methods [2,16,36] try to reconstruct the original input to learn mean-
ingful latent representation. Contrastive learning [4,17,35] aims to learn fea-
ture representation via instance discrimination. It pulls positive pairs closer and
pushes negative pairs away. Since no labels are available during self-supervised
contrastive learning, two different augmented versions of the same sample are
treated as a positive pair, and samples from different instances are considered
to be negative. In MoCo [17] and MoCo v2 [5], the negative samples are taken
from previous batches and stored in a queue-based memory bank. In contrast,
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SimCLR [4] and MoCo v3 [6] rely on a larger batch size to provide sufficient
negative samples. Similar to the contrastive context in [23], the neighboring
similarity in this paper is defined as the normalized product between positive
embedding and its neighboring anchors. Our goal is to transfer such modality-
specific information between skeleton modalities to facilitate better contrastive
3D action representation learning.
Self-supervised 3D Action Recognition: Many previous works have been
proposed to perform self-supervised 3D action representation learning. In LongT
GAN [65], an autoencoder-based model along with an additional adversarial
training strategy are proposed. Following the generative paradigm, it learns la-
tent representation via sequential reconstruction. Similarly, P&C [50] trains an
encoder-decoder network to both predict and cluster skeleton sequences. To learn
features that are more robust and separable, the authors also propose strategies
to weaken the decoder, laying more burdens on the encoder. Different from previ-
ously mentioned methods that merely adopt a single reconstruction task, MS2L
[27] integrates multiple pretext tasks to learn better representation. In recent
attempts [23,41,53,54], momentum encoder-based contrastive learning is intro-
duced and better performance is achieved. Among them, CrosSCLR [23] is the
first to perform cross-modal knowledge mining. It finds potential positives and
re-weights training samples with the contrastive contexts from different skeleton
modalities. However, the positive mining performed in CrosSCLR requires reli-
able initial representation, two-stage training is indispensable. Differently, in this
paper, a more general knowledge distillation mechanism is introduced to perform
cross-modal information interaction. Besides, the positive mining performed in
CrosSCLR can be regarded as a special case of our approach.
Similarity-based Knowledge Distillation: Pairwise similarity has been
shown to be useful information in relational knowledge distillation [38,40,55].
In PKT [39], CompRess [1], and SEED [15], similarities of each sample with
respect to a set of anchors are converted into a probability distribution, which
models the structural information of the data. After that, knowledge distillation
is performed by training the student to mimic the probability distribution of the
teacher. Recently, contextual similarity information has also shown great poten-
tial in image retrieval [37,58] and representation learning [22,51]. Our approach is
partially inspired by these works. Differently, the cross-modal mutual distillation
in our approach is designed to answer the question of how to transfer the biased
knowledge between complementary modalities during 3D action pre-training.

3 Method

3.1 Framework Overview

By consolidating the idea of leveraging complementary information from cross-
modal inputs to improve 3D action representation learning, we design the Cross-
modal Mutual Distillation (CMD) framework. As shown in Figure 2, the pro-
posed CMD consists of two key components: Single-modal Contrastive Learning
(SCL) and Cross-modal Mutual Distillation (CMD). Given multiple skeleton
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Fig. 2. The overall pipeline of the proposed framework. It contains two modules, Single-
modal Contrastive Learning (SCL) and Cross-modal Mutual Distillation (CMD). Given
multiple skeleton modalities (e.g. joint and motion) as input, the SCL module performs
self-supervised contrastive learning in each modality and the CMD module simultane-
ously transfers the learned knowledge between modalities. SCL and CMD work collab-
oratively so that each modality learns more comprehensive representation.

modalities (e.g. joint, motion, and bone) as input, SCL is applied to each of
them to learn customized 3D action representation. Meanwhile, in CMD, the
knowledge learned by SCL is modeled by the neighboring similarity distributions,
which describe the relationship between the sample embedding and its nearest
neighbors. Cross-modal knowledge distillation is then performed by bidirection-
ally minimizing the KL divergence between the distributions corresponding to
each modality. SCL and CMD run synchronously and cooperatively so that each
modality learns more comprehensive representation.

3.2 Single-modal Contrastive Learning

In this section, we revisit the single-modal contrastive learning as the preliminary
of our approach, which has been widely adopted in many tasks like image/video
recognition [10,21,49] and correspondence learning [57]. In self-supervised 3D
action recognition, previous works like AS-CAL [41], CrosSCLR [23], ISC [53],
and AimCLR [54] also take the contrastive method MoCo v2 [5] as their baseline.

Given a single-modal skeleton sequence x, we first perform data augmentation
to obtain two different views xq and xk (query and key). Then, two encoders
are adopted to map the positive pair xq and xk into feature embeddings zq =
Eq(xq, θq) and zk = Ek(xk, θk), where Eq and Ek denote query encoder and key
encoder, respectively. θq and θk are the learnable parameters of the two encoders.
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Note that in MoCo v2, the key encoder is not trained by gradient descent but
the momentum updated version of the query encoder: θk ← αθk + (1 − α)θq,
where α is a momentum coefficient that controls the updating speed. During
self-supervised pre-training, the noise contrastive estimation loss InfoNCE [35]
is used to perform instance discrimination, which is computed as follows:

LSCL = − log
exp(z⊤q zk/τc)

exp(z⊤q zk/τc) +
∑N

i=1 exp
(
z⊤q mi/τc

) , (1)

where τc is a temperature hyper-parameter [18] that scales the distribution of
instances and mi is the key embedding of negative sample. N is the size of a
queue-based memory bank M where all the negative key embeddings are stored.
After the training of the current mini-batch, zk is enqueued as a new negative
key embedding and the oldest embeddings in the memory bank are dequeued.

Under the supervision of the InfoNCE loss, the encoder is forced to learn
representation that is invariant to data augmentations, thereby focusing on se-
mantic information shared between positive pairs. Nevertheless, the learned rep-
resentation is often modally biased, making it difficult to account for all data
characteristics. Though it can be alleviated by test-time ensembling, several
times the running overhead will be introduced. Moreover, the inherent limita-
tions of the learned representation in each modality still exist. Therefore, during
self-supervised pre-training, cross-modal interaction is essential.

3.3 Cross-modal Mutual Distillation

While SCL is performed within each skeleton modality, the proposed CMD mod-
els the learned knowledge and transfers it between modalities. This enables each
modality to receive knowledge from other perspectives, thereby alleviating the
modal bias of the learned representation. Based on MoCo v2, CMD can be easily
implemented in a few lines of code, as shown in Alg. 1.
Knowledge Modeling: To perform knowledge distillation between modalities,
we first need to model the knowledge learned in each modality in a proper way. It
needs to take advantage of the existing contrastive learning framework to avoid
introducing excessive computational overhead. Moreover, since the distillation
is performed cross-modally for self-supervised learned knowledge, conventional
methods that rely on individual features/logits are no longer applicable.

Inspired by recent relational knowledge distillation works [38,40,55], we uti-
lize the pairwise relationship between samples for modality-specific knowledge
modeling. Given an embedding z and a set of anchors {ni}i=1,2,··· ,K , we compute
the similarities between them as sim(z, ni) = z⊤ni, i = 1, 2, · · · ,K.

In the MoCo v2 [5] framework, there are a handful of negative embeddings
stored in the memory bank. We can easily obtain the required anchors without
additional model inference. Note that if all the negative embeddings are used
as anchors, the set {z⊤mi}i=1,2,··· ,N is exactly the contrastive context defined
in [23]. In our approach, we select the top K nearest neighbors of z as the
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anchors. The resulting pairwise similarities are further converted into probability
distributions with a temperature hyper-parameter τ :

pi(z, τ) =
exp(z⊤ni/τ)∑K
j=1 exp(z

⊤nj/τ)
, i = 1, 2, · · · ,K. (2)

The obtained p(z, τ) = {pi(z, τ)}i=1,2,··· ,K describes the distribution character-
istic around the embedding z in the customized feature space of each modality.
Knowledge Distillation: Based on the aforementioned probability distribu-
tions, an intuitive way to perform knowledge distillation would be to directly
establish consistency constraints between skeleton modalities. Different from pre-
vious knowledge distillation approaches that transfer the knowledge of a fixed
and well-trained teacher model to the student, in our approach, the knowledge
is continuously updated during self-supervised pre-training and each modality
acts as both student and teacher.

To this end, based on the contrastive framework, we make two customized
designs in the proposed approach: i) Different embeddings are used for teacher
and student. As shown in Figure 2, in MoCo v2 [5], two augmented views of the
same sample are encoded into query zq and key zk, respectively. In our approach,
the key distribution obtained in one modality is used to guide the learning of
query distribution in other modalities, so that knowledge is transferred accord-
ingly. Specifically, for the key embedding zak from modality A and the query
embedding zbq from modality B, we select the top K nearest neighbors of zak as

anchors and compute the similarity distributions as p(zbq, τ) and p(zak , τ) accord-
ing to Eq. 2. Knowledge distillation from modality A to modality B is performed
by minimizing the following KL divergence:

KL
(
p(zak , τ)||p(zbq, τ)

)
=

K∑
i=1

pi(z
a
k , τ) · log

pi(z
a
k , τ)

pi(zbq, τ)
. (3)

Since the key encoder is not trained with gradient, the teacher is not affected dur-
ing unidirectional knowledge distillation. Moreover, the momentum updated key
encoder provides more stable knowledge for the student to learn. ii) Asymmetric
temperatures τt and τs are employed for teacher and student, respectively. Con-
sidering that there is no intuitive teacher-student relationship between modali-
ties, a smaller temperature is applied for the teacher in CMD to emphasize the
high-confidence information, as discussed in [52].

Since the knowledge distillation works bidirectionally, given two modalities
A and B, the loss function for CMD is formulated as follows:

LCMD = KL
(
p(zak , τt)||p(zbq, τs)

)
+KL

(
p(zbk, τt)||p(zaq , τs)

)
. (4)

Note that Eq. 4 can be easily extended if more modalities are involved. The final
loss function in our approach is the combination of LSCL and LCMD:

L = La
SCL + Lb

SCL + LCMD, (5)

where the superscripts a and b denote modality A and B, respectively.
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Algorithm 1 Pseudocode of the CMD module in a PyTorch-like style.

1 # z_q_a, z_q_b, z_k_a, z_k_b: query/key embeddings in modality A/B (BxC)
2 # queue_a, queue_b: queue of N keys in modality A/B (CxN)
3 # tau_s, tau_t: temperatures for student/teacher (scalars)
4
5 l_a, lk_a = torch.mm(z_q_a, queue_a), torch.mm(z_k_a, queue_a) # compute similarities
6 l_b, lk_b = torch.mm(z_q_b, queue_b), torch.mm(z_k_b, queue_b)
7
8 lk_a_topk, idx_a = torch.topk(lk_a, K, dim=-1) # select top K nearest neighbors
9 lk_b_topk, idx_b = torch.topk(lk_b, K, dim=-1)

10
11 loss_cmd = loss_kld(torch.gather(l_b, -1, idx_a) / tau_s, lk_a_topk / tau_t) # A to B
12 + loss_kld(torch.gather(l_a, -1, idx_b) / tau_s, lk_b_topk / tau_t) # B to A
13
14 def loss_kld(inputs, targets):
15 inputs, targets = F.log_softmax(inputs, dim=1), F.softmax(targets, dim=1)
16 return F.kl_div(inputs, targets, reduction=’batchmean’)

3.4 Relationship with Positive Mining

Cross-modal Positive Mining: Cross-modal positive mining is the most
important component in CrosSCLR [23], where the most similar negative sample
is selected to boost the positive sets for contrastive learning in complementary
modalities. The contrastive loss for modality B is reformulated as:

Lb
CPM = − log

exp(zbq
⊤
zbk/τc) + exp(zbq

⊤
mb

u/τc)

exp(zbq
⊤
zbk/τc) +

∑N
i=1 exp(z

b
q
⊤
mb

i/τc)

= Lb
SCL − log

exp(zbq
⊤
mb

u/τc)

exp(zbq
⊤
zbk/τc) +

∑N
i=1 exp(z

b
q
⊤
mb

i/τc)
,

(6)

where u is the index of most similar negative sample in modality A.
CMD with τt = 0 and K = N : Setting temperature τt = 0 and K = N , the
key distribution p(zak , τt) in Eq. 4 will be an one-hot vector with the only 1 at
index u, and thus the loss works on modality B will be like:

Lb = Lb
SCL + Lb

CMD

= Lb
SCL +

N∑
i=1

pi(z
a
k , 0) · log

pi(z
a
k , 0)

pi(zbq, τs)

= Lb
SCL + 1 · log 1

pu(zbq, τs)

= Lb
SCL − log

exp(zbq
⊤
mb

u/τs)∑N
j=1 exp(z

b
q
⊤
mb

j/τs)
.

(7)

We can find that the loss Lb
CMD is essentially doing contrastive learning in modal-

ity B with the positive sample mined by modality A. Compared with Eq. 6, the
only difference is that when the mined mb

u is taken as the positive sample, the
key embedding zbk is excluded from the denominator. The same result holds for
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modality A. Thus we draw a conclusion that the cross-modal positive mining
performed in CrosSCLR [23] can be regarded as a special case of our approach
with the temperature of teacher τt = 0 and the number of neighbors K = N .

4 Experiments

4.1 Implementation Details

Network Architecture: In our approach, we adopt a 3-layer Bidirectional
GRU (BiGRU) as the base-encoder, which has a hidden dimension of 1024.
Before the encoder, we additionally add a Batch Normalization [19] layer to
stabilize the training process. Each skeleton sequence is represented in a two-
actor manner, where the second actor is set to zeros if only one actor exists. The
sequences are further resized to a temporal length of 64 frames.
Self-supervised Pre-training: During pre-training, we adopt MoCo v2 [5] to
perform single-modal contrastive learning. The temperature hyper-parameter in
the InfoNCE [35] loss is 0.07. In cross-modal mutual distillation, the tempera-
tures for teacher and student are set to 0.05 and 0.1, respectively. The number of
neighbors K is set to 8192. The SGD optimizer is employed with a momentum of
0.9 and a weight decay of 0.0001. The batch size is set to 64 and the initial learn-
ing rate is 0.01. For NTU RGB+D 60 [43] and NTU RGB+D 120 [28] datasets,
the model is trained for 450 epochs, the learning rate is reduced to 0.001 after
350 epochs, and the size of the memory bank N is 16384. For PKU-MMD II [9]
dataset, the total epochs are increased to 1000, and the learning rate drops at
epoch 800. We adopt the same skeleton augmentations as ISC [53].

4.2 Datasets and Metrics

NTU RGB+D 60 [43]: NTU-RGB+D 60 (NTU-60) is a large-scale multi-
modality action recognition dataset which is captured by three Kinect v2 cam-
eras. It contains 60 action categories and 56,880 sequences. The actions are
performed by 40 different subjects (actors). In this paper, we adopt its 3D skele-
ton data for experiments. Specifically, each human skeleton contains 25 body
joints, and each joint is represented as 3D coordinates. Two evaluation protocols
are recommended by the authors: cross-subject (x-sub) and cross-view (x-view).
For x-sub, action sequences performed by half of the 40 subjects are used as
training samples and the rest as test samples. For x-view, the training samples
are captured by camera 2 and 3 and the test samples are from camera 1.
NTU RGB+D 120 [28]: Compared with NTU-60, NTU-RGB+D 120 (NTU-
120) extends the action categories from 60 to 120, with 114,480 skeleton se-
quences in total. The number of subjects is also increased from 40 to 106. More-
over, a new evaluation protocol named cross-setup (x-set) is proposed as a sub-
stitute for x-view. Specifically, the sequences are divided into 32 different setups
according to the camera distances and background, with half of the 32 setups
(even-numbered) used for training and the rest for testing.
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Table 1. Performance comparison on NTU-60, NTU-120, and PKU-II in terms of the
linear evaluation protocol. Our approach achieves state-of-the-art performance on all
of them, both when taking single skeleton modality as input and when ensembling mul-
tiple modalities during evaluation. The prefix “3s-” denotes multi-modal ensembling.

Method Modality
NTU-60 NTU-120 PKU-II

x-sub x-view x-sub x-set x-sub

LongT GAN [65] Joint only 39.1 48.1 - - 26.0
MS2L [27] Joint only 52.6 - - - 27.6
P&C [50] Joint only 50.7 76.3 42.7 41.7 25.5
AS-CAL [41] Joint only 58.5 64.8 48.6 49.2 -
SeBiReNet [33] Joint only - 79.7 - - -
AimCLR [54] Joint only 74.3 79.7 - - -
ISC [53] Joint only 76.3 85.2 67.1 67.9 36.0
CrosSCLR-B Joint only 77.3 85.1 67.1 68.6 41.9
CMD (Ours) Joint only 79.8 86.9 70.3 71.5 43.0

3s-CrosSCLR [23] Joint+Motion+Bone 77.8 83.4 67.9 66.7 21.2
3s-AimCLR [54] Joint+Motion+Bone 78.9 83.8 68.2 68.8 39.5
3s-CrosSCLR-B Joint+Motion+Bone 82.1 89.2 71.6 73.4 51.0
3s-CMD (Ours) Joint+Motion+Bone 84.1 90.9 74.7 76.1 52.6

PKU-MMD [9]: PKU-MMD is a new benchmark for multi-modality 3D hu-
man action detection. It can also be used for action recognition tasks [27]. PKU-
MMD has two phases, where Phase II is extremely challenging since more noise
is introduced by large view variation. In this work, we evaluate the proposed
method on Phase II (PKU-II) under the widely used cross-subject evaluation
protocol, with 5,332 skeleton sequences for training and 1,613 for testing.
Evaluation Metrics: We report the top-1 accuracy for all datasets.

4.3 Comparison with State-of-the-art Methods

In the section, the learned representation is utilized for 3D action classification
under a variety of evaluation protocols. We compare the results with previous
state-of-the-art methods. Note that during evaluation, we only take single skele-
ton modality (joint) as input by default, which is consistent with previous arts
[27,50,53]. Integrating multiple skeleton modalities for evaluation can signifi-
cantly improve the performance, but it will also incur more time overhead.
Linear Evaluation Protocol: For linear evaluation protocol, we freeze the
pre-trained encoder and add a learnable linear classifier after it. The classifier is
trained on the corresponding training set for 80 epochs with a learning rate of
0.1 (reduced to 0.01 and 0.001 at epoch 50 and 70, respectively). We evaluate the
proposed method on the NTU-60, NTU-120, and PKU-II datasets. As shown in
Table 1, we include the recently proposed CrosSCLR [23], ISC [53], and AimCLR
[54] for comparison. Our approach outperforms previous state-of-the-art methods
by a considerable margin on all the three benchmarks. Note that ISC and the
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Table 2. Performance comparison on NTU-
60 and NTU-120 in terms of the KNN evalua-
tion protocol. The learned representation ex-
hibits the best performance on both datasets.
Surpassing previous state-of-the-art methods
by a considerable margin.

Method
NTU-60 NTU-120

x-sub x-view x-sub x-set

LongT GAN [65] 39.1 48.1 31.5 35.5
P&C [50] 50.7 76.3 39.5 41.8
ISC [53] 62.5 82.6 50.6 52.3
CrosSCLR-B 66.1 81.3 52.5 54.9
CMD (Ours) 70.6 85.4 58.3 60.9

Table 3. Performance comparison on
PKU-II in terms of the transfer learning
evaluation protocol. The source datasets
are NTU-60 and NTU-120. The rep-
resentation learned by our approach
shows the best transferability.

Method
To PKU-II

NTU-60 NTU-120

LongT GAN [65] 44.8 -
MS2L [27] 45.8 -
ISC [53] 51.1 52.3
CrosSCLR-B 54.0 52.8
CMD (Ours) 56.0 57.0

proposed CMD share the same BiGRU encoder, which is different from the ST-
GCN [60] encoder in CrosSCLR. For a fair comparison, we additionally train a
variation of CrossSCLR with BiGRU as its base-encoder (denoted as CrosSCLR-
B). We can find that our method still outperforms it on all the three datasets,
which shows the superiority of the proposed cross-modal mutual distillation.
KNN Evaluation Protocol: An alternative way to use the pre-trained en-
coder for action classification is to directly apply a K-Nearest Neighbor (KNN)
classifier to the learned features of the training samples. Following [50], we assign
each test sample to the most similar class where its nearest neighbor is in (i.e.
KNN with k=1). As shown in Table 2, we perform experiments on the NTU-60
and NTU-120 benchmarks and compare the results with previous works. For both
datasets, our approach exhibits the best performance, surpassing CrosSCLR-B
[23] by 4.5%˜6% in the more challenging cross-subject and cross-setup protocols.
Transfer Learning Evaluation Protocol: In transfer learning evaluation
protocol, we examine the transferability of the learned representation. Specif-
ically, we first utilize the proposed framework to pre-train the encoder on the
source dataset. Then the pre-trained encoder along with a linear classifier are
finetuned on the target dataset for 80 epochs with a learning rate of 0.01 (reduced
to 0.001 at epoch 50). We select NTU-60 and NTU-120 as source datasets, and
PKU-II as the target dataset. We compare the proposed approach with previous
methods LongT GAN [65], MS2L [27], and ISC [53] under the cross-subject pro-
tocol. As shown in Table 3, our approach exhibits superior performance on the
PKU-II dataset after large-scale pre-training, outperforming previous methods
by a considerable margin. This indicates that the representation learned by our
approach is more transferable.
Semi-supervised Evaluation Protocol: In semi-supervised classification,
both labeled and unlabeled data are included during training. Its goal is to
train a classifier with better performance than the one trained with only labeled
samples. For a fair comparison, we adopt the same strategy as ISC [53]. The
pre-trained encoder is fine-tuned together with the post-attached linear classi-
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Table 4. Performance comparison on NTU-60 in terms of the semi-supervised eval-
uation protocol. We randomly select a portion of the labeled data to fine-tune the
pre-trained encoder, and the average of five runs is reported as the final performance.
Our approach exhibits the state-of-the-art results compared with previous methods.

Method
NTU-60

x-view x-sub

(1%) (5%) (10%) (20%) (1%) (5%) (10%) (20%)

LongT GAN [65] - - - - 35.2 - 62.0 -
MS2L [27] - - - - 33.1 - 65.1 -
ASSL [48] - 63.6 69.8 74.7 - 57.3 64.3 68.0
ISC [53] 38.1 65.7 72.5 78.2 35.7 59.6 65.9 70.8
CrosSCLR-B [23] 49.8 70.6 77.0 81.9 48.6 67.7 72.4 76.1
CMD (Ours) 53.0 75.3 80.2 84.3 50.6 71.0 75.4 78.7

3s-CrosSCLR [23] 50.0 - 77.8 - 51.1 - 74.4 -
3s-Colorization [61] 52.5 - 78.9 - 48.3 - 71.7 -
3s-AimCLR [54] 54.3 - 81.6 - 54.8 - 78.2 -
3s-CMD (Ours) 55.5 77.2 82.4 86.6 55.6 74.3 79.0 81.8

fier on a portion of the corresponding training set. We conduct experiments on
the NTU-60 dataset. As shown in Table 4, we report the evaluation results when
the proportion of supervised data is set to 1%, 5%, 10%, and 20%, respectively.
Compared with previous methods LongT GAN [65], MS2L [27], ASSL [48], and
ISC [53], our algorithm exhibits superior performance. For example, with the
same baseline, the proposed approach outperforms ISC and CrosSCLR-B by a
large margin. We also take 3s-CrosSCLR [23], 3s-Colorization [61], and recently
proposed 3s-AimCLR [54] into comparison. In these methods, test-time multi-
modal ensembling is performed and the results of using 1% and 10% labeled
data are reported. We can find that our 3s-CMD still outperforms all of these
methods after ensembling multiple skeleton modalities.

4.4 Ablation study

To justify the effectiveness of the proposed cross-modal mutual distillation frame-
work, we conduct several ablative experiments on the NTU-60 dataset according
to the cross-subject protocol. More results can be found in the supplementary.
Number of neighbors: The number of nearest neighbors controls the abun-
dance of contextual information used in the proposed cross-modal mutual dis-
tillation module. We test the performance of the learned representation with
respect to different numbers of nearest neighbors K under the linear evaluation
protocol. As shown in Figure 3, on the downstream classification task, the per-
formance of the pre-trained encoder improves as K increases. When K is large
enough (K ≥ 8192), continuing to increase its value hardly contributes to the
performance. This is because the newly added neighbors are far away and contain
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Table 5. Ablative experiments of modality selection and bidirectional distillation. The
performance is evaluated on the NTU-60 dataset according to the cross-subject proto-
col. J, M, and B denote joint, motion, and bone modality respectively. The horizontal
arrows indicate the direction of distillation.

Modality & Direction
Linear Evaluation KNN Evaluation

Bone Motion Joint ∆ Bone Motion Joint ∆

Baseline 74.4 73.1 76.1 62.0 56.8 63.4

J ← B 74.4 - 76.5 62.0 - 64.3
J ⇄ B 76.6 - 77.7 ↑ 1.2 65.9 - 66.5 ↑ 2.2

J ← M - 73.1 78.9 - 56.8 64.8
J ⇄ M - 77.5 79.8 ↑ 0.9 - 67.0 68.7 ↑ 3.9

J ← M, J ← B 74.4 73.1 78.8 62.0 56.8 66.5
J ⇄ M, J ⇄ B, M ⇄ B 77.8 77.1 79.4 ↑ 0.6 69.5 68.7 70.6 ↑ 4.1

little reference value for describing the distribution around the query sample. In
addition, we can also find that when the value of K varies from 64 to 16384, the
performance of our approach is consistently higher than that of CrosSCLR-B
[23] and our baseline. This demonstrates the superiority and robustness of the
proposed approach.

64 128 256 512 1024 2048 4096 8192
16384
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CrosSCLR-B
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Fig. 3. Ablative study of the num-
ber of neighbors K in the cross-
modal mutual distillation module.
The performance is evaluated on
the cross-subject protocol of the
NTU-60 dataset.

Modality Selection: In our approach, we
consider three kinds of skeleton modalities for
self-supervised pre-training as in [23]. They
are joint, motion, and bone, respectively. Our
approach is capable of performing knowledge
distillation between any two of the above
modalities. As shown in Table 5, we report the
performance of the representation obtained
by pre-training with different combinations
of skeleton modalities. Note that the joint
modality is always preserved since it is used
for evaluation. There are several observations
as follows: i) Cross-modal knowledge distilla-
tion helps to improve the performance of the
representation in student modalities. ii) Un-
der the linear evaluation protocol, knowledge
distillation between joint and motion achieves
the optimal performance, exceeding the baseline by 3.7%. iii) Under the KNN
evaluation protocol, the learned representation shows the best results when all
the three modalities are involved in knowledge distillation, which outperforms
the baseline with an absolute improvement of 7.2%.
Bidirectional Distillation: In addition to modality selection, we also verify
the effectiveness of bidirectional distillation. It enables the modalities involved
in the distillation to interact with each other and progress together, forming a
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Baseline - joint CMD (Ours) - joint Baseline - motion CMD (Ours) - motion

Fig. 4. t-SNE [31] visualization of feature embeddings. We sample 15 action classes
from the NTU-60 dataset and visualize the features extracted by the proposed CMD
and its baseline respectively. Compared with the baseline, CMD learns more compact
and more discriminative representation in both joint and motion modalities.

virtuous circle. In Table 5, the last column of each evaluation protocol reports
the performance gain of bidirectional mutual distillation over unidirectional dis-
tillation in the joint modality. Results show that regardless of which skeleton
modalities are used during pre-training, bidirectional mutual distillation further
boosts the performance, especially under the KNN evaluation protocol.
Qualitative Results: We visualize the learned representation of the proposed
approach and compare it with that of the baseline. The t-SNE [31] algorithm
is adopted to reduce the dimensionality of the representation. To obtain clearer
results, we select only 1/4 of the categories in the NTU-60 dataset for visual-
ization. The final results are illustrated in Figure 4. For both joint and motion
modalities, the representation learned by our approach is more compactly clus-
tered than those learned by the baseline in the feature space. This brings a
stronger discrimination capability to the representation, explaining the stunning
performance of our approach in Table 2.

5 Conclusion

In this work, we presented a novel approach for self-supervised 3D action repre-
sentation learning. It reformulates cross-modal reinforcement as a bidirectional
knowledge distillation problem, where the pairwise similarities between embed-
dings are utilized to model the modality-specific knowledge. The carefully de-
signed cross-modal mutual distillation module can be well integrated into the
existing contrastive learning framework, thus avoiding additional computational
overhead. We evaluate the learned representation on three 3D action recognition
benchmarks with four widely adopted evaluation protocols. The proposed ap-
proach sets a series of new state-of-the-art records on all of them, demonstrating
the effectiveness of the cross-modal mutual distillation.
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